Usage by Virus and Tumor-Reactive T Cells with Wide

Total Page:16

File Type:pdf, Size:1020Kb

Usage by Virus and Tumor-Reactive T Cells with Wide Eur. J. Immunol. 2002. 32: 3181–3190 TCR V § restriction in Ag-specific T cell responses 3181 Dominant TCR V > usage by virus and tumor- reactive T cells with wide affinity ranges for their specific antigens Lydie Trautmann1, Nathalie Labarriere ` 1, Francine Jotereau1, Vaios Karanikas2,Nadine Gervois1, Thierry Connerotte2, Pierre Coulie2 and Marc Bonneville1 1 INSERM U463, Institut de Biologie, Nantes, France 2 Cellular Genetics Unit, Institute of Cellular Pathology and University of Louvain, Brussels, Belgium We have studied the TCR features and functional responses of three sets of human cytolytic T cell (CTL) clones, recognizing antigenic peptides presented by HLA-A2 and derived from the Epstein-Barr virus proteins BMLF1 and BRLF1 and from the melanoma protein Melan-A/ MART-1. Within each set, a majority of clones used a recurrent V § region, even though they expressed highly diverse TCR g chains and V(D)J junctional sequences. Functional assays and peptide/MHC multimer binding studies indicated that this restricted V § usage was not associated with the affinity/avidity of the CTL clones. The V § dominance, which may be a frequent feature of antigen-specific T cells, likely reflects a restricted geometry of TCR/pep- tide/MHC complexes, primarily determined by V § CDR. Received 14/6/02 Accepted 3/9/02 Key words: TCR / T lymphocyte / Epstein-Barr virus / HCMV / Melanoma 1 Introduction suggest a dominant role of the V § domain in the orienta- tion of the TCR/pMHC complex [4, 5]. However, the gen- T cell recognition of antigenic peptides bound to self erality of this assumption has been put into question by MHC molecules (pMHC) is mediated by the TCR, whose the balanced contribution of V § and V g domains to § and g subunits are each encoded by randomly rear- pMHC binding in some cases [6, 7], and by the lack of ranged V, (D) and J segments [1]. The exquisite specific- conserved atomic contact points between pMHC and ity of pMHC recognition is made possible by the tremen- CDR § in the pMHC/TCR complexes resolved so far dous structural diversity of the TCR § and g chains, [4–7]. mainly concentrated in the CDR. The diversity of CDR1 and CDR2, which are completely encoded by V gene The amount of structural data recovered to date is still segments, is limited by the number of germ-line V seg- too limited to give a general understanding of the molec- ments that are available for recombination. The diversity ular mechanisms of TCR repertoire selection. In this of CDR3 is far more extensive, since these loops com- respect, the extensive TCR molecular studies performed prise both germ-line residues derived from the V(D)J on cells selected by defined pMHC complexes have segments and non-germ-line residues contributed by been useful in allowing identification of recurrent TCR nucleotides added in a template-independent fashion at structural motifs and analysis of the mechanisms under- the V(D)J joints [1]. Structural analyses of pMHC/TCR lying their selection. However, the TCR sequence diver- complexes have revealed a conserved diagonal orienta- sity of T cells reacting against a given pMHC turned out tion of the TCR over the pMHC complex, with the CDR3 § to greatly vary from one situation to another, ranging and CDR3 g loops centered in the TCR binding site and in from highly diverse to fully conserved TCR chains (see contact with the antigenic peptide [2–6]. The CDR1, 2 of ref. [8] for a review). These heterogeneous results proba- the TCR § and g chains are positioned at N and C termini bly reflect the complexity of parameters that come into of the peptide, respectively, and interact with both the play to restrict TCR diversity, such as enzymatic and peptide and MHC helices. Interactions between pMHC combinatorial constraints, TCR repertoire shaping by and residues at conserved positions of the CDR § loops intrathymic selection, cross-reactivity to environmental Ag, and affinity focusing subsequent to chronic Ag stimulation. [I 23265] Abbreviations: pMHC: Peptide/MHC MFI: Mean fluores- In the present study, we made use of recombinant pMHC cence intensity TIL: Tumor-infiltrating lymphocytes multimers [9] to sort out T cells directed against several © 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0014-2980/02/1111-3181$17.50+.50/0 3182 L. Trautmann et al. Eur. J. Immunol. 