Gnorimosphaeroma Insulare Class: Multicrustacea, Malacostraca, Eumalacostraca

Total Page:16

File Type:pdf, Size:1020Kb

Gnorimosphaeroma Insulare Class: Multicrustacea, Malacostraca, Eumalacostraca Phylum: Arthropoda, Crustacea Gnorimosphaeroma insulare Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Peracarida, Isopoda, Sphaeromatidea Family: Sphaeromatoidea, Sphaeromatidae Taxonomy: The genus Gnorimosphaeroma longs, fall into the long-tailed variety. Body was described in 1954 by Menzies with six surface in Gnorimosphaeroma insulare is species including G. insulare as well as G. smooth and with eight segments from cepha- lutea, G. oregonensis, each a subspecies of lon to pereon. Individuals able to roll into a G. oregonensis, differentiable by pleotelson ball (Sphaeromatidae). morphology. Some authors later elevated Cephalon: Frontal border smooth (Fig. 3). these two subspecies to species status Eyes: based on habitat and physiology (e.g. Riegel Antenna 1: First antenna longer than 1959). Furthermore, G. insulare and G. lu- second and basal articles are separated by tea were synonymized by Hoestlandt in the rostrum (Fig. 3) (see Fig. 4 Hoestlandt, 1977 and, although some authors (including 1977). those for our current, local intertidal guide, Antenna 2: Shorter than first antenna Brusca et al. 2007) also consider G. ore- (see Fig. 4 Hoestlandt, 1977). gonensis a synonym of G. insulare, others Mouthparts: Mandible with a palp and differentiate the two based on habitat: G. or- maxilliped with four articles. Hairs present on egonensis is strictly marine while G. insulare antero-lateral edge of articles 2–4 are less is estuarine (Stanhope et al. 1987). than ½ the length of the article (see Figs. 5–8, Hoestlandt 1977). Description Rostrum: Size: Males up to 8 mm in length (Miller Pereon: 1975) and almost twice as long as wide. Pereonites: Seven free pereonites to- Color: White with small black chromato- tal. phores. Pereopods: Seven pereopod pairs. General Morphology: Isopod bodies are The basis of the first pereopod is hairless and dorso-ventrally flattened and can be divided distal extremity with one hair or hairless (Fig. into a compact cephalon, with eyes, two an- 6). tennae and mouthparts, and a pereon Pleon: Pleon consists of three parts. The first (thorax) with eight segments, each bearing is concealed under the last pereonite, the se- similar pereopods (hence the name “iso- cond consists of of several coalesced pleoni- pod”). Posterior to the pereon is the pleon, tes often with partial sutures (Fig. 1), and the or abdomen, with six segments, the last of third part is the large pleotelson. which is fused with the telson (the pleo- Pleonites: Only two of three reach the telson) (see Fig. 1, Harrison and Ellis 1991; lateral margin, third pleonite is under the Plate 231, Brusca et al. 2007). The Isopoda second (Figs. 1, 4). can be divided into two groups: ancestral Pleopods: Five pleopod pairs. The (“short-tailed”) groups (i.e. suborders) that first pair is not widely separated at the base, have short telsons and derived (“long- and is similar in size to the second. The first tailed”) groups with long telsons. Members three pairs are with marginal plumose setae. of the Flabellifera, to which G. insulare be- A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Hiebert, T.C. 2015. Gnorimosphaeroma insulare. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. The fourth and fifth pairs are fleshy and wi- species in 11 genera in the western coast of thout transverse folds, and the fourth is with North America (Wall et al. 2015) and has a a bent exopod (Fig. 2, 1-v). The number pleon with 1–2 free pleonites, a convex and arrangement of these folds of the en- body that is not depressed, antennae that dopods and exopods is considered an im- are widely separated, indistinct frontal lami- portant taxonomic character by some au- na and subequal pleopods, where pleopods thors (e.g. Cassidinidae, Fig. 2, Iverson 4–5 are ovate in shape (see also Iverson 1982; Fig. 1, Harrison and Ellis 1991). 