1 Some Very Useful Theorems

Total Page:16

File Type:pdf, Size:1020Kb

1 Some Very Useful Theorems Yuval Advanced Complex Analysis Mathcamp 2017 1 Some very useful theorems The ultimate goal of this class is to understand the geometric properties of analytic functions, but before we can do that, there are quite a few theorems that we need to prove first. All of these theorems are suprising, beautiful, and insanely useful. 1.1 Isolated roots and unique continuations Definition. A function f : C ! C is said to have isolated roots if its roots (the places where it evaluates to 0) are \spaced out". Formally, this means that if z0 2 C is a root, namely f(z0) = 0, then there is some " > 0 such that if 0 < jz − z0j < ", then f(z) 6= 0. In other words, the roots of f are not arbitrarily close to one another. Having isolated roots is a very special property. For instance, the function g : C ! C defined by g(x + iy) = x − y is an extremely nice function, but it does not have isolated roots: the entire line y = x is composed of roots of g, so every root has other roots arbitrarily close to it. Nevertheless, we have the following result: Theorem. If f : C ! C is analytic and not the zero function, then f has isolated roots. Proof. Suppose not. Then we have a root z0 that has other roots arbitrarily close to it. This means that we can find a sequence of points z1; z2;::: 2 C with f(zk) = 0 and limk!1 zk = z0. We expand f as a Taylor series centered at z0, by writing 1 X n f(z) = an(z − z0) n=0 for some collection of complex numbers an. Since f is not the zero function, one of the an must be nonzero; let m be the smallest integer such that am 6= 0. Then the above Taylor series expansion becomes 1 1 1 ! X X X an+m f(z) = a (z − z )n = a (z − z )n = a (z − z )m 1 + (z − z )n n 0 n 0 m 0 a 0 n=0 n=m n=1 m So if we define 1 X an+m g(z) = zn a n=1 m then we have written m f(z) = am(z − z0) (1 + g(z − z0)) Moreover, from the definition of g, we see that lim g(z − z0) = 0 z!z0 This, along with the fact that zk ! z0, implies that for some k large enough, we have that g(zk − z0) 6= −1. Therefore, plugging in such a k to our formula for f, we get that m 0 = f(zk) = am(zk − z0) (1 + g(zk − z0)) 6= 0 since every term on the right-hand side is nonzero. This is a contradiction, as desired. Corollary. Suppose f1; f2 : C ! C are analytic functions, and suppose they are equal on some non-discrete set (e.g. a line segment, or a curve, or a disk). Then they are equal everywhere. Proof. Consider the function f = f1 − f2. It is analytic, and we wish to prove that it's the zero function (since that implies that f1 = f2). For this, observe that f(z) = 0 whenever f1(z) = f2(z), by definition. Additionally, since we assumed that f1; f2 agreed on some non-discrete set, this implies that the roots of f cannot be isolated. So by the previous theorem, we must have that f = 0, as desired. 1 Yuval Advanced Complex Analysis Mathcamp 2017 This result is quite powerful, and in my opinion, very surprising. It tells us that the behavior of an analytic function on some tiny segment actually determines its behavior on the whole complex plane. It also makes the Cauchy Integral Formula seem less impressive|that theorem allows us to determine what an analytic function does inside a region based on what it does on the boundary, but this result is much more general than that. One corollary of this result is a new proof of a theorem that we already know, namely that the conjugation function f(z) = z is not analytic. Indeed, this function agrees with the identity function g(z) = z on the non-discrete set R ⊂ C. Since g is analytic, if f were analytic, then they'd have to agree everywhere, and they don't; thus, f is not analytic. 1.2 The Argument Principle Our next result is a very useful consequence of the Residue Theorem, which tells us how to count roots and poles of meromorphic functions. Theorem (The Argument Principle). Let f : C ! C be meromorphic, and let C be a simple closed curve. Suppose that f is never zero and has no poles on C. Then 1 Z f 0(z) dz = R − P 2πi C f(z) where R is the number of roots of f inside C, and P is the number of poles of f inside C, and both are counted with multiplicity. Proof. First, we observe a very useful property of the quantity f 0=f, which is called the logarithmic derivative of f (for the reason why, see the homework!). Namely, if f1; f2 are two functions, then by the product rule, (f f )0 f 0 f + f f 0 f 0 f 0 1 2 = 1 2 1 2 = 1 + 2 f1f2 f1f2 f1 f2 In other words, the logarithmic derivative of a product of functions is the sum of the logarithmic derivatives of the individual functions. Now, recall the Residue Theorem. It tells us that 1 Z f 0(z) X f 0 dz = res 2πi f(z) z f C poles z of f 0=f in