2002. 32: 3181–3190 HLA-A2-restricted epitopes derived from viral and tumor 2Results proteins, and systematically sequenced their expressed TCR genes. Despite extensive CDR3 § and TCR g chain 2.1 Restricted TCR V > usage by T cells directed diversity, a highly recurrent usage of a particular V § against a dominant EBV antigen region was observed in three sets of clones directed against two viral and one tumor antigen. Furthermore A previous analysis of GLC/A2-specific T cell clones functional studies indicated that this recurrent structural suggested a restricted TCR V g repertoire and a rather feature was not associated with affinity/avidity restriction high frequency of clonotypes with “public” TCR junc- of the T cell response. The generality of these findings, tional features [10]. Significantly the same V § region (AV5 as well as their functional and structural implications, will according to the nomenclature of the IMGT data base) be discussed. was used by the three prominent V g subsets (BV20–1, Table 1. TCR features of T cells directed against three HLA-A2-restricted antigensa) CDR3 § J § V g J g CDR3 g Specificity n length repertoire repertoire repertoire length GLC/A2Total615–122514116–12 AV5+ 34 5–11 16 8 9 6–12 AV12-1+ 13 8–11 3 6 4 9–12 YVL/A2 Total 11 6–11 9 7 7 6–12 AV13-1+ 8 6–9 6 5 6 6–12 ELA/A2Total574–12271596–15 AV12-2+404–12221286–13 a) For each T cell subset of defined specificity, the number (n) of distinct clones studied (i.e. expressing TCR with distinct nucleotidic sequences), the range of CDR3 § and g lengths and the number of distinct J § ,Vg or J g used are indicated. Complete TCR § and g sequences are provided in Table 3 and as supplementary information in Tables A and B. Note the extensive TCR diversity of the three dominant V § subsets (AV5+, AV13–1+ and AV12–2+) identified, respectively, within GLC/ A2, YVL/A2 and ELA/A2-specific T cells. Table 2. Frequent occurrence of public CDR3 within EBV- and tumor-specific responsesa) Specificity Public CDR3 TCR V Sequence fb) Interindividual recurrencec) GLC/A2 AV5 DN/SNARL 9/61 5/14 AV5 SI/TGKL 4/61 4/14 AV12-1 NGMDSSYKL 3/61 2/14 BV29-1 GTGGTNEKL 4/61 4/14 BV14 SQSPGGTQ 4/61 3/14 YVL/A2 AV13-1 KDTDKL 3/11 2/4 ELA/A2 AV12-2 SIGFGNVL 6/57 4/4 a) Listed are only canonical CDR3 sequences detected in at least two distinct donors. b) Frequency of public CDR3 within the sets of distinct clones listed in Table 3 and as supplementary information in Table A and B. c) Frequency of donors yielding clones with the indicated CDR3 sequence. Eur. J. Immunol. 2002. 32: 3181–3190 TCR V § restriction in Ag-specific T cell responses 3183 Table 3. TCR § and g sequences expressed by MelanA/A2-reactive T cell clonesa) a) T cell clones were derived from tumor-infiltrating lymphocytes of three melanoma patients (M138, M180 and M199). nd: not determined. Additional TCR sequences obtained from ELA-peptide stimulated PBL from another patient are provided in Table C (supplemental information). BV29–1 and BV14), suggesting a more homogeneous V § CDR3 g lengths ranged from 5 to 11 and 8 to 12 amino than V g repertoire [10]. To extend this observation made acids, respectively. Similarly, AV12–1+ clones expressed on a small set (n =18) of clones, we studied published TCRwithatleast6distinctVg elements and highly [11] and unpublished TCR sequences of 61 anti-GLC/A2 diverse VJ § and VDJ g junctions (Table 1). In contrast, CTL clones obtained during acute and memory anti-EBV subsets defined by expression of a given V g region used responses. As shown in Table 1, 47/61 clones expressed no more than 3 distinct V § , and most of them expressed the AV5 or AV12–1 genes. A marked conservation of aV§ region (AV5 or AV12–1) also used by the other domi- V(D)J junctional sequences was noted within subsets nant V g subsets (see e.g. the BV20–1, BV29–1 and BV2 expressing similar V § V g combinations (e.g. AV5BV20–1, subsets in Table A, supplementary information). AV5BV29–1 or AV12–1BV14), even within clonotypes derived from distinct individuals [Table 2 and supple- mentary information (Table A) at the following home- page: http://www.ifr26.nantes.inserm.fr/maj/table–A- 2.2 Restricted TCR V > usage by T cells directed C=trautmann.doc]. Despite these recurrent features, the against other antigens overall diversity of TCR chains carried by GLC/A2- specific T cells expressing a given V § region was exten- We studied the structural features of panels of T cell sive. For instance, AV5+ clones used at least 16 distinct clones recognizing two other HLA-A2-restricted epi- J § ,8Vg and 9 J g elements, and their TCR CDR3 § and topes derived, respectively from the EBV lytic protein 3184 L. Trautmann et al. Eur. J. Immunol. 