1982). There are 17–24 species in this fam- Uropods: Two branched uropods visible ily from central California to Oregon (Brusca dorsally, with rigid endopod and flexible et al. 2007). These species belong to the exopod (Fig. 5) (see Fig. 9, Hoestlandt following genera: Ancinus, Clianella, Dy- 1977). namene, Paradella, Pseudosphaeroma, Pleotelson: Rounded and convex (Fig. 1). Tecticeps (all with one species), Paracereis, Sexual Dimorphism: Conspicuous sexual Sphaeroma (each with two species), Dy- dimorphism is rare among isopods, howev- namenella, Exosphaeroma (each with 4–5 er, mature females are often broader and species) (for detailed key of Exosphaeroma bear a thoracic marsupium while males have see Wall et al. 2015) and Gnorimosphaero- modified first pleopods, called gonopods ma has two to four species locally. (Sadro 2001; Boyko and Wolff 2014). Pro- The fourth and fifth pleopods in togyny has been observed (see Reproduc- Gnorimosphaeroma lack pleats (see Cas- tion) in G. insulare and females can have sidinidae, Fig. 2, Iverson 1982; Fig. 1, Harri- rudimentary penes after brood release son and Ellis 1991), the first pereopod is (Brook et al. 1994). ambulatory and the uropod is with an exo- pod. In G. noblei the first article of the left Possible Misidentifications and right antennae peduncles are touching The order Isopoda contains 10,000 while they are not in G. oregonense. Gnori- species, 1/2 of which are marine and com- mosphaeroma rayi. so far found only in prise 10 suborders, with eight present from Tomales Bay, California and in Japan, is an central California to Oregon (see Brusca et estuarine species found also above the mid- al. 2007). Among isopods with elongated tide line, and also under stones. In this spe- telsons (with anuses and uropods that are cies, the basis of the first pereopod has a subterminal), there are several groups (i.e. tuft of 7–9 setae and 2–3 setae are present suborders) including Valvifera, Anthuridea, on the sternal crest of the ischium. Gnori- Gnathiidea, Epicaridea and Flabellifera. mosphaeroma oregonense, is found above The Flabellifera is a large assem- the mid-tide line, usually under stones. blage contains 3,000 species with seven Gnorimosphaeroma oregonense is stouter families occurring locally, three of which than G. insulare, being 1.5 to 1.75 times are not present north of Point Conception, longer than wide and all three pleonites California (Brusca et al. 2007). The reach the lateral margin and the frontal bor- Flaberllifera are characterized by body der of its head has several curves (compare length that is rarely less than 3 mm and a Plate 243C to 252C1, Brusca et al. 2007). pleon with less than three free pleonites The exopod of the uropod is only 2/ as long (plus the pleotelson). The family Sphaero- 3 as the endopod (Richardson 1905). Gnori- matidae is almost certainly paraphyletic mosphaeroma rayi also has three pleonites (Brandt and Poore 2003) and includes 37 reaching the lateral margin (Fig. 4b) and the A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] basis of the first pereopod is setose. It is 1985), although protogynous and protandric stout like G. oregonense, and has longer species are known (Brook et al. 1994; Araujo antennae than either G. oregonense or G. et al. 2004; Boyko and Wolff 2014). Protogy- insulare. ny has been observed in both G. insulare (as G. luteum) G. oregonense, where females Ecological Information have rudimentary penes and grow to sexually Range: Type locality is San Nicolas Island, mature males following several molts after California (Menzies 1954). Known range brood release (see Table 1, Brook et al. from Alaska to California (Menzies 1954a), 1994). Reproduction proceeds by copulation where it is most common north of Point Con- and internal fertilization where eggs are de- ception (Miller 1968). posited within a few hours after copulation Local Distribution: Oregon distribution in and brooded within the female marsupium the Siuslaw estuary and Cox Island as well (Brusca and Iverson 1985). The biphasic as the Medcalf Preserve (South Slough of molting of isopods allows for copulation; the Coos Bay) and Carter Lake (Wones and posterior portion of the body molts and indi- Larson 1991). viduals mate, then the anterior portion, which Habitat: Estuarine intertidal, among Fucus holds the brood pouch, molts (Sadro 2001). and under logs in Salicornia marshes and in Embryonic development proceeds within the mud or drainage channels (e.g. Metcalf brood chamber and is direct with individuals