Produced at Taxedo.Com U.S
Total Page:16
File Type:pdf, Size:1020Kb
produced at taxedo.com U.S. Standard Atmosphere 1976 Pressure [mbar] 10-4 10-3 10-2 10-1 1 10 102 103 110 100 90 80 70 60 50 Altitude [km] 40 30 P 20 10 0 U.S. Standard Atmosphere 1976 Pressure [mbar] 10-4 10-3 10-2 10-1 1 10 102 103 110 110 100 Thermosphere 100 90 90 Mesopause 80 80 70 Mesosphere 70 60 60 50 Stratopause 50 Altitude [km] 40 40 ozone 30 T Stratosphere 30 layer P 20 20 10 Tropopause 10 Troposphere 'weather' 0 0 180 200 220 240 260 280 300 Temperature [K] To a good approximation air can be treated as an ideal gas! Dalton's law: Mixing ratio: diffusion constant for inert species! important => "heterosphere" ~mesopause 80 HO2 CO2 Ar O2 N2 60 well-mixed 40 => "homosphere" Altitude (km) highly variable! 20 removal of water by precipitation! 0 -6 -5 -4 -3 -2 -1 0 10 10 10 10 10 10 10 Mixing ratio (mol/mol) adapted with changes from Bohren, Huffman and Clothiaux, 2010 as well as from Roedel and Wagner, 2011 'Janus' behavior of water Water is the most effective greenhouse gas! => heating! The Earth with clouds Robert A. Rohde, globalwarmingart.com: Atmospheric Transmission.png Water is also the greatest reflector of incoming sunlight => cooling Water cycle: ¤ dominant source: ¤ evaporation and evapotranspiration ¤ total atmospheric water mass: ~1.3x1016 kg ¤ loss rate: ¤ global mean precipitation rate is ~1000 mm per year =ˆ ~5.1x1017 kg/year ¤ mean atmospheric lifetime of a water molecule: total mass = H2O loss rate 1.3x1016 kg = 5.1x1017 kg/year = ~9 days! Other functions of water: ¤ energy transport (latent heat) => enhances vertical mixing of air ¤ cleansing agent for water-soluble trace gases ¤ cleansing agent for aerosol particles ¤ catalyst for heterogeneous chemical reactions => e.g. ozone hole chemistry 110 Thermosphere 100 90 80 70 Mesosphere 60 50 40 30 Stratosphere Altitude (km) 20 equatorial 10 polar Troposphere 0 100 150 200 250 300 350 Temperature (K) fog 110 Thermosphere 100 90 80 wikimedia.org: fog.jpg 70 Mesosphere 60 50 40 30 Stratosphere Altitude (km) 20 equatorial 10 polar Troposphere fog 0 100 150 200 250 300 350 Temperature (K) cumulus clouds 110 Thermosphere 100 90 80 wikimedia.org: Img20050526 0007 at tannheim cumulus.jpg 70 Mesosphere 60 50 40 30 Stratosphere Altitude (km) 20 equatorial 10 polar Troposphere Cu 0 100 150 200 250 300 350 Temperature (K) 110 Thermosphere 100 wikimedia.org: Cumulonimbus_over_The_Netherlands.jpg 90 80 70 Mesosphere 60 50 cumulonimbus clouds 40 30 Stratosphere Altitude (km) 20 equatorial Cb 10 polar Troposphere 0 100 150 200 250 300 350 Temperature (K) wikimedia.org: Big_Cumulonimbus.JPG cirrus clouds 110 Thermosphere 100 90 80 70 Mesosphere 60 50 Thomas Koop, Bielefeld University 40 30 Stratosphere Altitude (km) 20 equatorial 10 Ci polar Troposphere 0 100 150 200 250 300 350 Temperature (K) Ken Klassy, National Science Foundation 110 Thermosphere 100 90 wikimedia.org: Nacreous_clouds_Antarctica.jpg 80 70 Mesosphere 60 polar stratospheric clouds 50 40 30 Stratosphere Altitude (km) 20 PSC equatorial 10 polar Troposphere 0 100 150 200 250 300 350 Temperature (K) wikimedia.org: Polar_stratospheric_cloud_type_2.jpg wikimedia.org: Noctilucent_clouds_from_ISS_-_13-06-2012.jpg 110 Thermosphere 100 90 80 PMC 70 Mesosphere 60 50 40 wikimedia.org: Noctilucent_clouds_over_saimaa.jpg 30 Stratosphere Altitude (km) polar mesospheric clouds 20 equatorial 10 polar Troposphere 0 100 150 200 250 300 350 Temperature (K) wikimedia.org:Helkivad_ööpilved_Kuresoo_kohal.jpg condensed Tg Thom Tm phases: stable ice Ih liquid metastable LDA ice Ic supercooled liquid 110 Thermosphere 100 90 80 PMC 70 Mesosphere 60 50 40 Stratosphere ozone 30 layer Altitude (km) 20 PSC equatorial Cb 10 Ci polar Troposphere Cu 'weather' fog 0 100 150 200 250 300 350 Temperature (K) Formation of radiation fog % relative humdity 14 n o 90 80 70 ati 60 ur t a supersaturated s r 12 e 50 wat d liqui 10 wikimedia.org: fog.jpg isobaric cooling 40 (hPa) w P 8 30 6 subsaturated 20 4 270 275 280 285 290 295 Temperature (K) Formation of radiation fog % relative humdity 14 n o 90 80 70 ati 60 ur t a supersaturated s r 12 e 50 wat d liqui 10 dew point wikimedia.org: fog.jpg isobaric cooling 40 (hPa) w P 8 30 6 subsaturated 20 4 270 275 280 285 290 295 Temperature (K) Formation of cumulus clouds % relative humdity 14 n o 90 80 70 ati 60 ur t a supersaturated s r 12 e 50 wat d liqui adiabatic expansion 10 0m 40 wikimedia.org: 50m Img20050526 0007 at tannheim cumulus.jpg m 2 500 0m 75 (hPa) 00m in rising air parcles w 1250m 10 P 8 on x n i dry e pa s 30 adiabatic 6 subsaturated expansion 20 => air cools by ~10 K per km e.g. 4 270 275 280 285 290 295 @ surface (z=0 km) @ z=1 km: Temperature (K) p = 1000 hPa p = 870 hPa T = 290 K T = 280 K Pw = 9.6 hPa Pw = 8.3 hPa H2 O mixing ratio stays constant but not H2 O partial pressure Formation of cumulus clouds % relative humdity 14 n o 90 80 70 ati 60 ur t a supersaturated s r 12 e 50 wat d liqui adiabatic expansion 10 0m 40 wikimedia.org: 50m Img20050526 0007 at tannheim cumulus.jpg m 2 500 0m 75 (hPa) 00m in rising air parcles w 1250m 10 P 8 on x n i dry e pa s cloud base 30 adiabatic 6 subsaturated expansion 20 => air cools by ~10 K per km e.g. 4 270 275 280 285 290 295 @ surface (z=0 km) @ z=1 km: Temperature (K) p = 1000 hPa p = 870 hPa T = 290 K T = 280 K Pw = 9.6 hPa Pw = 8.3 hPa H2 O mixing ratio stays constant but not H2 O partial pressure Fog Cumulus clouds wikimedia.org: wikimedia.org: fog.jpg Img20050526 0007 at tannheim cumulus.jpg 14 14 n ion t 90 80 70 90 80 70 a ati r 60 60 u at atur s o supersaturated supersaturated r 12 eliqu 50 12 e 50 at r s id w d wa u t li q i 10 dew point 10 isobaric cooling 40 40 (hPa) (hPa) w w P 8 P 8 sion xpan dry e cloud base 30 30 6 subsaturated 6 subsaturated 20 20 4 4 270 275 280 285 290 295 270 275 280 285 290 295 Temperature (K) Temperature (K) How do droplets condense from water vapor? Homogeneous gas-liq nucleation 5 stable 4 clusters nucleation w and growth 3 w 2 S = P (drop) / P (bulk) 1 bulk limit for r 8 from Lamb 2011 0 0.0001 0.001 0.01 0.1 1 water cluster/droplet radius (µm) Homogeneous gas-liq nucleation 5 stable 4 Scrit at ~290 K clusters -3 -1 nucleation (for J = 1 cm s ) w and Viisanen et al., J.Chem.Phys. 1993 growth 3 Wölk and Strey, J.Phys.Chem.B 2001 w 2 S = P (drop) / P (bulk) 1 bulk limit for r 8 from Lamb 2011 0 0.0001 0.001 0.01 0.1 1 water