2002. 32: 3181–3190 Table 4. Estimation of GLC/A2- and ELA/A2-specific T cell Two sets of anti-ELA/A2 CTL clones were analyzed: the clone avidity in the absence or presence of blocking anti- M clones were derived from tumor-infiltrating lympho- CD8 mAb cytes (TIL) of three melanoma patients (Table 3), while the VER clones were obtained from blood lymphocytes of another melanoma patient (Table C, supplementary information).
Recommended publications
  • The Dextramer® Technology
    dCODETM Dextramer®- Unravel Specificity of T-cell immunity Sara Bursomanno, PhD Product Manager 10X Genomics User Group Meeting | Institut des Maladies Metaboliques et Cardiovasculaires, Toulouse. Immudex, preferred partner for T-cell immunomonitoring • Location: Copenhagen (Denmark), Virginia and California (US) • Reagents and diagnostic kits based on proprietary Dextramer® technology • Immunotherapy • Transplantation • Cellular therapy • Basic research in cellular immunity Disease-specific immune monitoring Pre- Treatment Post Treatment treatment Prep treatment • Epitope Discovery • Cell sorting • Monitor effect of • Patient Stratification • Product treatment • Diagnosis characterization/release • Immune reconstitution Dextramer based monitoring of antigen-specific T-cells CD8 Multimer • Dextramer is a multimer reagent with increased sensitivity • Detection of low-affinity T-cell receptors • In situ visualization of antigen-specific T-cells Complexity of the immune repertoire 6 Billion DNA bases in the Genome Thousands of differentially expressed genes Millions of immune receptor pairs • Adaptive immune response is highly specialized. • Vast array of T cell receptors (107 different TCRs). • Each TCR can bind 106 different peptide sequences. dCODE™ Dextramer® - DNA barcoded MHC multimer ▪ Unique DNA barcode specifying the MHC- peptide complex on the Dextramer® ▪ PE-label for visualization in flow cytometry ▪ The MHC-peptide specificity can be identified by PCR and sequencing of the DNA barcode ▪ Massive multiplexing ▪ Combined with NGS
    [Show full text]
  • Review Antigen-Specific Cytometry Andreas Thiel and Andreas Radbruch Deutsches Rheumaforschungszentrum Berlin, Berlin, Germany
    http://arthritis-research.com/26oct99/ar0101r02 Review Antigen-specific cytometry Andreas Thiel and Andreas Radbruch Deutsches RheumaForschungsZentrum Berlin, Berlin, Germany Received: 16 September 1999 Important note about how to cite this article Revisions requested: 6 October 1999 This article is also available online in the Arthritis Research website. To Revisions received: 11 October 1999 avoid confusion, please ensure that only the online version of the Accepted: 11 October 1999 article is cited in any reference, as follows: Published: 26 October 1999 Thiel A, Radbruch A: Antigen-specific cytometry [review]. © Current Science Ltd http://arthritis-research.com/26oct99/ar0101r02 Introduction range from 10–5 to 10–6, based for example on limiting dilu- From its origins in the 16th century, microscopy has tion analyses. For a number of biological and physical allowed the cell, as the basic unit of eukaryotic life and reasons immunofluorescence, either with antigens or anti- disease, to be identified and analyzed. Today, quantitative bodies, shows considerable variation in intensity. This cytometric technologies, either microscope based or flow makes it technically difficult to identify accurately rare cells cytometric, are the most powerful tools to analyze the pro- of interest at frequencies below 10–3 to 10–4. Apart from that liferation, physiology and differentiation of cells generally, basic limitation, it is extremely time consuming to analyze a and are particularly useful in immunopathology. In combi- sufficient number of rare cells to obtain a reliable result. nation with monoclonal antibodies (which recognize spe- cific gene products) conjugated to sensitive fluorescent Nevertheless, experimental work [1–4] has shown that it is dyes, cell types can be identified according to the genes possible cytometrically to identify and analyze B memory they express.
