Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration- Resistant Prostate Cancer Anna C

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration- Resistant Prostate Cancer Anna C Published OnlineFirst September 17, 2018; DOI: 10.1158/1078-0432.CCR-18-1589 Research Article Clinical Cancer Research Epigenetic Therapy with Panobinostat Combined with Bicalutamide Rechallenge in Castration- Resistant Prostate Cancer Anna C. Ferrari1, Joshi J. Alumkal2, Mark N. Stein3, Mary-Ellen Taplin4, James Babb5, Ethan S. Barnett6, Alejandro Gomez-Pinillos5, Xiaomei Liu5, Dirk Moore6, Robert DiPaola7, and Tomasz M. Beer2 Abstract Purpose: This study assesses the action of panobinostat, AR activity. The dose-limiting toxicity was not reached. a histone deacetylase inhibitor (HDACI), in restoring sensi- The probability of remaining rPF exceeded protocol- tivity to bicalutamide in a castration-resistant prostate cancer specified 35% in the A arm and 47.5% and 38.5% in (CRPC) model and the efficacy and safety of the panobinostat/ the B arm. The probabilities of remaining rPF were bicalutamide combination in CRPC patients resistant to 47.5% in the A arm and 38.5% in the B arm, exceeding second-line antiandrogen therapy (2ndLAARx). the protocol-specified threshold of 35%. A arm/B arm: Patients and Methods: The CWR22PC xenograft and iso- adverse events (AE), 62%/19%; treatment stopped for genic cell line were tested for drug interactions on tumor cell AEs, 27.5%/11.5%; dose reduction required, 41%/4%; growth and on the androgen receptor (AR), AR-splice variant7, principal A-arm grade 3 AEs, thrombocytopenia (31%) and AR targets. A phase I trial had a 3 Â 3 panobinostat dose- and fatigue (14%). escalation design. The phase II study randomized 55 patients Conclusions: The 40 mg panobinostat/bicalutamide regi- to panobinostat 40 mg (A arm) or 20 mg (B arm) triweekly Â2 men increased rPF survival in CRPC patients resistant to weeks with bicalutamide 50 mg/day in 3-week cycles. The 2ndLAARx. Panobinostat toxicity was tolerable with dose primary endpoint was to determine the percentage of radio- reductions. Epigenetic HDACI therapy reduces AR-mediated graphic progression-free (rPF) patients at 36 weeks versus resistance to bicalutamide in CRPC models with clinical historic high-dose bicalutamide. benefit in patients. The combination merits validation using Results: In the model, panobinostat/bicalutamide a second-generation antiandrogen. Clin Cancer Res; 1–12. Ó2018 demonstrated synergistic antitumor effect while reducing AACR. Introduction (bicalutamide, flutamide, and nilutamide) or the adrenal androgen synthesis blocker ketoconazole, and the median The lineage dependence of prostate cancer on the androgen time to secondary progression was 6 to 8 months (4, 5). receptor (AR) pathway (1, 2) accounts for the therapeutic "Re-challenge" treatment with the same or an alternative anti- efficacy of castration (3) and for the response to antiandrogen androgen after progression on the first second-line antiandro- therapy after the development of castration resistance. How- gen treatment (2ndLAARx) yielded fewer responses and pro- ever, only a fraction of castration-resistant prostate cancer gressively shorter times to succeeding progression (5, 6). (CRPC) patients responded to first-generation antiandrogens Although, second-generation antiandrogens (enzalutamide and apalutamide) or the adrenal androgen synthesis blocker abiraterone acetate (7–10) significantly delays progression and 1Icahn School of Medicine Mount Sinai, New York, New York. 2OHSU Knight increases overall survival, resistance inevitably follows, and the Cancer Institute, Portland, Oregon. 3Columbia University Medical Center, response to taxanes is short (11). Therefore, preventing or 4 New York, New York. Dana-Farber Cancer Institute, Boston, Massachusetts. reversing resistance to AR-directed agents may potentially block 5 Perlmutter Cancer Center, NYU Langone Medical Center, New York, New lethal pathways of progression and prolong survival. York. 6Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey. 7University of Kentucky College of Medicine, Lexington, Kentucky. The development of resistance to AR-targeted agents involves a host of genomic alterations that directly affect AR Note: Supplementary data for this article are available at Clinical Cancer gene structure and function (12–16) as well as cross-talk with Research Online (http://clincancerres.aacrjournals.org/). growth factor signaling pathways (17–19). The most prevalent Prior Presentation: