Prokaryotic and Eukaryotic Replicons Meeting Review

Total Page:16

File Type:pdf, Size:1020Kb

Prokaryotic and Eukaryotic Replicons Meeting Review View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 82, 535-542, August 25, 1995, Copyright 0 1995 by Cell Press Prokaryotic Meeting Review and Eukaryotic Replicons Joel A. Huberman complexed with viral DNA polymerase molecules, are po- Department of Molecular and Cellular Biology sitioned at the 3’ ends of the parental duplex. Using the Roswell Park Cancer Institute penultimate 3’ deoxyribosylthymine (dT) as template, the Buffalo, New York 14263 polymerase then catalyzes the formation of a covalent bond between deoxyribosyladenine (dA) and a serine of TP. Next, the TP-dA slides back 1 nt to position the dA adjacent to the 3’ terminal dT of each strand. The poly- The replicon model, proposed by Jacob and Brenner merase then catalyzes processive elongation of the new (1963) to explain the regulation of prokaryotic DNA replica- protein-primed strands, using the 3’-ended strands as tion, has proved remarkably robust. Despite the manyvari- templates and displacing the 5’-ended strands. This “slid- ations in initiation mechanism discovered since 1963, the ing-back” initiation mechanism, which provides an oppor- replicon model may be applicable, with minor modifica- tunity during subsequent replication rounds to correct nu- tions, to regulation of DNA replication in all organisms. cleotides incorrectly incorporated at the first step, appears For several years, the Replicon Club of Paris, a group to be a common feature of linear replicons employing the of French scientists interested in regulation of replication, TP mechanism. has been meeting to discuss new results. This year, with Rolling Circle support from the French Centre National de la Recherche S. D. Ehrlich (Institut National de la Recherche Agrono- Scientifique (CNRS), the Replicon Club sponsored an in- mique [INRA], Jouy en Josas, France) discussed the Rep ternational Jacques Monod Conference on Prokaryotic protein of pC194, a rolling circle plasmid of gram-positive and Eukaryotic Replicons. The meeting was organized by bacteria. A major difference between pC194 and the well- G. Buttin (Institut Pasteur, Paris) with assistance from A. studied rolling circle replicon @X174 is that @X174 is a Falaschi (International Centre for Genetic Engineering virus with runaway replication, while pC194 is a plasmid and Biotechnology, Trieste, Italy) and M. Kohiyama (Insti- with regulated replication. Thedifferencecan beexplained tut Jacques Monod, Paris) and was held at the CNRS’s by comparison of the two Rep proteins. Both proteins initi- Centre Paul Langevin in the Alpine village of Aussois, ate replication by making nicks at specific sites in one of France, from June 18-22, 1995. There, invigorated by the DNA strands, yielding 3’ ends that serve as primers beautiful surroundings and excellent cuisine, scientists and S’ends covalently attached to a Rep protein tyrosine. from around the world provided evidence both for the vital- After one round of synthesis, second nicks are made at ity of the replicon model and for substantial advances in the same sites. The @X174 Rep protein employs a second our understanding of the regulation of replication. tyrosine to catalyze the second nick, permitting retention of the5’end and, ultimately, reinitiation. In contrast, PC194 Variety of Replicons appears to use glutamic acid-catalyzed hydrolysis for the The original replicon model (Figure 1) suggested that repli- second nick, thus losing bond energy and preventing reini- cation is positively controlled by an initiator protein that tiation. acts on a single replicator to initiate replication of a circular Rolling circle replication is also employed by geminivi- replicon. Extension of the model to other organisms re- ruses, whose small circular single-stranded genomes rep- quires allowance for multiple linear chromosomes in eu- licate via double-stranded intermediates in the nuclei of karyotic cells, each possibly having multiple