C So where does f 0=f have poles? Whenever f is zero, we're dividing by zero, so we certainly expect a pole there. Additionally, wherever f has a pole, then f 0 will also have a pole there, so we expect a pole of f 0=f. Finally, no other point will be a pole: at any other point, we will be dividing an analytic function (namely f 0) by a nonzero analytic function (namely f), so we will get something analytic as the quotient. So now we just need to understand the residues at these two types of points, namely roots of f and poles of f. Let's start with the roots: suppose z0 is a root of f with multiplicity m. Recall that this means that we can write m f(z) = (z − z0) g(z) for some analytic function g with g(z0) 6= 0. Then using our additivity formula, we see that 0 m 0 0 0 f (z) [(z − z0) ] g (z) m g (z) = m + = + f(z) (z − z0) g(z) z − z0 g(z) 0 Since g is analytic and nonzero near z0, we see that g =g is also analytic there. So that term contributes nothing to the residue. So the only term that matters is m=(z − z0), whose residue at z0 is precisely m. This means that at a root of multiplicity m, f 0=f has a simple pole with residue precisely m. 2 Yuval Advanced Complex Analysis Mathcamp 2017 On the other hand, if z1 is a pole of f of order n, then we can write −n f(z) = (z − z1) h(z) for some analytic function h with h(z1) 6= 0. Then we get that 0 −n 0 0 0 f (z) [(z − z1) ] h (z) −n h (z) = −n + = + f(z) (z − z1) h(z) z − z1 h(z) 0 which again implies that f =f has a simple pole of residue −n at z1. So when we add up all residue of f 0=f inside C, we find that this sum is precisely R − P , as desired. This theorem is extremely useful in lots of contexts. For one cool application, recall that the Riemann Hypothesis says that a certain function (the Riemann ζ function) has its (\non-trivial") roots on the line 1 13 f 2 + it j t 2 Rg. This has been checked for the 10 smallest roots, and they indeed all lie on this line. But how do people actually check this? It turns out that the way they do so is by numerically integrating ζ0/ζ over a big rectangle near this critical line, which tells them how many roots are in this rectangle by the Argument Principle. Using the intermediate value theorem on a related function defined on the critical line, they can also count how many roots are actually on the line, and then by comparing this number, they can confirm that all the roots are on the line. 1.3 Rouch´e'sTheorem Rouch´e'sTheorem is another very useful tool, which tells us that when we perturb a function a little bit, then the number of roots in a region is unchanged. Theorem (Rouch´e). Suppose that f; g are analytic functions, C is a simple closed curve, and for every point z on the curve C, we have that jf(z)j > jg(z)j Then f and f + g have the same number of roots inside C. Proof. We're going to introduce a \time" parameter t 2 [0; 1], and define ft(z) = f(z) + tg(z) In other words, at time 0, we have that f0 is just f, whereas at time 1, f1 = f + g. So we can imagine ft as being a sort of evolution over time of our function as it goes from f to f + g. Since jfj > jgj on C, we necessarily have that ft has no roots on the curve C.
Recommended publications
  • Informal Lecture Notes for Complex Analysis
    Informal lecture notes for complex analysis Robert Neel I'll assume you're familiar with the review of complex numbers and their algebra as contained in Appendix G of Stewart's book, so we'll pick up where that leaves off. 1 Elementary complex functions In one-variable real calculus, we have a collection of basic functions, like poly- nomials, rational functions, the exponential and log functions, and the trig functions, which we understand well and which serve as the building blocks for more general functions. The same is true in one complex variable; in fact, the real functions we just listed can be extended to complex functions. 1.1 Polynomials and rational functions We start with polynomials and rational functions. We know how to multiply and add complex numbers, and thus we understand polynomial functions. To be specific, a degree n polynomial, for some non-negative integer n, is a function of the form n n−1 f(z) = cnz + cn−1z + ··· + c1z + c0; 3 where the ci are complex numbers with cn 6= 0. For example, f(z) = 2z + (1 − i)z + 2i is a degree three (complex) polynomial. Polynomials are clearly defined on all of C. A rational function is the quotient of two polynomials, and it is defined everywhere where the denominator is non-zero. z2+1 Example: The function f(z) = z2−1 is a rational function. The denomina- tor will be zero precisely when z2 = 1. We know that every non-zero complex number has n distinct nth roots, and thus there will be two points at which the denominator is zero.