Presented at the 51st Annual Meeting American Society of AR alteration is overexpression (12–14), which is necessary Clinical Oncology (ASCO), Chicago, IL, May 29–June 2, 2015. and sufficient to lead to CRPC progression and resistance to Corresponding Author: Anna C. Ferrari, Icahn School of Medicine at Mount Sinai, antiandrogens (20). AR mutation frequency is low, but treat- One Gustave L. Levy Place, Box 1079, New York, NY 10029. Phone: 212-659- ment with antiandrogens can select for distinct mutations in 5600; Fax: 212-659-5599; E-mail: [email protected] the ligand-binding domain (LBD) that confer resistance and doi: 10.1158/1078-0432.CCR-18-1589 drive AR activity but not cross-resistance to other antiandro- Ó2018 American Association for Cancer Research. gens (21–25). Ligand-independent AR splice variants (ARSv) www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst September 17, 2018; DOI: 10.1158/1078-0432.CCR-18-1589 Ferrari et al. pathways involved in disease progression and drug resistance, Translational Relevance including those not controlled by AR (30, 35, 40, 41). The development of resistance to androgen pathway– In prostate cancer cells, both HDAC1 and HDAC3 are required targeted agents is central to prostate cancer lethality. Pre- for optimal transcriptional modulation of nearly all AR target clinical studies indicate that this drug-resistant state can be genes (42), although HDAC1 alone can directly interact with AR attenuated or reversed by epigenetic modulation. We pro- protein, to produce transcriptional repression (39). By disrupting pose that to achieve this requires the real-time copresence of transcriptional activation, the HDACIs LBH589 (panobinostat) the epigenetic effector and resistance agent. The relevance of and suberoylanilide hydroxamic acid (SAHA, Vorinostat) this hypothesis in castrate-resistant prostate cancer (CRPC) decreased AR mRNA synthesis and repressed transcriptional acti- was tested in a phase I/II trial of the histone deacetylase vation of the AR target genes PSA and TMPRSS2 (42). In CRPC cell inhibitor panobinostat in combination with continuous bica- lines with AR overexpression, PSA expression was inhibited in a lutamide in patients who had secondarily progressed on dose-dependent manner: 30%, 50%, and 85%, respectively, by bicalutamide and/or other first-generation antiandrogen(s). 10, 20, and 40 nmol/L panobinostat (42). These findings sug- The results provide evidence that compared with historic gested that patients with AR-driven CRPC may require higher controls treated with bicalutamide alone, the combination of doses of panobinostat monotherapy for an antitumor response bicalutamide with high-dose panobinostat administered than the dose approved for use in myeloma (43). In a clinical intermittently delayed radiographic progression of the disease; setting, this could be achieved using an intermittent oral schedule toxicity was not limiting, although dose reductions were to decrease toxicity (42). In addition, given the effect of panobi- required to extend treatment. Our results provide initial nostat on AR transcriptional activity and, also, PSA expression in proof-of-concept support for the potential effectiveness of model systems, it was proposed to use PSA changes as a correlative epigenetic therapy to reverse/delay antiandrogen-resistant biomarker to monitor the effect of HDACI treatment on the AR CRPC and warrant confirmation with currently available, pathway and to guide dose selection in clinical trials (42). more potent antiandrogens to further increase their survival Using cell line prostate cancer models, we previously explored benefits. the hypothesis that resistance to bicalutamide can be overcome by concomitant administration of panobinostat (20). We demon- strated that the HDACIs trichostatin-A and panobinostat effec- tively reduced overexpressed AR mRNA and protein levels in an androgen-independent, bicalutamide-resistant LNCaP deriv- are also enhanced by antiandrogen treatment including bi- ative (44, 45). Further, although bicalutamide alone was in- calutamide, and they frequently sprout in response to second- effective, when combined with panobinostat, the combination generation antiandrogens (26–28). More importantly, the induced both synergistic growth arrest and apoptosis greater overexpression of ARv7 has been shown to accelerate CRPC than panobinostat alone (46). These results suggested that pano- progression via a distinct mitosis-dependent transcriptome binostat reverses resistance to bicalutamide and that both are program that imparts cross-resistance to antiandrogens necessary to achieve an antiproliferative effect. We now show (29–32). These observations of the importance of AR over- that this drug combination is also effective in an additional expression in antiandrogen resistance suggest that aberrant prostate cancer model, namely a paired isogenic in vitro/in vivo regulatory mechanisms could play an important role. Thus, system: the 22Rv1 prostate cancer cell line and the CWR22PC it is of interest that prostate cancer cells