    [Show full text]
  • Lentiviral*Vector*Purification* Using*Genetically*Encoded*Biotin* Mimic*In*Packaging*Cell*
    ! ! Lentiviral*vector*purification* using*genetically*encoded*biotin* mimic*in*packaging*cell* ! ! UCL!Cancer!Institute! University!College!London! A!thesis!Presented!for!the!Degree!of!Doctorate!in!Philosophy!! ! ! Leila*Mekkaoui* September!2017! ! ! ! Declaration* I,!Leila!Mekkaoui,!confirm!that!the!work!presented!in!this!thesis!is!my!own.! Where!information!has!been!derived!from!other!sources,!I!confirm!that!this!has! been!indicated!in!the!thesis.! * * * * * * * * * * * * * * Abstract** Lentiviral!vectors!(LVs)!are!powerful!tools!in!gene!therapy!that!have!recently! witnessed!an!increasing!demand!in!both!research!and!clinical!applications.! Current!LVs!purification!represents!the!main!bottle!neck!in!their!application!as! several!methods!are!employed!which!are!time!consuming,!cumbersome!and! yield!low!recoveries.!The!aim!of!this!project!was!to!develop!a!oneMstep!method! to!specifically!and!efficiently!purify!LVs,!with!high!vector!yields!and!reduced! levels!of!impurities,!using!the!biotinMstreptavidin!system.!! Herein,! packaging! 293T! cells! were! genetically! engineered! with! biotin! mimicking!synthetic!peptides!and!different!cell!membrane!anchoring!strategies! for! optimal! streptavidin! binding! were! tested.! We! have! identified! a! flanked! disulphideMconstrained! peptide,! termed! Ctag! (ECHPQGPPCIEGRK),! displayed!on!a!CD8α!stalk!to!be!the!most!promising.!LVs!were!modified!with! Ctag!by!its!random!incorporation!onto!viral!surfaces!during!budding,!without! viral!protein!engineering!or!hindrance!on!infectivity.!The!expression!of!Ctag!on!
    [Show full text]
  • A Framework for Annotation of Antigen Specificities in High-Throughput T-Cell Repertoire Sequencing Studies
    bioRxiv preprint doi: https://doi.org/10.1101/676239; this version posted June 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A framework for annotation of antigen specificities in high-throughput T-cell repertoire sequencing studies Mikhail V Pogorelyy1,2, Mikhail Shugay1,2,3* 1 Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia 2 Pirogov Russian Medical State University, Moscow, Russia 3 Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia * corresponding author: [email protected] Abstract Recently developed molecular methods allow large-scale profiling of T-cell receptor (TCR) sequences that encode for antigen specificity and immunological memory of these cells. However, it is well known, that the even unperturbed TCR repertoire structure is extremely complex due to the high diversity of TCR rearrangements and multiple biases imprinted by VDJ rearrangement process. The latter gives rise to the phenomenon of “public” TCR clonotypes that can be shared across multiple individuals and non-trivial structure of the TCR similarity network. Here we outline a framework for TCR sequencing data analysis that can control for these biases in order to infer TCRs that are involved in response to antigens of interest. Using an example dataset of donors with known HLA haplotype and CMV status we demonstrate that by applying HLA restriction rules and matching against a database of TCRs with known antigen specificity it is possible to robustly detect motifs of an epitope-specific responses in individual repertoires.