    [Show full text]
  • MATH 305 Complex Analysis, Spring 2016 Using Residues to Evaluate Improper Integrals Worksheet for Sections 78 and 79
    MATH 305 Complex Analysis, Spring 2016 Using Residues to Evaluate Improper Integrals Worksheet for Sections 78 and 79 One of the interesting applications of Cauchy's Residue Theorem is to find exact values of real improper integrals. The idea is to integrate a complex rational function around a closed contour C that can be arbitrarily large. As the size of the contour becomes infinite, the piece in the complex plane (typically an arc of a circle) contributes 0 to the integral, while the part remaining covers the entire real axis (e.g., an improper integral from −∞ to 1). An Example Let us use residues to derive the formula p Z 1 x2 2 π 4 dx = : (1) 0 x + 1 4 Note the somewhat surprising appearance of π for the value of this integral. z2 First, let f(z) = and let C = L + C be the contour that consists of the line segment L z4 + 1 R R R on the real axis from −R to R, followed by the semi-circle CR of radius R traversed CCW (see figure below). Note that C is a positively oriented, simple, closed contour. We will assume that R > 1. Next, notice that f(z) has two singular points (simple poles) inside C. Call them z0 and z1, as shown in the figure. By Cauchy's Residue Theorem. we have I f(z) dz = 2πi Res f(z) + Res f(z) C z=z0 z=z1 On the other hand, we can parametrize the line segment LR by z = x; −R ≤ x ≤ R, so that I Z R x2 Z z2 f(z) dz = 4 dx + 4 dz; C −R x + 1 CR z + 1 since C = LR + CR.
    [Show full text]
  • Arxiv:1207.1472V2 [Math.CV]
    SOME SIMPLIFICATIONS IN THE PRESENTATIONS OF COMPLEX POWER SERIES AND UNORDERED SUMS OSWALDO RIO BRANCO DE OLIVEIRA Abstract. This text provides very easy and short proofs of some basic prop- erties of complex power series (addition, subtraction, multiplication, division, rearrangement, composition, differentiation, uniqueness, Taylor’s series, Prin- ciple of Identity, Principle of Isolated Zeros, and Binomial Series). This is done by simplifying the usual presentation of unordered sums of a (countable) family of complex numbers. All the proofs avoid formal power series, double series, iterated series, partial series, asymptotic arguments, complex integra- tion theory, and uniform continuity. The use of function continuity as well as epsilons and deltas is kept to a mininum. Mathematics Subject Classification: 30B10, 40B05, 40C15, 40-01, 97I30, 97I80 Key words and phrases: Power Series, Multiple Sequences, Series, Summability, Complex Analysis, Functions of a Complex Variable. Contents 1. Introduction 1 2. Preliminaries 2 3. Absolutely Convergent Series and Commutativity 3 4. Unordered Countable Sums and Commutativity 5 5. Unordered Countable Sums and Associativity. 9 6. Sum of a Double Sequence and The Cauchy Product 10 7. Power Series - Algebraic Properties 11 8. Power Series - Analytic Properties 14 References 17 arXiv:1207.1472v2 [math.CV] 27 Jul 2012 1. Introduction The objective of this work is to provide a simplification of the theory of un- ordered sums of a family of complex numbers (in particular, for a countable family of complex numbers) as well as very easy proofs of basic operations and properties concerning complex power series, such as addition, scalar multiplication, multipli- cation, division, rearrangement, composition, differentiation (see Apostol [2] and Vyborny [21]), Taylor’s formula, principle of isolated zeros, uniqueness, principle of identity, and binomial series.