Preserve) as well as sedge marshes, hatching as manca larvae that resemble small amongst wood debris and within algal beds adults, with no larval stage (Boyko and Wolff and banks (Stanhope et al. 1987). Benthic 2014). Little about the reproductive and de- in Tomales Bay. velopmental biology of G. insulare is known, Salinity: Euryhaline (Wones and Larson but ovigerous females were observed in 1991). Estuarine to fresh water and can tol- March, larger females produce larger brood, erate salinities from 6–35 (Welton and Miller egg sizes vary from 450–480 µm, and the av- 1980). erage developmental time is 120 days Temperature: (Squamish estuary, British Columbia Canada, Tidal Level: -1.4 meters to subtidal (Metcalf Stanhope et al. 1987). Gnorimosphaeroma Preserve, Hoestlandt 1969a). rayi reproduces in spring only, on a one year Associates: Alga Fucus, amphipod cycle and G. oregonensis has young in spring Orchestia, littorine snail Ovatella (Metcalf and fall (Hoestlandt 1969).
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S)
    UNIVERSIDADE DE SÃO PAULO MUSEU DE ZOOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA, TAXONOMIA ANIMAL E BIODIVERSIDADE INGRID ÁVILA DA COSTA REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S) São Paulo 2017 UNIVERSIDADE DE SÃO PAULO MUSEU DE ZOOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA, TAXONOMIA ANIMAL E BIODIVERSIDADE INGRID ÁVILA DA COSTA REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S) Tese apresentada ao Programa de Pós-Graduação em Sistemática, Taxonomia Animal e Biodiversidade do Museu de Zoologia da Universidade de São Paulo. Versão corrigida Orientador: Prof. Dr. Marcos Domingos Siqueira Tavares São Paulo 2017 Não autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico. I do not authorize the reproduction and dissemination of this work in part or entirely by any means electronic or conventional. i FICHA CATALOGRÁFICA Costa, Ingrid Ávila da Revisão taxonômica da família Serolidae Dana, 1853 (Crustacea: Isopoda) no Oceano Atlântico (45ºN – 60ºS). Ingrid Ávila da Costa; orientador Marcos Domingos Siqueira Tavares. – São Paulo, SP: 2017. 36 fls. Tese (Doutorado) – Programa de Pós-graduação em Sistemática, Taxonomia Animal e Biodiversidade, Museu de Zoologia, Universidade de São Paulo. Versão corrigida 1. Serolidae Dana, 1853 - taxonomia. 2. Isopoda – Oceano Atlântico. I. Tavares, Marcos Domingos Siqueira (Orient.). II. Título. Banca examinadora Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Profa.
    [Show full text]
  • Texto Completo (Ver PDF)
    Estado del conocimiento de los crustáceos de México María del Socorro García-Madrigal*, José Luis Villalobos-Hiriart**, Fernando Álvarez** & Rolando Bastida-Zavala* Resumen Abstract Estado del conocimiento de los crustáceos de Current knowledge of the crustaceans of México. El estudio de los crustáceos en México ha Mexico. The study of crustaceans in Mexico has tenido una historia de registros larga y discontinua. had a long and discontinuous history of records. Los primeros se realizaron principalmente por car- The first records were mainly conducted by foreign cinólogos extranjeros desde mediados del siglo XIX, carcinologists from the mid XIX century, while mientras que los investigadores mexicanos impulsa- Mexican researchers boosted the knowledge from ron el conocimiento desde el primer tercio del siglo the first third of the XX century. Mexico has topo- XX. México cuenta con condiciones topográficas y graphic and oceanographic conditions appropriate oceanográficas apropiadas para albergar una ele- to host a high diversity of niches and, therefore, vada diversidad de nichos y por lo tanto de crustá- crustaceans. Mexican crustaceans records have ceos. Los registros de crustáceos de México han sido been summarized by several Mexican authors, sintetizados por diversos autores mexicanos, por therefore, this contribution does not intend to ello, esta contribución no pretende repetir esa infor- repeat the same effort, but put into context all the mación, sino poner en contexto toda la información information generated in order to serve as a basis generada, con el objeto de que sirva como base para for resuming the systematic study of the crusta- retomar el estudio sistemático de los crustáceos de ceans from Mexico.
