Paleobiology, Biogeography, and Systematics of the Black-Footed Ferret, Mustela Nigripes (Audubon and Bachman), 1851

Total Page:16

File Type:pdf, Size:1020Kb

Paleobiology, Biogeography, and Systematics of the Black-Footed Ferret, Mustela Nigripes (Audubon and Bachman), 1851 Great Basin Naturalist Memoirs Volume 8 The Black-footed Ferret Article 3 5-1-1986 Paleobiology, biogeography, and systematics of the black-footed ferret, Mustela nigripes (Audubon and Bachman), 1851 Elaine Anderson 730 Magnolia Street, Denver, Colorado 80220 Steven C. Forrest Department of Biological Sciences, Idaho State University, Pocatello, Idaho 83209, and Biota Research and Consulting Inc., Box 2705, Jackson, Wyoming 83001 Tim W. Clark Department of Biological Sciences, Idaho State University, Pocatello, Idaho 83209, and Biota Research and Consulting Inc., Box 2705, Jackson, Wyoming 83001 Louise Richardson Department of Biological Sciences, Idaho State University, Pocatello, Idaho 83209, and Biota Research and Consulting Inc., Box 2705, Jackson, Wyoming 83001 Follow this and additional works at: https://scholarsarchive.byu.edu/gbnm Recommended Citation Anderson, Elaine; Forrest, Steven C.; Clark, Tim W.; and Richardson, Louise (1986) "Paleobiology, biogeography, and systematics of the black-footed ferret, Mustela nigripes (Audubon and Bachman), 1851," Great Basin Naturalist Memoirs: Vol. 8 , Article 3. Available at: https://scholarsarchive.byu.edu/gbnm/vol8/iss1/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist Memoirs by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. PALEOBIOLOGY, BIOGEOGRAPHY, AND SYSTEMATICS OF THE BLACK-FOOTED FERRET, MUSTELA NIGRIPES (AUDUBON AND BACHMAN), 1851 Elaine Anderson', Steven C. Forrest", Tim W. Clark," and Louise Richardson" Abstract. — Extensive literature review and 48 mammal collections containing recent specimens of the endangered ferret black-footed {Mustela nigripes) are used to characterize historic distribution of the species. Specimens (n = 120) were measured from eight collections to characterize black-footed ferret morphology and variation. Twenty-one Pleistocene and Holocene faunas in North America show ferrets dating to 100,000 yr B.P. Recent specimens (n = 412) indicate close association with prairie the dog {Cynomys spp. ) and suggest ferrets may have been less rare than previously thought. At least 103 (25%) of all specimens were taken by federal predator and rodent control agents, and males outnumber females in collections 2.04:1. Average and extreme measurement for external, cranial, and postcra- nial dimensions are tabulated. Ferrets show a high degree of sexual dimoqihism, with discriminant analysis correctly classifying 95% of all specimens to sex. Ferrets also exhibit north-south clinal variation in size, but they do not appear to exhibit variation based on species of Cynomys associate. The taxonomic relationship among ferrets and close relatives is described. The black-footed ferret (Mustela nigripes) is a medium-sized musteline that is listed as ^IS^IT^^ endangered throughout its former range and currently receives full protection under the U.S. Endangered Species Act of 1973 (16 use 1531 et. seq.). Endemic to North Amer- ica, black-footed ferrets formerly occupied an extensive range from the Great Plains of Canada to intermontane regions of the inte- rior Rocky Mountains and southwestern United States. The species is currently known from only one population restricted to an ap- pro.ximately 150 sq km area in northwestern Wyoming (Fig. 1). Decline of the black-footed ferret over the last 50 years is attributed to the often systematic eradication of its principal prey and associate, the prairie dog {Cijnomys spp. ), which is often viewed as an agricultural pest throughout the West. Prairie dogs are