replicators plant cells. Since replication is catalyzed entirely by en- (Figure 1). This extension requires that replicon be rede- zymes from the host cell (except the viral Rep protein) and fined to mean the stretch of DNA replicated from a single viral DNA is packed into chromatin, study of geminivirus replicator. An updated model also requires allowance for replication appears to be a promising way to learn more the possible existence of multiple initiator proteins, which about DNA replication and the cell cycle in plants. B. Gro- may form a complex (as in Figure 1) or may separately nenborn (Institut des Sciences V&g&ales, Gif sur Yvette, bind to different portions of the replicator, and recognition France) reported that geminivirus Rep proteins nick the that interactions between initiators and replicators are typi- origin via a tyrosine and have a DNA-independent ATPasel cal binding reactions, governed by the laws of mass action GTPase activity that is essential for in vivo replication and (Figure 1). Consequently, if the concentration of initiators reminiscent of the GTPase in signal transduction G pro- is high or their specificity is low, most or all DNA sequences teins. C. Gutierrez (Centro de Biologia Molecular Sever0 may be able to serve as replicators. Ochoa, Madrid) showed that geminivirus Rep contains an At the meeting in Aussois, developments relating to a LXCXE motif capable of mediating stable binding to the wide variety of replicons were presented. human retinoblastoma (Rb) protein. This motif is essential Protein Priming for in vivo replication, suggesting that viral replication is The Bacillus subtilis phage, @29, has a linear double- linked to cell cycle control and that plants, like animals, stranded DNA with a viral terminal protein (TP) covalently may contain Rb homologs that inhibit entry into S phase. attached to its 5’ ends. L. Blanc0 (Centro de Biologia Mo- Unidirectional 8 lecular Sever0 Ochoa, Madrid) described the mechanism C. Bruand and E. Le Chatelier (INRA, Jouy en Josas, of initiation of @29 replication. For each round, new TPs, France) described the pAMP1 replicon, a plasmid of gram- Cell 536 hr after infection. Evidence for interactions between UL9 and cellular DNA polymerase a, but not the viral DNA polymerase, suggests that initiation at viral origins may be accomplished by UL9 and cellular polymerases. Later Original Model rolling circle replication is independent of UL9 but requires the other viral replication proteins, which, according to physical and electron microscopic evidence, may exist as a complex. Gel shift and footprinting experiments described by P. Elias (Gdteborg University, Sweden) suggest that a protein complex may also function at the viral origin. The complex would consist of two dimers of UL9, interacting through their C-terminal domains both with specific binding sites in the origin and with four viral single-stranded DNA-binding proteins, which are called ICP-8. Since ICP-8 binds more Replicator Initiator Replicator Replicator Initiator tightly to single-stranded DNA than to UL9, it is likely that Gene1 Gene2 once single-stranded DNA is exposed at the origin by un- Figure 1. Past and Present Replicon Models winding of parental strands, ICP-8 is transferred to the (Top) Model proposed by Jacob and Brenner (1963). (Bottom) Model single-stranded DNA. arising from discussions at the Aussois meeting described in this re- During the early stage of bacteriophage h replication, view. initiation is mediated by the phage-encoded 0 protein at orik. Under in vivo conditions, transcription near orid, usu- ally from the PR promoter, is also required to initiate replica- positive bacteria, which bears some resemblance to the tion. G. Wegrzyn (University of Gdansk, Poland)discussed well-known ColEl replicon. For pAM81, a plasmid-encoded circular molecules derived from h but missing most of the positive regulator, the RepE gene product, is essential for hgenome except the origin region. He presented evidence replication, and DNA polymerase I is replaced by DNA that 0 protein, along with other proteins involved in initia- polymerase Ill holoenzyme (Hpollll) about 200 bp down- tion, is retained at one of the two daughter origins during stream of ori. According to M.