    [Show full text]
  • Basal Position of Two New Complete Mitochondrial Genomes of Parasitic
    Hua et al. Parasites & Vectors (2018) 11:628 https://doi.org/10.1186/s13071-018-3162-4 RESEARCH Open Access Basal position of two new complete mitochondrial genomes of parasitic Cymothoida (Crustacea: Isopoda) challenges the monophyly of the suborder and phylogeny of the entire order Cong J. Hua1,2, Wen X. Li1, Dong Zhang1,2, Hong Zou1, Ming Li1, Ivan Jakovlić3, Shan G. Wu1 and Gui T. Wang1,2* Abstract Background: Isopoda is a highly diverse order of crustaceans with more than 10,300 species, many of which are parasitic. Taxonomy and phylogeny within the order, especially those of the suborder Cymothoida Wägele, 1989, are still debated. Mitochondrial (mt) genomes are a useful tool for phylogenetic studies, but their availability for isopods is very limited. To explore these phylogenetic controversies on the mt genomic level and study the mt genome evolution in Isopoda, we sequenced mt genomes of two parasitic isopods, Tachaea chinensis Thielemann, 1910 and Ichthyoxenos japonensis Richardson, 1913, belonging to the suborder Cymothoida, and conducted comparative and phylogenetic mt genomic analyses across Isopoda. Results: The complete mt genomes of T. chinensis and I. japonensis were 14,616 bp and 15,440 bp in size, respectively, with the A+T content higher than in other isopods (72.7 and 72.8%, respectively). Both genomes code for 13 protein-coding genes, 21 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and possess a control region (CR). Both are missing a gene from the complete tRNA set: T. chinensis lacks trnS1 and I. japonensis lacks trnI. Both possess unique gene orders among isopods.
    [Show full text]
  • Juvenile Sphaeroma Quadridentatum Invading Female-Oœspring Groups of Sphaeroma Terebrans
    Journal of Natural History, 2000, 34, 737–745 Juvenile Sphaeroma quadridentatum invading female-oŒspring groups of Sphaeroma terebrans MARTIN THIEL1 Smithsonian Marine Station, 5612 Old Dixie Highway, Fort Pierce, Fla 34946, USA (Accepted: 6 April 1999) Female isopods Sphaeroma terebrans Bate 1866 are known to host their oŒspring in family burrows in aerial roots of the red mangrove Rhizophora mangle. During a study on the reproductive biology of S. terebrans in the Indian River Lagoon, Florida, USA, juvenile S. quadridentatum were found in family burrows of S. terebrans. Between September 1997 and August 1998, each month at least one female S. terebrans was found with juvenile S. quadridentatum in its burrow. The percentage of S. terebrans family burrows that contained juvenile S. quadridenta- tum was high during fall 1997, decreased during the winter, and reached high values again in late spring/early summer 1998, corresponding with the percentage of parental female S. terebrans (i.e. hosting their own juveniles). Most juvenile S. quadridentatum were found with parental female S. terebrans, but a few were also found with reproductive females that were not hosting their own oŒspring. Non-reproductive S. terebrans (single males, subadults, non-reproductivefemales) were never found with S. quadridentatum in their burrows. The numbers of S. quadridentatum found in burrows of S. terebrans ranged between one and eight individuals per burrow. No signi® cant correlation between the number of juvenile S. quadridentatum and the numbers of juvenile S. terebrans in a family burrow existed. However, burrows with high numbers of juvenile S. quadridentatum often contained relatively few juvenile S.