Recommended publications
  • Vorinostat—An Overview Aditya Kumar Bubna
    E-IJD RESIDENTS' PAGE Vorinostat—An Overview Aditya Kumar Bubna Abstract From the Consultant Vorinostat is a new drug used in the management of cutaneous T cell lymphoma when the Dermatologist, Kedar Hospital, disease persists, gets worse or comes back during or after treatment with other medicines. It is Chennai, Tamil Nadu, India an efficacious and well tolerated drug and has been considered a novel drug in the treatment of this condition. Currently apart from cutaneous T cell lymphoma the role of Vorinostat for Address for correspondence: other types of cancers is being investigated both as mono-therapy and combination therapy. Dr. Aditya Kumar Bubna, Kedar Hospital, Mugalivakkam Key Words: Cutaneous T cell lymphoma, histone deacytelase inhibitor, Vorinostat Main Road, Porur, Chennai - 600 125, Tamil Nadu, India. E-mail: [email protected] What was known? • Vorinostat is a histone deacetylase inhibitor. • It is an FDA approved drug for the treatment of cutaneous T cell lymphoma. Introduction of Vorinostat is approximately 9. Vorinostat is slightly Vorinostat is a histone deacetylase (HDAC) inhibitor, soluble in water, alcohol, isopropanol and acetone and is structurally belonging to the hydroxymate group. Other completely soluble in dimethyl sulfoxide. drugs in this group include Givinostat, Abexinostat, Mechanism of action Panobinostat, Belinostat and Trichostatin A. These Vorinostat is a broad inhibitor of HDAC activity and inhibits are an emergency class of drugs with potential anti- class I and class II HDAC enzymes.[2,3] However, Vorinostat neoplastic activity. These drugs were developed with the does not inhibit HDACs belonging to class III. Based on realization that apart from genetic mutation, alteration crystallographic studies, it has been seen that Vorinostat of HDAC enzymes affected the phenotypic and genotypic binds to the zinc atom of the catalytic site of the HDAC expression in cells, which in turn lead to disturbed enzyme with the phenyl ring of Vorinostat projecting out of homeostasis and neoplastic growth.
    [Show full text]
  • FARYDAK (Panobinostat) RATIONALE for INCLUSION in PA PROGRAM
    FARYDAK (panobinostat) RATIONALE FOR INCLUSION IN PA PROGRAM Background Farydak (panobinostat) is the first histone deacetylase (HDAC) inhibitor approved to treat multiple myeloma in patients who have received at least two prior standard therapies, including bortezomib and an immunomodulatory agent. Farydak is to be used in combination with bortezomib, a type of chemotherapy, and dexamethasone, an anti-inflammatory medication. Multiple myeloma causes plasma cells to rapidly multiply and crowd out other healthy blood cells from the bone marrow. When the bone marrow has too many plasma cells, the cells may move to other parts of the body. Farydak works by inhibiting the activity of enzymes, known as histone deacetylases (HDACs). The inhibition of these enzymes may slow the over development of plasma cells in multiple myeloma patients or cause these dangerous cells to die (1). Regulatory Status FDA-approved indication: Farydak, a histone deacetylase inhibitor, in combination with bortezomib and dexamethasone, is indicated for the treatment of patients with multiple myeloma who have received at least 2 prior regimens, including bortezomib and an immunomodulatory agent (2). Farydak carries a Boxed Warning alerting patients and health care professionals that severe diarrhea and severe and fatal cardiac events, arrhythmias and electrocardiogram (ECG) changes have occurred in patients receiving Farydak. Arrhythmias may be exacerbated by electrolyte abnormalities. The most common laboratory abnormalities were low levels of phosphorus in the blood (hypophosphatemia), low potassium levels in the blood (hypokalemia), low levels of salt in the blood (hyponatremia), increased creatinine, low platelets (thrombocytopenia), low white blood cell counts (leukopenia) and low red blood cell counts (anemia).