-A. Petit and L. Janniere each replication round. Such inherited replication com- (INRA, Jouy en Josas, France), this polymerase switch is plexes may mediate further replication rounds. Runaway aided by the pAM81 resolvase, which binds tightly about replication is prevented by the requirement that each 250 bp downstream of ori, thereby blocking polymerase round be activated by transcription at PR. Such transcrip- I and creating a D loop with an exposed primosome assem- tion is mediated by the host dnaA protein, which is present bly site where an Hpollll-based replication fork can effi- in high concentration during only a limited portion of each ciently be set up. V. Bidnenko (INRA, Jouy en Josas, cell cycle. France) showed that the plasmid-encoded topoisomerase, Bidirectional 8 topp, also assists by relaxing plasmid DNA and thereby The single initiator protein of Escherichia coli, encoded removing thedriving force for strand unwinding when poly- by the dnaA gene, governs initiation at the single repli- merase I reaches about 190 bp downstream of ori. The cator, oriC (reviewed by Kornberg and Baker, 1991). Inter- presenters proposed that similar mechanisms may facil- actions between the dnaA protein and oriC were described itate polymerase switching in ColEl and eukaryotic rep- by W. Messer (Max-Planck-lnstitutfur Molekulare Genetik, I/cons. Berlin). Within 0% there are four 9 nt repeats, called dnaA Previously studied prokaryotic and eukaryotic circular boxes, that serve as specific binding sites for the dnaA plasmids containing two replication origins utilize only one protein. Measurements of binding to the individual boxes origin at a time. J. B. Schvartzman (Centro de Investigaci- and tocomplete o&revealed that binding is highly context ones Biologicas, Madrid) reported that occasionally mole- dependent. The dnaA protein does not contain any of the cules of the plasmid pPl21, containing two unidirectional known DNA-binding motifs.
Recommended publications
  • Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity
    Vol. 10, 2551–2560, April 1, 2004 Clinical Cancer Research 2551 Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity Ki-Hyuk Shin,1 Mo K. Kang,1 Erica Dicterow,1 INTRODUCTION Ayako Kameta,1 Marcel A. Baluda,1 and Telomerase, which consists of the catalytic protein subunit, No-Hee Park1,2 human telomerase reverse transcriptase (hTERT), the RNA component of telomerase (hTR), and several associated pro- 1School of Dentistry and 2Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California teins, has been primarily associated with maintaining the integ- rity of cellular DNA telomeres in normal cells (1, 2). Telomer- ase activity is correlated with the expression of hTERT, but not ABSTRACT with that of hTR (3, 4). Purpose: From numerous reports on proteins involved The involvement of DNA repair proteins in telomere main- in DNA repair and telomere maintenance that physically tenance has been well documented (5–8). In eukaryotic cells, associate with human telomerase reverse transcriptase nonhomologous end-joining requires a DNA ligase and the (hTERT), we inferred that hTERT/telomerase might play a DNA-activated protein kinase, which is recruited to the DNA role in DNA repair. We investigated this possibility in nor- ends by the DNA-binding protein Ku. Ku binds to hTERT mal human oral fibroblasts (NHOF) with and without ec- without the need for telomeric DNA or hTR (9), binds the topic expression of hTERT/telomerase. telomere repeat-binding proteins TRF1 (10) and TRF2 (11), and Experimental Design: To study the effect of hTERT/ is thought to regulate the access of telomerase to telomere DNA telomerase on DNA repair, we examined the mutation fre- ends (12, 13).
    [Show full text]
  • Mobile Genetic Elements in Streptococci
    Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G.