    [Show full text]
  • Microevolutionary Processes in the Stygobitic Genus Typhlocirolana (Isopoda Flabellifera Cirolanidae) As Inferred by Partial 12S and 16S Rdnasequences
    J. Zool. Syst. Evol. Research 42 (2004) 27–32 Received on 14 January 2003 Ó 2004 Blackwell Verlag, Berlin ISSN 0947–5745 1Department of Animal Biology and Genetics ‘Leo Pardi’, University of Florence, Florence, Italy; 2Hydrobiology and Subterranean Ecology, University of Marrakech, Morocco; 3CNR-ISE, Florence, Italy Microevolutionary processes in the stygobitic genus Typhlocirolana (Isopoda Flabellifera Cirolanidae) as inferred by partial 12S and 16S rDNAsequences M. Baratti1,M.Yacoubi Khebiza2 and G. Messana3 Abstract Morocco is one of the regions of the world where many interesting discoveries have recently been made in the field of stygobiology, particularly concerning the cirolanid isopod fauna. One of the most interesting, variable and wide spread of these taxa is the perimediterranean stygobitic genus Typhlocirolana Racovitza, 1905, which has colonized the continental groundwater of Israel, Sicily, Spain, the Balearic Islands, Algeria and Morocco with several species. More populations have recently been found in Morocco, in some southern regions around Agadir, in High Atlas valleys near Marrakech and in the northeastern part of the country close to Oujda. The populations of these zones are not yet described and are the subject of this molecular analysis, together with other already designated species. To investigate the phylogenetic relationships and evolutionary history of the Typhlocirolana populations inhabiting the western Mediterranean basin, we analysed DNA sequences from the mitochondrial 12S and 16S rDNA genes. The molecular data were also used to infer the mechanisms driving the evolution of this thalassoid limnostygobitic cirolanid taxon, considered a good paleogeographic indicator because of its poor dispersion abilities. Vicariance because of paleogeographic events in the western Mediterranean basin played a prime evolutionary role in the Cirolanidae, as already suggested by morphological and ecological studies.
    [Show full text]
  • Isopoda: Flabellifera: Sphaeromatidae)
    A TAXONOMIC REVISION OF THE EUROPEAN, MEDITERRANEAN AND NW. AFRICAN SPECIES GENERALLY PLACED IN SPHAEROMA BOSC, 1802 (ISOPODA: FLABELLIFERA: SPHAEROMATIDAE) by B.J.M. JACOBS Jacobs, B.J.M.: A taxonomic revision of the European, Mediterranean and NW. African species generally placed in Sphaeroma Bosc, 1802 (Isopoda: Flabellifera: Sphaeromatidae). Zool. Verh. Leiden 238, 12-vi-1987: 1-71, figs. 1-21, tab. 1. — ISSN 0024-1652. Key words: Isopoda; Flabellifera; Sphaeromatidae; Sphaeroma; Lekanesphaera; Ex- osphaeroma; Verhoeff; keys; species; new species. The European, Mediterranean and NW. African species usually assigned to the genus Sphaeroma are revised. The genus Sphaeroma as understood so far has been divided into two genera: Sphaeroma s.s. and Lekanesphaera Verhoeff, 1943. Keys to the three species of Sphaeroma and the thirteen species of Lekanesphaera are given. Two new species are described viz., L. glabella (from Madeira) and L. terceirae (from Terceira, Azores) and the synonymy of known species is provided. B.J.M. Jacobs, c/o Rijksmuseum van Natuurlijke Historie, P.O. Box 9517, 2300 RA Leiden. The Netherlands. CONTENTS Introduction 4 Systematics 5 Methods and Terminology 7 Key to the genera Sphaeroma, Exosphaeroma and Lekanesphaera 10 Sphaeroma Bosc, 1802 11 Key to the European, Mediterranean and NW. African species of Sphaeroma Bosc, 1802 13 Sphaeroma serratum (Fabricius, 1787) 13 Sphaeroma venustissimum Monod, 1931 20 Sphaeroma walkeri Stebbing, 1905 22 Lekanesphaera Verhoeff, 1943 24 Key to the European, Meditteranean and NW.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • (Peracarida: Isopoda) Inferred from 18S Rdna and 16S Rdna Genes