    [Show full text]
  • Priming Persistence of HCV
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 31 Editorial Priming persistence of HCV Anita Schuch, Robert Thimme and Maike Hofmann Acute infection with hepatitis C virus (HCV) is HCV-infected patients with virus-specific CD8+ T-cell cleared in about 30% of cases with CD8+ T-cells being the responses that have been detectable directly ex vivo main effector cells in viral elimination. Yet, about 70% of showed significantly higher frequencies of enriched HCV- patients progress to chronic HCV infection that can result specific CD8+ T-cells compared to patients without virus- in chronic immunopathology. This immune-mediated liver specific CD8+ T-cell responses detectable by conventional diseases can progress to liver cirrhosis and ultimately to peptide/MHC multimer staining methods (enriched hepatocellular carcinoma. detectable). Yet, enriched detectable HCV-specific CD8+ Chronic HCV infection is characterized by an T-cell populations were more frequent in chronically impaired virus-specific CD8+ T-cell response caused HCV-infected patients than HCV-specific CD8+ T-cell by several viral and host factors. However, the relative precursor populations in healthy donors. A detailed contribution of those and the exact mechanisms of CD8+ phenotypic characterization of enriched HCV-specific T-cell failure are still not fully illuminated. Viral escape CD8+ T-cells revealed that HCV-specific CD8+ precursor and CD8+ T-cell exhaustion due to prolonged antigen T-cells obtained from healthy donors predominantly exposure, for example, cause impaired virus-specific displayed a naïve phenotype (CD45RA+CCR7+CD27+). CD8+ T-cell responses and therefore contribute to HCV In contrast, directly detectable virus-specific CD8+ T-cell persistence.
    [Show full text]
  • Multimers of MHC-Peptide Complexes and Uses Thereof in Borrelia Infectious Diseases
    (19) TZZ ¥_¥Z T (11) EP 2 361 930 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 31.08.2011 Bulletin 2011/35 C07K 14/705 (2006.01) A61K 47/48 (2006.01) A61K 39/00 (2006.01) A61K 38/17 (2006.01) (2006.01) (2006.01) (21) Application number: 11150404.9 G01N 33/50 A61P 31/00 A61K 39/02 (2006.01) (22) Date of filing: 26.03.2008 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Schøller, Jørgen HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT 2800 Lyngby (DK) RO SE SI SK TR • Pedersen, Henrik 3540 Lynge (DK) (30) Priority: 26.03.2007 DK 200700461 • Brix, Liselotte 26.03.2007 US 907217 P 2880 Bagsværd (DK) 03.07.2007 DK 200700973 03.07.2007 DK 200700975 (74) Representative: Aamand, Jesper L. et al 03.07.2007 DK 200700972 Hjerrild & Levin ApS 03.07.2007 DK 200700974 Tuborg Boulevard 12 03.07.2007 US 929583 P 2900 Hellerup (DK) 03.07.2007 US 929581 P 03.07.2007 US 929582 P Remarks: 03.07.2007 US 929586 P •ThecompletedocumentincludingReferenceTables and the Sequence Listing can be downloaded from (62) Document number(s) of the earlier application(s) in the EPO website accordance with Art. 76 EPC: •This application was filed on 07-01-2011 as a 08715595.8 / 2 155 782 divisional application to the application mentioned under INID code 62. (71) Applicant: Dako Denmark A/S 2600 Glostrup (DK) (54) Multimers of MHC-peptide complexes and uses thereof in Borrelia infectious diseases (57) The present application concerns multimers of MHC-peptide complexes, in particular, dextramers, wherein the peptide is a 9-mer derived from a Borrelia outer surface protein antigen.
    [Show full text]
  • Complete Response to PD-1 Blockade Following EBV-Specific T-Cell Therapy in Metastatic Nasopharyngeal Carcinoma
    www.nature.com/npjprecisiononcology CASE REPORT OPEN Complete response to PD-1 blockade following EBV-specific T-cell therapy in metastatic nasopharyngeal carcinoma Corey Smith1, Margaret McGrath2, Michelle A. Neller1, Katherine K. Matthews1, Pauline Crooks1, Laetitia Le Texier1, Benedict Panizza2, ✉ Sandro Porceddu2 and Rajiv Khanna 1 Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus (EBV)-associated heterogeneous disease and is characterized by peritumoral immune infiltrate. Adoptive T-cell therapy (ACT) has emerged as a potential therapeutic strategy for NPC. However, the tumor microenvironment remains a major roadblock for the successful implementation of ACT in clinical settings. Expression of checkpoint molecules by malignant cells can inhibit the effector function of adoptively transferred EBV-specific T cells. Here we present a novel case report of a patient with metastatic NPC who was successfully treated with a combination of EBV-specific ACT and programmed cell death-1 blockade therapy. Following combination immunotherapy, the patient showed complete resolution of metastatic disease with no evidence of disease relapse for 22 months. Follow-up immunological analysis revealed dramatic restructuring of the global T-cell repertoire that was coincident with the clinical response. This case report provides an important platform for translating these findings to a larger cohort of NPC patients. npj Precision Oncology (2021) 5:24 ; https://doi.org/10.1038/s41698-021-00162-7 1234567890():,; INTRODUCTION disease recurrence by PET/CT for 22 months following complete Nasopharyngeal carcinoma (NPC) remains a significant burden in response. regions of South-East Asia, with incidences as high as 20 per 100,000 in regions of Southern China1. Rates of diagnosis worldwide exceed 70,000 cases annually2.