    [Show full text]
  • T-Loops and the Origin of Telomeres E
    PERSPECTIVES 66. Steinman, R. M., Mellman, I. S., Muller, W. A. & Cohn, Z. A. Acknowledgments eukaryotes evolved. The presence of t-loops at Endocytosis and the recycling of plasma membrane. H.S. is supported by the Norwegian Cancer Society and the J. Cell Biol. 96, 1–27 (1983). Research Council of Norway, and J.G. by the Swiss National present-day telomeres and their association 67. Lafont, F., Lecat, S., Verkade, P. & Simons, K. Annexin Science Foundation and the Human Frontier Science Programme with proteins that have evolved from RDR XIIIb associates with lipid microdomains to function in Organization. apical delivery. J. Cell Biol. 142, 1413–1427 (1998). factors might be remnants of the original 68. Aniento, F., Gu, F., Parton, R. & Gruenberg, J. Competing interests statement telomere system. Furthermore, the relative An endosomal βcop is involved in the pH-dependent The authors declare that they have no competing financial interests. formation of transport vesicles destined for late ease with which many eukaryotes can main- endosomes. J. Cell Biol. 133, 29–41 (1996). tain telomeres without telomerase might 69. Gu, F., Aniento, F., Parton, R. & Gruenberg, J. Functional Online links dissection of COP-I subunits in the biogenesis of reflect this ancient system of chromosome-end multivesicular endosomes. J. Cell Biol. 139, 1183–1195 DATABASES replication. This proposal ends with a dis- (1997). The following terms in this article are linked online to: 70. Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent Interpro: http://www.ebi.ac.uk/interpro/ cussion of the advantages of the telom- COP functions in the early endocytic pathway.
    [Show full text]
  • Telomeres.Pdf
    Telomeres Secondary article Elizabeth H Blackburn, University of California, San Francisco, California, USA Article Contents . Introduction Telomeres are specialized DNA–protein structures that occur at the ends of eukaryotic . The Replication Paradox chromosomes. A special ribonucleoprotein enzyme called telomerase is required for the . Structure of Telomeres synthesis and maintenance of telomeric DNA. Synthesis of Telomeric DNA by Telomerase . Functions of Telomeres Introduction . Telomere Homeostasis . Alternatives to Telomerase-generated Telomeric DNA Telomeres are the specialized chromosomal DNA–protein . Evolution of Telomeres and Telomerase structures that comprise the terminal regions of eukaryotic chromosomes. As discovered through studies of maize and somes. One critical part of this protective function is to fruitfly chromosomes in the 1930s, they are required to provide a means by which the linear chromosomal DNA protect and stabilize the genetic material carried by can be replicated completely, without the loss of terminal eukaryotic chromosomes. Telomeres are dynamic struc- DNA nucleotides from the 5’ end of each strand of this tures, with their terminal DNA being constantly built up DNA. This is necessary to prevent progressive loss of and degraded as dividing cells replicate their chromo- terminal DNA sequences in successive cycles of chromo- somes. One strand of the telomeric DNA is synthesized by somal replication. a specialized ribonucleoprotein reverse transcriptase called telomerase. Telomerase is required for both
    [Show full text]
  • DNA Replication
    9 DNA Replication To understand the chemistry Living cells must be able to duplicate their entire set of genetic instructions Goal of DNA synthesis and how every time they divide. Likewise, multicellular organisms must be able to DNA is replicated with high pass on complete copies of their genetic information to future generations. accuracy. This requires that the instructions are stored in a form that is capable of Objectives being duplicated. As we have seen (and will return to in Chapter 11), genetic instructions are embedded in the order of nucleobases in the DNA. As we After this chapter, you should be able to have also seen, the self-complementary nature of the double helix provides • describe the experiment that proved a simple (in principle) templating mechanism for replicating DNA into two that DNA replication is semi- identical copies. Only DNA (and in some instances RNA when, as in the conservative. case of the genomes of RNA viruses, it is used as a repository of genetic • diagram the reaction for information) are self-complementary and hence capable of being replicated. phosphodiester bond formation. The other three categories of macromolecules—carbohydrates, lipids, and • explain the energetics of DNA proteins—are not self-complementary and do not serve as templates for synthesis. their own production. Instead, the synthesis of these macromolecules is • explain why the 5’-to-3’ rule creates a ultimately directed by information stored in DNA through the action of conundrum during replication. enzymes and other proteins. Here we focus on the chemical and enzymatic • explain how DNA is replicated mechanisms by which DNA acts as a template for its own duplication and accurately.