semifossorial colonial rodents (Sciuridae) that offer an abundant source of prey and burrows for ferret shelter. Because black-footed ferrets are primarily nocturnal and spend much of their time un- derground, they seldom were observed in the Fig. 1. Historic range of the black-footed ferret (shaded area) compared with the current known range wild by naturalists until recent technologies, (dot). specifically the high-intensity portable spot- light, made observation possible. Few details of the species biology were known until a Dakota, was studied from 1964 to 1974. Prior small population in Mellette County, South to that time information on distribution and '730 Magnolia Street, Denver, Colorado 80220. and Consulting Inc. Box 2705, Jackson, Wyoming ^Department of Biological Sciences, Idaho State University, Pocatello, Idaho S3209, and Biota Research , 83001. 11 12 Great Basin Naturalist Memoirs No. 8 specimens of ferrets were collected sporadi- CU— Cornell University Division of Biological Sciences, Ithaca, New York cally by commercial trappers, museum collec- DMNH— Denver Museum of Natural History, Denver, tors, or federal and state rodent and predator Colorado* control agents of the U.S. Fish and Wildlife FMNH— Field Museum of Natural History, Chicago Service (formerly the Biological Survey [BSC] HM— Hastings Museum, Hastings, Nebraska and Bureau of Sport, Fisheries, and Wildlife ISU — Iowa State University, Ames KSU — Kansas State University, Manhattan [BSFW]). Specimens are therefore few and KUMNH— University of Kansas, Lawrence* scattered among many collections. MCZ— Museum of Comparative Zoology, Harvard Uni- Records of M. nigripes specimens and sight versity, Cambridge, Massachusetts* reports have been compiled for some states, MDFWP— Montana Department of Fish, Wildlife and Parks, Bozeman* but no comprehensive record of black-footed MHM— Minnilusa Pioneer Historical Museum, Rapid exists ferret distribution based on specimens City, South Dakota other than Hall (1981). Some authors have MSU— Montana State University, Bozeman included measurements from limited sam- NDSHS— North Dakota State Historical Society Mu- seum, Bismarck ples, but no systematic analysis based on a NGFP— Nebraska Game, Fish, and Parks, Lincoln large sample has been made. The present NMC— National Museum of Natural Sciences, Ottawa, study is based on a comprehensive examina- Ontario tion and analysis of black-footed ferret re- NSCM — Northwestern State College, Alva, Oklahoma mains and literature and describes the pale- NYZ—New York Zoological Society, Bronx, New York NZP National Zoological Park, Washington, D.C. obiology, distribution, and skeletal mor- — OSLf —Oklahoma State University, Stillwater phometry of M. nigripes. OU— University of Oklahoma, Norman PAT— Patuxent Wildlife Research Center, Laurel, Maryland Materials and Methods ROM—Royal Ontario Museum, Toronto SDNHM — San Diego Natural History Museum, San Sixty-eight collections mammal were con- Diego, California tacted and 48 of them reported having M. SNMH— Saskatchewan Museum of Natural History, nigripes in their collections. Of these, eight Regina collections were examined and measured. SYR— State University of New York, Syracuse SZCM — State Zoological Collection, Munich, German Collection data were supplemented by a thor- Federal Republic ough hterature review. Evidence of ferrets UCB— University of California, Berkeley was confirmed either by the presence in mu- UCM— University of Colorado Museum, Boulder* seums of specimens (skins, skeletal material) UMMZ— University of Michigan Museum of Zoology, Ann Arbor of M. nigripes or by observations of ferrets in UMMNH—James Ford Bell Museum of Natural His- hand reported in the literature biologists by tory, University of Minnesota, Minneapolis familiar with the