    [Show full text]
  • Single-Cell Mass Cytometry for Analysis of Immune System Functional States
    Available online at www.sciencedirect.com ScienceDirect Single-cell mass cytometry for analysis of immune system functional states Zach B Bjornson, Garry P Nolan and Wendy J Fantl Mass cytometry facilitates high-dimensional, quantitative therapeutic and potential therapeutic agents in vitro or in analysis of the effects of bioactive molecules on cell vivo [14 ,18–20]. populations at single-cell resolution. Datasets are generated with panels of up to 45 antibodies. Each antibody is conjugated However, as powerful as fluorescence-based flow cyto- to a polymer chelated with a stable metal isotope, usually in the metry can be, it falls somewhat short of uncovering the lanthanide series of the periodic table. Antibody panels well-recognized complexity of the immune system when recognize surface markers to delineate cell types determined simultaneously with intracellular network simultaneously with intracellular signaling molecules to states. The primary drawback of traditional fluor- measure biological functions, such as metabolism, survival, escence-based flow cytometry is ironically the same tool DNA damage, cell cycle and apoptosis, to provide an overall that has enabled it to be so useful for nearly three determination of the network state of an individual cell. This decades: the number of markers that can be simul- review will cover the basics of mass cytometry as well as outline taneously analyzed is inherently limited by spectral assays developed for the platform that enhance the overlap. Measurement beyond three fluorophores immunologist’s analytical arsenal. becomes more complex as more parameters are added, Addresses involving corrections for spectral overlap as well as Stanford University School of Medicine, Department of Microbiology & appreciation for the auto-fluorescence of certain cell types Immunology, Baxter Laboratory for Stem Cell Biology, 269 Campus [21,22].
    [Show full text]
  • 3986.Full.Pdf
    Characterizing the Impact of CD8 Antibodies on Class I MHC Multimer Binding Philmore O. Holman, Elizabeth R. Walsh and Stephen C. Jameson This information is current as of October 8, 2021. J Immunol 2005; 174:3986-3991; ; doi: 10.4049/jimmunol.174.7.3986 http://www.jimmunol.org/content/174/7/3986 Downloaded from References This article cites 25 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/174/7/3986.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 8, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Characterizing the Impact of CD8 Antibodies on Class I MHC Multimer Binding1 Philmore O. Holman, Elizabeth R. Walsh, and Stephen C. Jameson2 Many studies have suggested that CD8 Abs affect the binding of class I MHC tetramers/multimers to CD8؉ T cells, which has led to the interpretation that CD8 participates directly in multimer binding.
    [Show full text]
  • Mhc Multimer Proficiency Panel 2015
    MHC MULTIMER PROFICIENCY PANEL 2015 July 2015 CONTACT — Charlotte Halgreen FOR MORE INFORMATION [email protected] www.proficiencypanel.com MHC MULTIMER PROFICIENCY PANEL 2015 This report summarizes the results of the MHC Multimer 30 laboratories from 13 Proficiency Panel 2015. The report provides individual test countries participated in results for each participating laboratory that participated in the the MHC Multimer MHC Multimer proficiency panel 2015, as well as an Proficiency Panel anonymized overview of the other participants’ test results. 30 laboratories from 13 countries participated in the MHC Participants are active in Multimer Proficiency Panel. Participants included researchers such diverse fields as and clinicians active in such diverse fields as Cancer, HIV, CMV, Cancer, HIV, CMV, and and Diabetes. Diabetes Immudex has taken over the MHC Multimer and Elispot proficiency panels from the CIC (Cancer Immunotherapy Consortium of the Cancer Research Institute, USA) and the CIMT (Association for Cancer Immunotherapy, Europe). The proficiency panel services offered by Immudex are open to any laboratory, independent on geographic location or field of interest, with a need to perform accurate and reproducible quantification of antigen-specific T cells. The report is provided using European numeration. The proficiency panels conducted by Immudex are non-profit services offered with the intent of testing and ensuring a high Next MHC Multimer level of proficiency and reliability among the researchers and proficiency panel to be clinicians that perform the immune monitoring assays. It is the held in 2016 hope and expectation that better immune monitoring assays will lead to better and more efficient immunotherapies. The next MHC Multimer proficiency panel will be held in 2016.