    [Show full text]
  • An Update on Self-Amplifying Mrna Vaccine Development
    Review An Update on Self-Amplifying mRNA Vaccine Development Anna K. Blakney 1,* , Shell Ip 2 and Andrew J. Geall 2 1 Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 2 Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; [email protected] (S.I.); [email protected] (A.J.G.) * Correspondence: [email protected] Abstract: This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical and clinical data reported in the last five years and will discuss future prospects. Keywords: RNA; self-amplifying RNA; replicon; vaccine; drug delivery 1. Introduction: The Four Pillars of saRNA Vaccines In December 2019, the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus emerged, causing a respiratory illness, coronavirus disease 2019 (COVID-19), in Hubei province, China [1,2]. The virus has spread globally, with the World Health Organization (WHO) declaring it a Public Health Emergency of International concern on 30 January 2020 and a pandemic officially on 7 March 2020 [3]. There is a strong consensus globally that a COVID-19 vaccine is likely the most effective approach to sustainably controlling the COVID-19 pandemic [4]. There has been an unprecedented research effort and global Citation: Blakney, A.K.; Ip, S.; Geall, coordination which has resulted in the rapid development of vaccine candidates and A.J. An Update on Self-Amplifying initiation of human clinical trials.
    [Show full text]
  • Getting Ready for DNA Duplication
    INSIGHT INTRACELLULAR ORGANIZATION Getting ready for DNA duplication The discovery of a biomolecular condensate involved in DNA replication has wide-ranging implications. NINA Y YAO AND MICHAEL E O’DONNELL involves regions with different physical proper- Related research article Parker MW, Bell ties separating from each other). The molecules M, Mir M, Kao JA, Darzacq X, Botchan MR, required for the formation of condensates are Berger JM. 2019. A new class of disordered called scaffolding factors, while the molecules elements controls DNA replication through encapsulated inside are known as clients. A initiator self-assembly. eLife 8:e48562. DOI: given condensate typically contains only those 10.7554/eLife.48562 clients involved in the relevant reaction. Now, in eLife, Michael Botchan (UC Berkeley), James Berger (Johns Hopkins) and colleagues – including Matthew Parker as first author – report on the discovery of a biomolecular condensate esearch into biomolecular condensates – required for the initiation of DNA replication in self-contained regions within cells where the fruit fly Drosophila melanogaster R specific reactions take place – is taking (Parker et al., 2019). Three proteins – ORC, cell biology by storm. Biomolecular condensates Cdc6 and Cdt1 – form the scaffold along with do not have membranes, but they are able to DNA, while a hexamer ring protein called keep the proteins and/or nucleic acids involved Mcm2-7 is the client. During the G1 phase of the in a particular reaction separate from the rest of cell cycle, the scaffold proteins load two Mcm2- the cell. Biomolecular condensates do not have 7 hexamers onto the DNA to form the pre-repli- membranes, but they are able to keep the mole- cative complex, which marks the spot where cules involved in a particular reaction (usually DNA replication will begin (Figure 1A–C; proteins, but sometimes also nucleic acids) sepa- Bell and Labib, 2016; Bleichert et al., 2017).