species. Some literature re- UND— University of North Dakota, Grand Forks ports, therefore, include live-captured or UNSM— University of Nebraska State Museum, Lincoln University Department of Zool- killed animals that were not collected or pre- USD— of South Dakota, ogy, Vermillion served as museum specimens. Sight reports USNM — United States National Museum, Washington, or secondary sources, however authentic, DC* were not included. UW— University of Wyoming, Laramie. Collections containing black-footed ferrets UWZM — University of Wisconsin Zoological Museum, Madison are listed below. Asterisks denote collections WGF—Wyoming Game and Fish Department, from which specimens were measured. Cheyenne W^ H. Over Museum, University of South Da- AMNH—American Museum of Natural History, New WHO— York* kota, Vermillion YPM — Peabody Museum, Yale University, New Haven, ANSP— Academy of Natural Sciences, Philadelphia Connecticut AUG— Augustana College, Sioux Falls, South Dakota ZSP Zoological Society of Philadelphia BMS— Buffalo Museum of Science, Buffalo, New York — BNP— Badlands National Park, Interior, South Dakota BSC— Biological Services Collection, Fort Collins, Colo- Record localities are listed in Table 6 as they rado* appeared on specimen labels or in the litera- CDOW— Colorado Division of Wildlife, Denver ture, with any comments or clarifying notes CMNH— Carnegie Mu.seum of Natural History, Pitts- burg included in the text or remarks. Specimen CSU—Colorado State University, Fort C'ollins label data were organized by collection date 1986 Anderson et al.: Biogeography and Systematics 13 A LM' LM' LC-M2 LM|tr-^LM| WM,tr i,\ WM|tr pt- LM |tr yM Wl3-l3 WC-C Wp4.p4 Wp4-p4 POP POP Fig. 2. Skull and mandible of black-footed ferret (Ad. S , Baca County, Colorado. DMNH 2248) showing measure- ments taken. A, Lateral view of skull. B, Lateral view of mandible. C, Occlusal view of ?*. D, Occlusal view of M'. E, Occlusal view of Mj. F, Dorsal view of skull. G, Ventral view of skull. For symbols see Materials
Recommended publications
  • Wild Mammals of the Annapurna Conservation Area Cggk"0F{ ;+/If0f If]Qsf :Tgwf/L Jgohgt' Wild Mammals of the Annapurna Conservation Area - 2019
    Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' Wild Mammals of the Annapurna Conservation Area - 2019 ISBN 978-9937-8522-8-9978-9937-8522-8-9 9 789937 852289 National Trust for Nature Conservation Annapurna Conservation Area Project Khumaltar, Lalitpur, Nepal Hariyo Kharka, Pokhara, Kaski, Nepal National Trust for Nature Conservation P.O. Box: 3712, Kathmandu, Nepal P.O. Box: 183, Kaski, Nepal Tel: +977-1-5526571, 5526573, Fax: +977-1-5526570 Tel: +977-61-431102, 430802, Fax: +977-61-431203 Annapurna Conservation Area Project Email: [email protected] Email: [email protected] Website: www.ntnc.org.np Website: www.ntnc.org.np 2019 Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' National Trust for Nature Conservation Annapurna Conservation Area Project 2019 Wild Mammals of the Annapurna Conservation Area cGgk"0f{ ;+/If0f If]qsf :tgwf/L jGohGt' Published by © NTNC-ACAP, 2019 All rights reserved Any reproduction in full or in part must mention the title and credit NTNC-ACAP. Reviewers Prof. Karan Bahadur Shah (Himalayan Nature), Dr. Naresh Subedi (NTNC, Khumaltar), Dr. Will Duckworth (IUCN) and Yadav Ghimirey (Friends of Nature, Nepal). Compilers Rishi Baral, Ashok Subedi and Shailendra Kumar Yadav Suggested Citation Baral R., Subedi A. & Yadav S.K. (Compilers), 2019. Wild Mammals of the Annapurna Conservation Area. National Trust for Nature Conservation, Annapurna Conservation Area Project, Pokhara, Nepal. First Edition : 700 Copies ISBN : 978-9937-8522-8-9 Front Cover : Yellow-bellied Weasel (Mustela kathiah), back cover: Orange- bellied Himalayan Squirrel (Dremomys lokriah).