    [Show full text]
  • Math 336 Sample Problems
    Math 336 Sample Problems One notebook sized page of notes will be allowed on the test. The test will cover up to section 2.6 in the text. 1. Suppose that v is the harmonic conjugate of u and u is the harmonic conjugate of v. Show that u and v must be constant. ∞ X 2 P∞ n 2. Suppose |an| converges. Prove that f(z) = 0 anz is analytic 0 Z 2π for |z| < 1. Compute lim |f(reit)|2dt. r→1 0 z − a 3. Let a be a complex number and suppose |a| < 1. Let f(z) = . 1 − az Prove the following statments. (a) |f(z)| < 1, if |z| < 1. (b) |f(z)| = 1, if |z| = 1. 2πij 4. Let zj = e n denote the n roots of unity. Let cj = |1 − zj| be the n − 1 chord lengths from 1 to the points zj, j = 1, . .n − 1. Prove n that the product c1 · c2 ··· cn−1 = n. Hint: Consider z − 1. 5. Let f(z) = x + i(x2 − y2). Find the points at which f is complex differentiable. Find the points at which f is complex analytic. 1 6. Find the Laurent series of the function z in the annulus D = {z : 2 < |z − 1| < ∞}. 1 Sample Problems 2 7. Using the calculus of residues, compute Z +∞ dx 4 −∞ 1 + x n p0(z) Y 8. Let f(z) = , where p(z) = (z −z ) and the z are distinct and zp(z) j j j=1 different from 0. Find all the poles of f and compute the residues of f at these poles.
    [Show full text]
  • Complex Logarithm
    Complex Analysis Math 214 Spring 2014 Fowler 307 MWF 3:00pm - 3:55pm c 2014 Ron Buckmire http://faculty.oxy.edu/ron/math/312/14/ Class 14: Monday February 24 TITLE The Complex Logarithm CURRENT READING Zill & Shanahan, Section 4.1 HOMEWORK Zill & Shanahan, §4.1.2 # 23,31,34,42 44*; SUMMARY We shall return to the murky world of branch cuts as we expand our repertoire of complex functions when we encounter the complex logarithm function. The Complex Logarithm log z Let us define w = log z as the inverse of z = ew. NOTE Your textbook (Zill & Shanahan) uses ln instead of log and Ln instead of Log . We know that exp[ln |z|+i(θ+2nπ)] = z, where n ∈ Z, from our knowledge of the exponential function. So we can define log z =ln|z| + i arg z =ln|z| + i Arg z +2nπi =lnr + iθ where r = |z| as usual, and θ is the argument of z If we only use the principal value of the argument, then we define the principal value of log z as Log z, where Log z =ln|z| + i Arg z = Log |z| + i Arg z Exercise Compute Log (−2) and log(−2), Log (2i), and log(2i), Log (−4) and log(−4) Logarithmic Identities z = elog z but log ez = z +2kπi (Is this a surprise?) log(z1z2) = log z1 + log z2 z1 log = log z1 − log z2 z2 However these do not neccessarily apply to the principal branch of the logarithm, written as Log z. (i.e. is Log (2) + Log (−2) = Log (−4)? 1 Complex Analysis Worksheet 14 Math 312 Spring 2014 Log z: the Principal Branch of log z Log z is a single-valued function and is analytic in the domain D∗ consisting of all points of the complex plane except for those lying on the nonpositive real axis, where d 1 Log z = dz z Sketch the set D∗ and convince yourself that it is an open connected set.
    [Show full text]
  • Complex Analysis
    Complex Analysis Andrew Kobin Fall 2010 Contents Contents Contents 0 Introduction 1 1 The Complex Plane 2 1.1 A Formal View of Complex Numbers . .2 1.2 Properties of Complex Numbers . .4 1.3 Subsets of the Complex Plane . .5 2 Complex-Valued Functions 7 2.1 Functions and Limits . .7 2.2 Infinite Series . 10 2.3 Exponential and Logarithmic Functions . 11 2.4 Trigonometric Functions . 14 3 Calculus in the Complex Plane 16 3.1 Line Integrals . 16 3.2 Differentiability . 19 3.3 Power Series . 23 3.4 Cauchy's Theorem . 25 3.5 Cauchy's Integral Formula . 27 3.6 Analytic Functions . 30 3.7 Harmonic Functions . 33 3.8 The Maximum Principle . 36 4 Meromorphic Functions and Singularities 37 4.1 Laurent Series . 37 4.2 Isolated Singularities . 40 4.3 The Residue Theorem . 42 4.4 Some Fourier Analysis . 45 4.5 The Argument Principle . 46 5 Complex Mappings 47 5.1 M¨obiusTransformations . 47 5.2 Conformal Mappings . 47 5.3 The Riemann Mapping Theorem . 47 6 Riemann Surfaces 48 6.1 Holomorphic and Meromorphic Maps . 48 6.2 Covering Spaces . 52 7 Elliptic Functions 55 7.1 Elliptic Functions . 55 7.2 Elliptic Curves . 61 7.3 The Classical Jacobian . 67 7.4 Jacobians of Higher Genus Curves . 72 i 0 Introduction 0 Introduction These notes come from a semester course on complex analysis taught by Dr. Richard Carmichael at Wake Forest University during the fall of 2010. The main topics covered include Complex numbers and their properties Complex-valued functions Line integrals Derivatives and power series Cauchy's Integral Formula Singularities and the Residue Theorem The primary reference for the course and throughout these notes is Fisher's Complex Vari- ables, 2nd edition.