    [Show full text]
  • Telomere and Telomerase in Oncology
    Cell Research (2002); 12(1):1-7 http://www.cell-research.com REVIEW Telomere and telomerase in oncology JIAO MU*, LI XIN WEI International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China ABSTRACT Shortening of the telomeric DNA at the chromosome ends is presumed to limit the lifespan of human cells and elicit a signal for the onset of cellular senescence. To continually proliferate across the senescent checkpoint, cells must restore and preserve telomere length. This can be achieved by telomerase, which has the reverse transcriptase activity. Telomerase activity is negative in human normal somatic cells but can be detected in most tumor cells. The enzyme is proposed to be an essential factor in cell immortalization and cancer progression. In this review we discuss the structure and function of telomere and telomerase and their roles in cell immortalization and oncogenesis. Simultaneously the experimental studies of telomerase assays for cancer detection and diagnosis are reviewed. Finally, we discuss the potential use of inhibitors of telomerase in anti-cancer therapy. Key words: Telomere, telomerase, cancer, telomerase assay, inhibitor. Telomere and cell replicative senescence base pairs of the end of telomeric DNA with each Telomeres, which are located at the end of round of DNA replication. Hence, the continual chromosome, are crucial to protect chromosome cycles of cell growth and division bring on progress- against degeneration, rearrangment and end to end ing telomere shortening[4]. Now it is clear that te- fusion[1]. Human telomeres are tandemly repeated lomere shortening is responsible for inducing the units of the hexanucleotide TTAGGG. The estimated senescent phenotype that results from repeated cell length of telomeric DNA varies from 2 to 20 kilo division, but the mechanism how a short telomere base pairs, depending on factors such as tissue type induces the senescence is still unknown.
    [Show full text]
  • Multiple Replicons Constituting the Genome of Pseudomonas Cepacia 17616 HAI-PING Chengt and THOMAS G
    JOURNAL OF BACrERIOLOGY, JUlY 1994, p. 4034-4042 Vol. 176, No. 13 0021-9193/94/$04.00+0 Copyright © 1994, American Society for Microbiology Multiple Replicons Constituting the Genome of Pseudomonas cepacia 17616 HAI-PING CHENGt AND THOMAS G. LESSIE* Department ofMicrobiology, University ofMassachusetts, Amherst, Massachusetts 01002 Received 4 February 1994/Accepted 25 April 1994 Macrorestriction fragment analysis of DNA from Pseudomonas cepacia 17616, in conjunction with Southern hybridization experiments using junction fragments containing rare restriction enzyme sites as probes, indicated that this bacterium contains three large circular replicons of 3.4, 2.5, and 0.9 megabases (Mb). Inclusion of the 170-kb cryptic plasmid present in this strain gave an overall estimate of genome size of 7 Mb. Other Southern hybridization experiments indicated that the three large replicons contained rRNA genes as well as insertion sequence elements identified previously in this strain. The distribution of Swal, PacI, and Pmel sites on the three replicons was determined. A derivative of TnS-751 carrying a SwaI site was used to inactivate and map genes on the 2.5- and 3.4-Mb replicons. Mutants were isolated in which the 2.5- and 0.9-Mb replicons had been reduced in size to 1.8 and 0.65 Mb, respectively. The loss of DNA from the 2.5-Mb replicon was associated with lysine auxotrophy, P-lactamase deficiency, and failure to utilize ribitol and trehalose as carbon and energy sources. DNA fragments corresponding in size to randomly linearized forms of the different replicons were detected in unrestricted DNA by pulsed-field gel electrophoresis.
    [Show full text]
  • Ch 7 -Brock Information Flow in Biological Systems
    Systems Microbiology Monday Oct 2 - Ch 7 -Brock Information flow in biological systems •• DNADNA replicationreplication •• TranscriptionTranscription •• TranslationTranslation Central Dogma DNA Replication Transcription Images removed due to copyright restrictions. RNA Reverse Transcription Translation Protein Flow of information replication DNA → DNA transcription ↓ RNA translation ↓ protein 5' end ring numbering system for -P-O-C deoxyribose 5’ -C O O 4’ 1’ P O- O 3’ 2’ C ssDNA 3’ end HO In a nucleotide, e.g., adenosine monophosphate (AMP), the base is bonded to a ribose sugar, which has a phosphate in ester linkage to the 5' hydroxyl. NH NH NH2 2 2 adenine N N N N N N N N N N N N H −2 HO O3P O CH CH 5' 2 O 2 O 4' H H 1' H H ribose H 3' 2' H H H OH OH OH OH adenine adenosine adenosine monophosphate (AMP) Nucleic acids have a NH2 backbone of adenine N N alternating Pi & ribose moieties. N NH − N 2 Phosphodiester 5' end O cytosine − 5' O P O CH N linkages form as the 2 O 4' 1' O H H ribose 5' phosphate of one N O H 3' 2' H nucleotide forms an O OH − 5' ester link with the 3' O P O CH 2 O OH of the adjacent O H H ribose nucleotide. H 3' H O OH − O P O (etc) nucleic acid 3' end O H N H O N Guanine Cytosine N H N N N N O H N Backbone Backbone Hydrogen H bond H O H N CH3 N Thymine N H N N Adenine N N Hydrogen O bond Backbone Backbone Figure by MIT OCW.