cluster/droplet radius (µm) Not observed in atmosphere! typical values are S < 1.01 Why? => Omnipresent aerosol particles! e.g. H2 SO 4 aerosol particles form Pw in these droplets is by atmospheric oxidation of SO2 smaller than in pure water due to Raoult effect gas-to-particle conversion SO2 oxidation H2 SO 4 H2 SO 4 H2 SO 4 H2 SO 4 1.0 nucleation 0.8 w HO2 HO2 HO2 HO2 0.6 adapted with changes from Kathmann et al., Adv.Quant.Chem. 2008 0.4 water activity a H2 SO 4 is hygroscopic and forms 0.2 aqueous H2 SO 4 droplets 0.0 0.0 0.2 0.4 0.6 0.8 H2 SO 4 mass fraction Köhler theory 1.10 1.020 surface tension effect surface tension effect (Kelvin term) (Kelvin term) 1.015 1.05 1.010 1.00 1.005 combined effect combined Saturation ratio Saturation ratio effect 1.000 0.95 solute effect solute effect (Raoult term) 0.995 (Raoult term) 0.90 0.990 2 4 6 8 2 4 6 8 0.001 0.01 0.1 1 10 0.01 0.1 1 droplet radius (µm) droplet radius (µm) for 0.01 µm dry H2 SO 4 droplet Köhler theory 1.020 1.015 1.010 1.005 Saturation ratio 1.000 0.995 ambient 0.990 saturation 2 4 6 8 2 4 6 8 rises 0.01 0.1 1 droplet radius (µm) Köhler theory 1.020 1.015 1.010 1.005 Saturation ratio ambient 1.000 saturation rises 0.995 0.990 2 4 6 8 2 4 6 8 0.01 0.1 1 droplet radius (µm) Köhler theory 1.020 1.015 ambient saturation reaches 1.010 activation value 1.005 Saturation ratio 1.000 0.995 0.990 2 4 6 8 2 4 6 8 0.01 0.1 1 droplet radius (µm) Köhler theory 1.020 rcrit at tiv io S c n 1.015 crit a ambient saturation exceeds 1.010 activation value 1.005 Saturation ratio 1.000 0.995 0.990 2 4 6 8 2 4 6 8 0.01 0.1 1 droplet radius (µm) Köhler theory 1.020 rcrit at tiv io S c n 1.015 crit a ambient saturation decreases 1.010 "activated" cloud droplet grows 1.005 Saturation ratio 1.000 0.995 0.990 2 4 6 8 2 4 6 8 0.01 0.1 1 droplet radius (µm) Köhler theory Haze Cloud 1.020 rcrit at tiv io S c n 1.015 crit a 1.010 1.005 stable unstable equilibrium growth Saturation ratio 1.000 0.995 0.990 2 4 6 8 2 4 6 8 0.01 0.1 1 droplet radius (µm) Köhler theory Effect of particle size and chemical composition 1.020 1.015 (1) larger particles 10 nm (1) activate at lower 1.010 dry (1) saturation ratio! radius 25 nm 1.005 (2) solutes with 50 nm (2) larger Raoult effect Saturation ratio 100 nm 1.000 (2) activate at lower (2) saturation ratio! 0.995 org H SO 0.990 2 4 2 4 6 2 4 6 2 4 6 0.01 0.1 1 10 droplet radius (µm) Köhler theory Effect of particle size and chemical composition 1.020 1.015 10 nm 1.010 dry radius 25 nm 1.005 50 nm Saturation ratio 100 nm 1.000 larger particles activate first 0.995 org ambient H SO 0.990 2 4 saturation 2 4 6 2 4 6 2 4 6 rises 0.01 0.1 1 10 droplet radius (µm) Köhler theory Effect of particle size and chemical composition 1.020 1.015 10 nm 1.010 dry radius 25 nm 1.005 50 nm => deplete ambient humidity Saturation ratio 100 nm 1.000 larger particles activate first 0.995 org ambient H SO 0.990 2 4 saturation 2 4 6 2 4 6 2 4 6 rises more slowly 0.01 0.1 1 10 droplet radius (µm) Köhler theory Effect of particle size and chemical composition 1.020 1.015 10 nm 1.010 dry radius 25 nm 1.005 results in Smax (ambient) 50 nm => deplete ambient humidity Saturation ratio 100 nm 1.000 larger particles activate first 0.995