    [Show full text]
  • Phase I Trial of Carboplatin and Etoposide in Combination with Panobinostat in Patients with Lung Cancer
    ANTICANCER RESEARCH 33: 4475-4482 (2013) Phase I Trial of Carboplatin and Etoposide in Combination with Panobinostat in Patients with Lung Cancer AHMAD A. TARHINI1,2, HARIS ZAHOOR1, BRIAN MCLAUGHLIN1, WILLIAM E GOODING2, JOHN C. SCHMITZ2, JILL M. SIEGFRIED2, MARK A. SOCINSKI1,2 and ATHANASSIOS ARGIRIS3 1University of Pittsburgh Medical Center, 2University of Pittsburgh Cancer Institute, UPMC Cancer Pavilion, Pittsburgh, PA, U.S.A.; 3University of Texas Health Science Center at San Antonio, San Antonio, TX, U.S.A. Abstract. A phase I trial consisting of panobinostat (a apoptosis in response to HDAC inhibitors may also be HDAC inhibitor), carboplatin and etoposide was condacted in mediated by acetylation of non-histone proteins (such as patients with lung cancer. Patients and Methods: Patients HSP-90, p53, HIF1-α, α-tubulin) (5). received carboplatin AUC5 on day 1 and etoposide 100 mg/m2 Panobinostat, a hydroxamic acid derivative, is an oral pan- on days 1, 2 and 3, every 21 days. Concurrent oral deacetylase inhibitor (6). It affects proteins involved in cell-cycle panobinostat was given 3 times weekly on a 2-weeks-on and 1- regulation (p53, p21), angiogenesis (HIF-1α), gene transcription week-off schedule during the 4-6 cycles of chemotherapy and (transcription factors), protein stabilization (Hsp90) and then continued as maintenance therapy. Results: Six evaluable cytoskeleton (α-tubulin), through inhibition of HDACs (7, 8). patients were treated at the first dose level of panobinostat Panobinostat exhibits increased histone acetylation and (10 mg). Dose-limiting toxicity occurred in two patients (33%) has potent antiproliferative activity against a broad range of during the first cycle.
    [Show full text]
  • Management of Multiple Myeloma: the Changing Paradigm
    Management of Multiple Myeloma: The Changing Paradigm Relapsed/Refractory Disease Jeffrey A. Zonder, MD Karmanos Cancer Institute Objectives • Discuss use of standard myeloma therapies when used as therapy after relapse • Consider patient and disease factors which might impact therapy decisions. • Describe off-label options for patients who are not protocol candidates. Line ≠ Line ≠ Line ≠ … POLICE LINE – DO NOT CROSS POLICE LINE – DO NOT CROSS POLICE LINE – DO NOT CROSS POLICE LINE – DO NOT CROSS POLI LINE – DO NOT Define “Line” • A pre-defined course of therapy utilizing agents either simultaneously or sequentially – Len/Dex – Len/Dex ASCT – Vel/Dex ASCT Len/Dex – VDT-PACE ASCT TD ASCT VPT-PACE LD • Pts who have had the same # of “lines” of Rx may have had vastly different amounts of Rx What Is Relapsed/Refractory Disease? • Relapsed: recurrence after a response to therapy • Refractory: progression despite ongoing therapy What Do We Know About the Pt’s Myeloma? • What prior therapy has been used? • How well did it work? • Did the myeloma progress on active therapy? • High-risk cytogenetics/FISH/GEP? What Do We Know About the Patient? • Age • Other medical problems – Diabetes – Blood Clots • Lasting side effects from past therapies – Peripheral Neuropathy • Personal preferences and values Choosing Therapy for Relapsed/Refractory Myeloma Proteasome IMiDs Anthracyclines Alkylators Steroids HDACs Antibodies Inhibitors Thalidomide Bortezomib Doxil Melphalan Dex Panobinostat Elotuzumab Lenalidomide Carfilzomib Cytoxan Pred Vorinostat
    [Show full text]
  • In Patients with Metastatic Melanoma Nageatte Ibrahim1,2, Elizabeth I
    Cancer Medicine Open Access ORIGINAL RESEARCH A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma Nageatte Ibrahim1,2, Elizabeth I. Buchbinder1, Scott R. Granter3, Scott J. Rodig3, Anita Giobbie-Hurder4, Carla Becerra1, Argyro Tsiaras1, Evisa Gjini3, David E. Fisher5 & F. Stephen Hodi1 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 2Currently at Merck & Co.,, Kenilworth, New Jersey 3Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 4Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 5Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts Keywords Abstract HDAC, immunotherapy, LBH589, melanoma, MITF, panobinostat Epigenetic alterations by histone/protein deacetylases (HDACs) are one of the many mechanisms that cancer cells use to alter gene expression and promote Correspondence growth. HDAC inhibitors have proven to be effective in the treatment of specific Elizabeth I. Buchbinder, Dana-Farber Cancer malignancies, particularly in combination with other anticancer agents. We con- Institute, 450 Brookline Avenue, Boston, ducted a phase I trial of panobinostat in patients with unresectable stage III or 02215, MA. Tel: 617 632 5055; IV melanoma. Patients were treated with oral panobinostat at a dose of 30 mg Fax: 617 632 6727; E-mail: [email protected] daily on Mondays, Wednesdays, and Fridays (Arm A). Three of the six patients on this dose experienced clinically significant thrombocytopenia requiring dose Funding Information interruption. Due to this, a second treatment arm was opened and the dose Novartis Pharmaceuticals Corporation was changed to 30 mg oral panobinostat three times a week every other week provided clinical trial support, additional (Arm B).