    [Show full text]
  • Single-Round Infectious Particle Production by DNA-Launched Infectious Clones of Bungowannah Pestivirus
    viruses Brief Report Single-Round Infectious Particle Production by DNA-Launched Infectious Clones of Bungowannah Pestivirus Anja Dalmann 1, Kerstin Wernike 1 , Eric J. Snijder 2 , Nadia Oreshkova 2 , Ilona Reimann 1 and Martin Beer 1,* 1 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; anja.dalmann@fli.de (A.D.); kerstin.wernike@fli.de (K.W.) 2 Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; [email protected] (E.J.S.); [email protected] (N.O.) * Correspondence: martin.beer@fli.de Received: 15 July 2020; Accepted: 31 July 2020; Published: 4 August 2020 Abstract: Reverse genetics systems are powerful tools for functional studies of viral genes or for vaccine development. Here, we established DNA-launched reverse genetics for the pestivirus Bungowannah virus (BuPV), where cDNA flanked by a hammerhead ribozyme sequence at the 50 end and the hepatitis delta ribozyme at the 30 end was placed under the control of the CMV RNA polymerase II promoter. Infectious recombinant BuPV could be rescued from pBuPV-DNA-transfected SK-6 cells and it had very similar growth characteristics to BuPV generated by conventional RNA-based reverse genetics and wild type BuPV. Subsequently, DNA-based ERNS deleted BuPV split genomes (pBuPVDERNS/ERNS)—co-expressing the ERNS protein from a separate synthetic CAG promoter—were constructed and characterized in vitro. Overall, DNA-launched BuPV genomes enable a rapid and cost-effective generation of recombinant BuPV and virus mutants, however, the protein expression efficiency of the DNA-launched systems after transfection is very low and needs further optimization in the future to allow the use e.g., as vaccine platform.
    [Show full text]
  • Dynamics of DNA Replication in a Eukaryotic Cell
    Dynamics of DNA replication in a eukaryotic cell Thomas Kellya,1 and A. John Callegaria,2 aProgram in Molecular Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Contributed by Thomas Kelly, December 26, 2018 (sent for review October 30, 2018; reviewed by Paul Nurse and Nicholas Rhind) Each genomic locus in a eukaryotic cell has a distinct average time A deeper understanding of the dynamics of eukaryotic DNA of replication during S phase that depends on the spatial and replication will require a quantitative model describing the spatial temporal pattern of replication initiation events. Replication distribution of potential initiation sites and the time course of their timing can affect genomic integrity because late replication is activation during S phase. The fission yeast Schizosaccharomyces associated with an increased mutation rate. For most eukaryotes, pombe represents a useful system for developing such a model the features of the genome that specify the location and timing of because its genome has many characteristics in common with initiation events are unknown. To investigate these features for that of other eukaryotes. Early genetic studies identified seg- Schizosaccharomyces pombe the fission yeast, , we developed an ments of the S. pombe genome, called autonomously replicating integrative model to analyze large single-molecule and global ge- sequence (ars) elements, that function as origins of DNA repli- nomic datasets. The model provides an accurate description of the > S. pombe cation (14). These elements are large ( 1 kb) and rich in A and complex dynamics of DNA replication at high resolution. T residues but do not contain a common sequence motif (15, 16).
    [Show full text]