    [Show full text]
  • Viral-Specific Adoptive Immunotherapy After Allo-SCT
    Bone Marrow Transplantation (2013) 48, 1265–1270 & 2013 Macmillan Publishers Limited All rights reserved 0268-3369/13 www.nature.com/bmt REVIEW Viral-specific adoptive immunotherapy after allo-SCT: the role of multimer-based selection strategies N Ramı´rez1 and E Olavarrı´a1,2 Recipients of hematopoietic SCT undergo a period of profound immunosuppression due to the chemotherapy and/or radiotherapy used for the conditioning and to the graft versus host reaction. SCT patients are highly susceptible to the development of viral infections such as CMV or EBV. The achievement of a competent immunological response, such as viral-specific T cells, is associated with a lower incidence of viral infections. Methods for direct identification of antigen-specific T cells have been based on the functional characteristics of these T cells. Techniques such as proliferation and ELISPOT assays, intracellular cytokine staining and IFN-g capture have been used to quantitate and obtain viral-specific T cells. Multimers are composed of several MHC molecules loaded with immunodominant peptides joined to a fluorescent molecule, which signal can be quantified by a flow cytometer. Multimer technology together with recent advances in flow cytometry, have facilitated the monitoring and selection of antigen- specific T cells without the need for in vitro cultures and manipulation. This has resulted in a better characterization of the function and phenotype of the different subpopulations of T cells involved in the immune recovery post allogeneic SCT. It is becoming a distinct possibility to isolate individual antigen-specific T cells, without long-term culture techniques, and potentially use them as adoptive immunotherapy in the SCT setting.
    [Show full text]
  • Immudex Takes on International Proficiency Panels
    IMMUDEX BECOMES THE PROVIDER OF MHC MULTIMER AND ELISPOT PROFICIENCY PANEL SERVICES IMMUDEX TAKES ON INTERNATIONAL PROFICIENCY PANELS Copenhagen, Denmark, Mainz, Germany, and New York, USA – April 2013 Immudex has entered into a strategic agreement with the US Cancer Immu- notherapy Consortium (CIC) of the Cancer Research Institute, and the Euro- pean Association for Cancer Immunotherapy (CIMT), under which Immudex will provide MHC-peptide multimer and Elispot proficiency panel services world- wide. CIC and CIMT originally established proficiency panel programs to offer an external validation of assay performance and to enhance assay harmonization. Over the years, more than one hundred laboratories have participated not only from the cancer field, but also from other immunological fields utilizing immune monitoring. As a result, two frequently used immune monitoring methods, the MHC-peptide multimer and Elispot assays, have now reached a high degree of harmonization. Immudex, specialized in the detection of antigen-specific T cells, has been an active participant in the proficiency panel process and is globally recognized for its expertise in immune monitoring. Thus Immudex was the logical choice as partner for pro- ficiency panels. Starting in fall of 2013, Immudex will be providing proficiency panels for MHC multimer and Elispot assays to laboratories worldwide, independently of their background and association. Immudex will continue the external validation program established by CIC and CIMT under the successfully implemented harmonization guidelines and will promote a more widespread use of these technologies in the development of new cancer immunotherapies and vaccines against other diseases such as HIV, TB, diabetes and others. Sylvia Janetzki, coordinator of the CIC panel program, explains the rationale for handing the proficiency panels over to Immudex: “Immudex has been an activate partner and valued col- laborator in our panel activities.
    [Show full text]