    [Show full text]
  • Ninlaro, INN-Ixazomib
    15 September 2016 EMA/CHMP/594718/2016 Committee for Medicinal Products for Human Use (CHMP) Assessment report NINLARO International non-proprietary name: ixazomib Procedure No. EMEA/H/C/003844/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2016. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ...................................................................................... 6 1.2. Steps taken for the assessment of the product ......................................................... 7 1.3. Steps taken for the re-examination procedure ......................................................... 8 2. Scientific discussion ................................................................................ 8 2.1. Introduction......................................................................................................... 8 2.2. Quality aspects .................................................................................................. 10 2.2.1. Introduction .................................................................................................... 10
    [Show full text]
  • Targeting NAD+ Biosynthesis Overcomes Panobinostat and Bortezomib-Induced Malignant
    Author Manuscript Published OnlineFirst on April 1, 2020; DOI: 10.1158/1541-7786.MCR-19-0669 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Targeting NAD+ biosynthesis overcomes panobinostat and bortezomib-induced malignant glioma resistance Esther P. Jane, 1, 2 Daniel R. Premkumar, 1, 2, 3 Swetha Thambireddy, 1 Brian Golbourn, 1 Sameer Agnihotri, 1, 2, 3 Kelsey C. Bertrand, 4 Stephen C. Mack, 4 Max I. Myers, 1 Ansuman Chattopadhyay, 5 D. Lansing Taylor, 6, 7, 8 Mark E. Schurdak, 6, 7, 8 Andrew M. Stern, 7, 8 and Ian F. Pollack 1, 2, 3 Department of Neurosurgery 1, University of Pittsburgh School of Medicine 2, University of Pittsburgh Cancer Institute Brain Tumor Center 3, Texas Children's Hospital, Baylor College of Medicine 4, University of Pittsburgh Molecular Biology Information Service 5, University of Pittsburgh Cancer Institute 6, University of Pittsburgh Drug Discovery Institute 7, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine 8, Pittsburgh, Pennsylvania, U.S.A. Disclosure of Potential Conflict of Interest The authors have declared that no conflict of interest exists. 1 Downloaded from mcr.aacrjournals.org on October 2, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 1, 2020; DOI: 10.1158/1541-7786.MCR-19-0669 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Keywords: Panobinostat, bortezomib, synergy, resistance, glioma,
    [Show full text]
  • Broad-Spectrum HDAC Inhibitors Promote Autophagy Through FOXO Transcription Factors in Neuroblastoma
    cells Article Broad-Spectrum HDAC Inhibitors Promote Autophagy through FOXO Transcription Factors in Neuroblastoma Katharina Körholz 1,2, Johannes Ridinger 1,2, Damir Krunic 3, Sara Najafi 1,2,4, Xenia F. Gerloff 1,2,4, Karen Frese 5, Benjamin Meder 5,6, Heike Peterziel 1,2, Silvia Vega-Rubin-de-Celis 7, Olaf Witt 1,2,4 and Ina Oehme 1,2,* 1 Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany; [email protected] (K.K.); [email protected] (J.R.); s.najafi@kitz-heidelberg.de (S.N.); [email protected] (X.F.G.); [email protected] (H.P.); [email protected] (O.W.) 2 Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), INF 280, 69120 Heidelberg, Germany 3 Light Microscopy Facility (LMF), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; [email protected] 4 Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany 5 Institute for Cardiomyopathies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (K.F.); [email protected] (B.M.) 6 Genome Technology Center, Stanford University, Stanford, CA 94304, USA 7 Institute for Cell Biology (IFZ), University Hospital Essen, 45122 Essen, Germany; [email protected] * Correspondence: [email protected] Citation: Körholz, K.; Ridinger, J.; Abstract: Depending on context and tumor stage, deregulation of autophagy can either suppress Krunic, D.; Najafi, S.; Gerloff, X.F.; tumorigenesis or promote chemoresistance and tumor survival.