    [Show full text]
  • CURRICULUM VITAE Anthony D. Barnosky • Jasper Ridge Biological
    01 Jan 2018 CURRICULUM VITAE Anthony D. Barnosky • Jasper Ridge Biological Preserve, Stanford University • Stanford CA 94305 Web Page: http://web.stanford.edu/people/tonybarnosky Personal Birthdate: 5 July 1952 Address: 866 Tolman Drive, Stanford, CA 94720 Birthplace: Pueblo, Colorado Phone: 650 245-4495 Marital Status: Married, 2 children e-mail: [email protected] Skill Sets • University research and teaching • Directing interdisciplinary research consortia • Managing of and raising funds for multi-investigator projects • Managing students and employees • Communicating science to academic and general audiences (including academic and popular books, articles, radio, newspaper, blogs, lectures, websites, film, etc.) • Current research program emphasizes understanding and managing global change, biodiversity and extinction dynamics, and biodiversity conservation • Paleontological, geological, archaeological, biological field work Education B.A. 1974. The Colorado College. (Geology) M.Sc. 1980. University of Washington. (Geology, Vertebrate Paleontology) Ph.D. 1983. University of Washington. (Geology, Vertebrate Paleontology) Present Positions • Professor of Biology, Stanford University (since 1/2018) • Executive Director, Jasper Ridge Biological Preserve, Stanford University (since 7/2016) • Professor Emeritus, Department of Integrative Biology, University of California, Berkeley (since 7/2016) Past Positions 1990-2016 Tenured Professor, Department of Integrative Biology, University of California, Berkeley 1990-2016 Curator, Museum
    [Show full text]
  • VOLATILE COMPOUNDS from ANAL GLANDS of the WOLVERINE, Gulo Gulo
    Journal of Chemical Ecology, Vol. 12, No. 9, September 2005 ( #2005) DOI: 10.1007/s10886-005-6080-9 VOLATILE COMPOUNDS FROM ANAL GLANDS OF THE WOLVERINE, Gulo gulo WILLIAM F. WOOD,1,* MIRANDA N. TERWILLIGER,2 and JEFFREY P. COPELAND3 1Department of Chemistry, Humboldt State University, Arcata, CA 95521, USA 2Alaska Cooperative Fish & Wildlife Research Unit, Department of Biology & Wildlife, University of Alaska, Fairbanks, AK 99775, USA 3USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA (Received February 12, 2005; revised March 24, 2005; accepted April 20, 2005) Abstract—Dichloromethane extracts of wolverine (Gulo gulo, Mustelinae, Mustelidae) anal gland secretion were examined by gas chromatographyYmass spectrometry. The secretion composition was complex and variable for the six samples examined: 123 compounds were detected in total, with the number per animal ranging from 45 to 71 compounds. Only six compounds were common to all extracts: 3-methylbutanoic acid, 2-methylbutanoic acid, phenylacetic acid, a-tocopherol, cholesterol, and a compound tentatively identified as 2-methyldecanoic acid. The highly odoriferous thietanes and dithiolanes found in anal gland secretions of some members of the Mustelinae [ferrets, mink, stoats, and weasels (Mustela spp.) and zorillas (Ictonyx spp.)] were not observed. The composition of the wolverine’s anal gland secretion is similar to that of two other members of the Mustelinae, the pine and beech marten (Martes spp.). Key WordsVWolverine, Gulo gulo, Mustelinae, Mustelidae, scent marking, fear-defense mechanism, short-chain carboxylic acids. INTRODUCTION The wolverine (Gulo gulo) is the largest terrestrial member of the Mustelidae and is part of the subfamily, Mustelinae, which includes ferrets, fishers, martens, mink, stoats, weasels, and zorillas.
    [Show full text]
  • Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
    Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g.
    [Show full text]
  • Mammalian Predators Appropriating the Refugia of Their Prey
    Mamm Res (2015) 60:285–292 DOI 10.1007/s13364-015-0236-y ORIGINAL PAPER When prey provide more than food: mammalian predators appropriating the refugia of their prey William J. Zielinski 1 Received: 30 September 2014 /Accepted: 20 July 2015 /Published online: 31 July 2015 # Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland (outside the USA) 2015 Abstract Some mammalian predators acquire both food and predators) may play disproportionately important roles in their shelter from their prey, by eating them and using the refugia communities. the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxo- Keywords Predator–prey . Dens . Herbivore . Behavior . nomic affiliations, relative sizes, and distributions. I hypothe- Habitat . Resting . Foraging sized that size ratios of species involved in this dynamic would be near 1.0, and that most of these interactions would occur at intermediate and high latitudes. Seventeen species of Introduction Carnivorans exploited at least 23 species of herbivores as food and for their refugia. Most of them (76.4 %) were in the Mammals require food and most require shelter, either to pro- Mustelidae; several small species of canids and a few tect them from predators or from thermal stress. Carnivorous herpestids were exceptions. Surprisingly, the average mammals are unique in that they subsist on mobile food predator/prey weight ratio was 10.51, but few species of pred- sources which, particularly if these sources are vertebrates, ators were more than ten times the weight of the prey whose may build their own refuges to help regulate their body tem- refugia they exploit.