    [Show full text]
  • Augustin-Louis Cauchy - Wikipedia, the Free Encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy from Wikipedia, the Free Encyclopedia
    Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM Augustin-Louis Cauchy From Wikipedia, the free encyclopedia Baron Augustin-Louis Cauchy (French: [oɡystɛ̃ Augustin-Louis Cauchy lwi koʃi]; 21 August 1789 – 23 May 1857) was a French mathematician who was an early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous manner, rejecting the heuristic Cauchy around 1840. Lithography by Zéphirin principle of the Belliard after a painting by Jean Roller. generality of algebra exploited by earlier Born 21 August 1789 authors. He defined Paris, France continuity in terms of Died 23 May 1857 (aged 67) infinitesimals and gave Sceaux, France several important Nationality French theorems in complex Fields Mathematics analysis and initiated the Institutions École Centrale du Panthéon study of permutation École Nationale des Ponts et groups in abstract Chaussées algebra. A profound École polytechnique mathematician, Cauchy Alma mater École Nationale des Ponts et exercised a great Chaussées http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy Page 1 of 24 Augustin-Louis Cauchy - Wikipedia, the free encyclopedia 1/6/14 3:35 PM influence over his Doctoral Francesco Faà di Bruno contemporaries and students Viktor Bunyakovsky successors. His writings Known for See list cover the entire range of mathematics and mathematical physics. "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)."[1] Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks. He was a devout Roman Catholic, strict Bourbon royalist, and a close associate of the Jesuit order.
    [Show full text]
  • Complex Analysis (Princeton Lectures in Analysis, Volume
    COMPLEX ANALYSIS Ibookroot October 20, 2007 Princeton Lectures in Analysis I Fourier Analysis: An Introduction II Complex Analysis III Real Analysis: Measure Theory, Integration, and Hilbert Spaces Princeton Lectures in Analysis II COMPLEX ANALYSIS Elias M. Stein & Rami Shakarchi PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Control Number 2005274996 ISBN 978-0-691-11385-2 British Library Cataloging-in-Publication Data is available The publisher would like to acknowledge the authors of this volume for providing the camera-ready copy from which this book was printed Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 5 7 9 10 8 6 To my grandchildren Carolyn, Alison, Jason E.M.S. To my parents Mohamed & Mireille and my brother Karim R.S. Foreword Beginning in the spring of 2000, a series of four one-semester courses were taught at Princeton University whose purpose was to present, in an integrated manner, the core areas of analysis. The objective was to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. The present series of books is an elaboration of the lectures that were given. While there are a number of excellent texts dealing with individual parts of what we cover, our exposition aims at a different goal: pre- senting the various sub-areas of analysis not as separate disciplines, but rather as highly interconnected.
    [Show full text]
  • Argument Principle
    Topic 11 Notes Jeremy Orloff 11 Argument Principle 11.1 Introduction The argument principle (or principle of the argument) is a consequence of the residue theorem. It connects the winding number of a curve with the number of zeros and poles inside the curve. This is useful for applications (mathematical and otherwise) where we want to know the location of zeros and poles. 11.2 Principle of the argument Setup. � a simple closed curve, oriented in a counterclockwise direction. f .z/ analytic on and inside �, except for (possibly) some finite poles inside (not on) � and some zeros inside (not on) �. p ; ; p f � Let 1 § m be the poles of inside . z ; ; z f � Let 1 § n be the zeros of inside . Write mult.zk/ = the multiplicity of the zero at zk. Likewise write mult.pk/ = the order of the pole at pk. We start with a theorem that will lead to the argument principle. Theorem 11.1. With the above setup f ¨ z (∑ ∑ ) . / dz �i z p : Ê f z = 2 mult. k/* mult. k/ � . / Proof. To prove this theorem we need to understand the poles and residues of f ¨.z/_f .z/. With this f z m z f z z in mind, suppose . / has a zero of order at 0. The Taylor series for . / near 0 is f z z z mg z . / = . * 0/ . / g z z where . / is analytic and never 0 on a small neighborhood of 0. This implies ¨ m z z m*1g z z z mg¨ z f .z/ . * 0/ . / + . * 0/ . / f z = z z mg z .