    76 (1): 1 – 30 14.5.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes Regina Wetzer *, 1, Niel L. Bruce 2 & Marcos Pérez-Losada 3, 4, 5 1 Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 USA; Regina Wetzer * [[email protected]] — 2 Museum of Tropical Queensland, 70–102 Flinders Street, Townsville, 4810 Australia; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Niel L. Bruce [[email protected]] — 3 Computation Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA 20148, USA; Marcos Pérez-Losada [mlosada @gwu.edu] — 4 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal — 5 Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA — * Corresponding author Accepted 13.x.2017. Published online at www.senckenberg.de/arthropod-systematics on 30.iv.2018. Editors in charge: Stefan Richter & Klaus-Dieter Klass Abstract. The Sphaeromatidae has 100 genera and close to 700 species with a worldwide distribution. Most are abundant primarily in shallow (< 200 m) marine communities, but extend to 1.400 m, and are occasionally present in permanent freshwater habitats. They play an important role as prey for epibenthic fishes and are commensals and scavengers. Sphaeromatids’ impressive exploitation of diverse habitats, in combination with diversity in female life history strategies and elaborate male combat structures, has resulted in extraordinary levels of homoplasy.
    [Show full text]
  • Paradella Dianae – Around the World in 20 Years
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources Paradella dianae – around the world in 20 years Kingdom Animalia Phylum Arthropoda Class Malacostraca Order Isopoda Family Sphaeromatidae Paradella dianae is a species of crustacean that was accidentally introduced to the southeast coast of the U.S. in the early 1980s. It was first discovered by SCDNR divers who were studying the jetties that were being built at Murrells Inlet at that time. As they made repeated dives on the jetty stones below the low tide level, to carefully and systematically quantify the flora and fauna, divers noticed hundreds of small creatures clinging tightly to their neoprene wetsuits when they climbed from the water back onto the dive boat. It took a lot of effort to remove them, even under the heavy spray of freshwater from a garden hose back at the dock. It turns out that these pesky animals were isopods that are native to the Pacific coasts of North and Central America. They were probably carried to our coast on the outside surfaces of oceangoing ships, and they have hitchhiked around the world among the fouling growth that builds up over time on these ship’s hulls. Although they aren’t particularly conspicuous to the casual observer, isopods are an important part of many coastal communities, as this is especially true for those that live on hard surfaces that are continuously submerged in high salinity seawater for a reasonably long period of time (e.g. floating docks, pilings and jetties). You can learn more about this interesting group of crustaceans by going to the archived ‘Featured Species’ at http://www.dnr.sc.gov/marine/sertc/Isopod%20Crustaceans.pdf Description and Biology: Paradella dianae is a dorso-ventrally flattened, yellowish and brown colored sphaeromatid isopod.
    [Show full text]
  • Two New Nonindigenous Isopods in the Southwestern Atlantic
    Journal of Sea Research 138 (2018) 1–7 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Two new nonindigenous isopods in the Southwestern Atlantic: Simultaneous T assessment of population status and shipping transport vector ⁎ Carlos Rumbolda,b, , Marco Melonic, Brenda Dotib,d,e, Nancy Correaf, Mariano Albanob,g, Francisco Sylvesterb,h, Sandra Obenata a Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina c IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina d Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina e Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina f Servicio de Hidrografía Naval, Ministerio de Defensa de la República Argentina, Argentina g Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina h Instituto para el Estudio de la Biodiversidad de Invertebrados (IEBI), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina ARTICLE INFO ABSTRACT Keywords: The Southwestern Atlantic is often perceived as remote region, yet it is not immune to biological invasions. Dynamene edwardsi Patchy information on historical community composition hinders our ability to identify introductions to coastal Paracerceis sculpta ecosystems in this region. Hull fouling is an under-managed shipping vector that likely continues to transport Population biology large numbers of marine species worldwide. The port of Mar del Plata is a comparatively well-studied shipping Hull fouling and commercial hub that may serve as an observatory to monitor new introductions to the Argentine coast.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]