    [Show full text]
  • Identification of Hungarian Mustelidae and Other Small Carnivores Using Guard Hair Analysis
    Acta Zoologica Academiae Scientiarum Hungaricae 48 (3), pp. 237–250, 2002 IDENTIFICATION OF HUNGARIAN MUSTELIDAE AND OTHER SMALL CARNIVORES USING GUARD HAIR ANALYSIS M. TÓTH A. Department of Systematic Zoology and Ecology of the Eötvös Loránd University Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary, E-mail: [email protected] The characteristics of the guard hairs of all the mustelids in Hungary and Vulpes vulpes and Felis silvestris were examined for diagnostic characters. The analysis of hair samples taken from guts, scats, burrows, nests and bait sites can serve as an easy and quick method for faunistic research. The difficulties of hair determination are the similar appearance, overlap- pingcharacters and often the low number of samples, but some relevant characters of hair could be used to develop more detailed and specific identification. Otter and Badger differ markedly from the other mustelids while separatingthe hair of the other six species livingin Carpathian Basin (Polecat, Steppe Polecat, Stoat, Weasel, Pine Marten and Stone Marten) de- manded statistical analysis. Separatingthe two “twin-pairs” of species (Stoat and Weasel, Polecat and Steppe Polecat) is not probable by this technique. Key words: small carnivores, Mustelidae, hair, identification, Carpathian Basin INTRODUCTION There are eight species of Mustelidae in the Carpathian Basin, all indigenous: Weasel (Mustela nivalis), Stoat (Mustela erminea), Polecat (Mustela putorius), Steppe Polecat (Mustela eversmannni), Stone Marten (Martes foina), Pine Marten (M. martes), Badger (Meles meles) and Otter (Lutra lutra). The European Mink (Mustela lutreola) is only a rare, lonely rambling(U JHELYI 1994). Mustelids are regarded as important top predators, because the Wolf (Canis lupus) and Lynx (Lynx lynx) are scarce, though their gradual return to the fauna is occurring through to their natural re-expansion.
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • Molecular Phylogeny and Taxonomy of the Genus Mustela
    Mammal Study 33: 25–33 (2008) © the Mammalogical Society of Japan Molecular phylogeny and taxonomy of the genus Mustela (Mustelidae, Carnivora), inferred from mitochondrial DNA sequences: New perspectives on phylogenetic status of the back-striped weasel and American mink Naoko Kurose1, Alexei V. Abramov2 and Ryuichi Masuda3,* 1 Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa 259-1293, Japan 2 Zoological Institute, Russian Academy of Sciences, Saint-Petersburg 199034, Russia 3 Creative Research Initiative “Sousei”, Hokkaido University, Sapporo 060-0810, Japan Abstract. To further understand the phylogenetic relationships among the mustelid genus Mustela, we newly determined nucleotide sequences of the mitochondrial 12S rRNA gene from 11 Eurasian species of Mustela, including the domestic ferret and the American mink. Phylogenetic relationships inferred from the 12S rRNA sequences were similar to those based on previously reported mitochondrial cytochrome b data. Combined analyses of the two genes demonstrated that species of Mustela were divided into two primary clades, named “the small weasel group” and “the large weasel group”, and others. The Japanese weasel (Mustela itatsi) formerly classified as a subspecies of the Siberian weasel (M. sibirica), was genetically well-differentiated from M. sibirica, and the two species clustered with each other. The European mink (M. lutreola) was closely related to “the ferret group” (M. furo, M. putorius, and M. eversmanii). Both the American mink of North America and the back-striped weasel (M. strigidorsa) of Southeast Asia were more closely related to each other than to other species of Mustela, indicating that M. strigidorsa originated from an independent lineage that differs from other Eurasian weasels.