    [Show full text]
  • A Formal Proof of Cauchy's Residue Theorem
    A Formal Proof of Cauchy's Residue Theorem Wenda Li and Lawrence C. Paulson Computer Laboratory, University of Cambridge fwl302,[email protected] Abstract. We present a formalization of Cauchy's residue theorem and two of its corollaries: the argument principle and Rouch´e'stheorem. These results have applications to verify algorithms in computer alge- bra and demonstrate Isabelle/HOL's complex analysis library. 1 Introduction Cauchy's residue theorem | along with its immediate consequences, the ar- gument principle and Rouch´e'stheorem | are important results for reasoning about isolated singularities and zeros of holomorphic functions in complex anal- ysis. They are described in almost every textbook in complex analysis [3, 15, 16]. Our main motivation of this formalization is to certify the standard quantifier elimination procedure for real arithmetic: cylindrical algebraic decomposition [4]. Rouch´e'stheorem can be used to verify a key step of this procedure: Collins' projection operation [8]. Moreover, Cauchy's residue theorem can be used to evaluate improper integrals like Z 1 itz e −|tj 2 dz = πe −∞ z + 1 Our main contribution1 is two-fold: { Our machine-assisted formalization of Cauchy's residue theorem and two of its corollaries is new, as far as we know. { This paper also illustrates the second author's achievement of porting major analytic results, such as Cauchy's integral theorem and Cauchy's integral formula, from HOL Light [12]. The paper begins with some background on complex analysis (Sect. 2), fol- lowed by a proof of the residue theorem, then the argument principle and Rouch´e'stheorem (3{5).
    [Show full text]
  • 4 Complex Analysis
    4 Complex Analysis “He is not a true man of science who does not bring some sympathy to his studies, and expect to learn something by behavior as well as by application. It is childish to rest in the discovery of mere coincidences, or of partial and extraneous laws. The study of geometry is a petty and idle exercise of the mind, if it is applied to no larger system than the starry one. Mathematics should be mixed not only with physics but with ethics; that is mixed mathematics. The fact which interests us most is the life of the naturalist. The purest science is still biographical.” Henry David Thoreau (1817 - 1862) We have seen that we can seek the frequency content of a signal f (t) defined on an interval [0, T] by looking for the the Fourier coefficients in the Fourier series expansion In this chapter we introduce complex numbers and complex functions. We a ¥ 2pnt 2pnt will later see that the rich structure of f (t) = 0 + a cos + b sin . 2 ∑ n T n T complex functions will lead to a deeper n=1 understanding of analysis, interesting techniques for computing integrals, and The coefficients can be written as integrals such as a natural way to express analog and dis- crete signals. 2 Z T 2pnt an = f (t) cos dt. T 0 T However, we have also seen that, using Euler’s Formula, trigonometric func- tions can be written in a complex exponential form, 2pnt e2pint/T + e−2pint/T cos = . T 2 We can use these ideas to rewrite the trigonometric Fourier series as a sum over complex exponentials in the form ¥ 2pint/T f (t) = ∑ cne , n=−¥ where the Fourier coefficients now take the form Z T −2pint/T cn = f (t)e dt.
    [Show full text]
  • Chapter 2 Complex Analysis
    Chapter 2 Complex Analysis In this part of the course we will study some basic complex analysis. This is an extremely useful and beautiful part of mathematics and forms the basis of many techniques employed in many branches of mathematics and physics. We will extend the notions of derivatives and integrals, familiar from calculus, to the case of complex functions of a complex variable. In so doing we will come across analytic functions, which form the centerpiece of this part of the course. In fact, to a large extent complex analysis is the study of analytic functions. After a brief review of complex numbers as points in the complex plane, we will ¯rst discuss analyticity and give plenty of examples of analytic functions. We will then discuss complex integration, culminating with the generalised Cauchy Integral Formula, and some of its applications. We then go on to discuss the power series representations of analytic functions and the residue calculus, which will allow us to compute many real integrals and in¯nite sums very easily via complex integration. 2.1 Analytic functions In this section we will study complex functions of a complex variable. We will see that di®erentiability of such a function is a non-trivial property, giving rise to the concept of an analytic function. We will then study many examples of analytic functions. In fact, the construction of analytic functions will form a basic leitmotif for this part of the course. 2.1.1 The complex plane We already discussed complex numbers briefly in Section 1.3.5.
    [Show full text]