    [Show full text]
  • Mustelidae: Carnivora) from the Late Miocene of Africa
    A new species of Plesiogulo (Mustelidae: Carnivora) from the Late Miocene of Africa Yohannes Haile-Selassie1, Leslea J. Hlusko2* & F. Clark Howell3 1Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH 44106, U.S.A. 2Department of Integrative Biology, University of California, Berkeley, CA 94720, U.S.A. 3 Laboratory for Human Evolutionary Studies, Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, U.S.A. Receiced 21 October 2003. Accepted 9 November 2004 A new species of Plesiogulo (Plesiogulo botori sp. nov.) is described from 5.5–6.0 Ma deposits in East Africa. This new fossil material comes from two localities: Lemudong’o in southern Kenya, and Adu Dora, in the Afar Depression of Ethiopia. The new mustelid species is larger than all known Old World Plesiogulo species and extends the temporal and spatial range of the genus in Africa. Plesiogulo botori sp. nov. documents the earliest occurrence of the genus in Africa in general and the first evidence of its occurrence in late Miocene deposits of eastern Africa. Associated mammalian fauna at both localities where the species has been found indicate a closed/wooded habitat for the genus. This and other occurrences of the genus across Europe, Asia, and the New World indicate that the genus Plesiogulo was geographically widely dispersed during the upper Tertiary. Keywords: Late Miocene, Carnivora, Mustelidae, Kenya, Ethiopia. INTRODUCTION considerably smaller than those of P. crassa. However, The large mustelid Plesiogulo (Zdansky, 1924) was first Harrison (1981) has since reported that P. crassa falls described from the late Miocene or early Pliocene of China within the range of variation observed in P.
    [Show full text]
  • ZE Study on the Tertiary Bone Breccia Fauna from Wc
    ACT A PALAEO NTOLOGI CA POLONI C4 I 9 5 9 No . :! JAN STACH ,ON SOME MUSTELIN AE FROM TH E PLIOCENE BONE BRECCIA OF WE;ZE Study on the Tertiary bone brecc ia fa una from Wc::z e ne ar Dzialoszyn in Poland PART X · A bst r act. - T his pape r describes the remain s of skulls a nd mandib les of three ·s pecies, namely Mustela pliocaeni ca n. sp., Mustela plioerminea n. sp. a nd Martes wenzensis n. sp. By their characteristic fe atures a ll the three described spe cies com e very near to thei r Pl eistocen e representatives as well as to the living forms. INTRODUCTIO N Several interesting large r carnivores 1 have, so far, been described from the Pliocene bone breccia in Wf;ze near Dzial oszyn (province of Lo dz). The writer has now identified from the sa me breccia the remains ·of their smaller relatives fr om the mustelid grou p. They are: Mustela pliocaenica n. sp. and Mustela plioerminea n. sp. from the subfamily of .Must elinae Gill, also Martes wenzensis n. sp. from the subfamily Martinae Burmeiste r. • Pa rts I-V - see Acta Geol , Pol., vol. II-V/1952-55 ; parts VI- IX - Acta Palaeont. Pol. , vol. I-III, 1956- 58. 1 Arctomel es pliocaen icus n. ge n. & n. sp. from the Melinae subfamily. A ct a C eo!. Po!. , vo l. 11/19511. - Ursus wenze nsis, new sp ecies of a small Pliocene be a r. I bid. , vo l. 111/ 195.
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]
  • Analysis of Snake Creek Burial Cave Mustela Fossils Using Linear
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2014 Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black- footed Ferret Conservation Nathaniel S. Fox III East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Geology Commons Recommended Citation Fox, Nathaniel S. III, "Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black-footed Ferret Conservation" (2014). Electronic Theses and Dissertations. Paper 2339. https://dc.etsu.edu/etd/2339 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black-footed Ferret Conservation _______________________________________ A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences _______________________________________ by Nathaniel S. Fox May 2014 _______________________________________ Dr. Steven C. Wallace, Chair Dr. Jim I. Mead Dr. Blaine W. Schubert Keywords: Mustela, weasels, morphometrics, classification, conservation, Pleistocene, Holocene ABSTRACT Analysis of Snake Creek Burial Cave Mustela fossils using Linear & Landmark-based Morphometrics: Implications for Weasel Classification & Black-footed Ferret Conservation by Nathaniel S.
    [Show full text]