    [Show full text]
  • Cancer Drug Costs for a Month of Treatment at Initial Food and Drug
    Cancer drug costs for a month of treatment at initial Food and Drug Administration approval Year of FDA Monthly Cost Monthly cost Generic name Brand name(s) approval (actual $'s) (2014 $'s) vinblastine Velban 1965 $78 $586 thioguanine, 6-TG Thioguanine Tabloid 1966 $17 $124 hydroxyurea Hydrea 1967 $14 $99 cytarabine Cytosar-U, Tarabine PFS 1969 $13 $84 procarbazine Matulane 1969 $2 $13 testolactone Teslac 1969 $179 $1,158 mitotane Lysodren 1970 $134 $816 plicamycin Mithracin 1970 $50 $305 mitomycin C Mutamycin 1974 $5 $23 dacarbazine DTIC-Dome 1975 $29 $128 lomustine CeeNU 1976 $10 $42 carmustine BiCNU, BCNU 1977 $33 $129 tamoxifen citrate Nolvadex 1977 $44 $170 cisplatin Platinol 1978 $125 $454 estramustine Emcyt 1981 $420 $1,094 streptozocin Zanosar 1982 $61 $150 etoposide, VP-16 Vepesid 1983 $181 $430 interferon alfa 2a Roferon A 1986 $742 $1,603 daunorubicin, daunomycin Cerubidine 1987 $533 $1,111 doxorubicin Adriamycin 1987 $521 $1,086 mitoxantrone Novantrone 1987 $477 $994 ifosfamide IFEX 1988 $1,667 $3,336 flutamide Eulexin 1989 $213 $406 altretamine Hexalen 1990 $341 $618 idarubicin Idamycin 1990 $227 $411 levamisole Ergamisol 1990 $105 $191 carboplatin Paraplatin 1991 $860 $1,495 fludarabine phosphate Fludara 1991 $662 $1,151 pamidronate Aredia 1991 $507 $881 pentostatin Nipent 1991 $1,767 $3,071 aldesleukin Proleukin 1992 $13,503 $22,784 melphalan Alkeran 1992 $35 $59 cladribine Leustatin, 2-CdA 1993 $764 $1,252 asparaginase Elspar 1994 $694 $1,109 paclitaxel Taxol 1994 $2,614 $4,176 pegaspargase Oncaspar 1994 $3,006 $4,802
    [Show full text]
  • Treatment Options for Relapsed Or Refractory Multiple Myeloma
    Treatment Options for Relapsed or Refractory Multiple Myeloma: Effectiveness and Value Draft Questions for Deliberation: May 26, 2016 Public Meeting Voting Questions1 Comparative Clinical Effectiveness For adults with multiple myeloma who are not currently on maintenance treatment, are not being considered for stem cell transplant, and whose disease has not responded to, or has relapsed following, at least one line of therapy: 1. Is the evidence adequate to demonstrate that the net health benefit of treatment with any of the three regimens listed below is greater than that of treatment with lenalidomide and dexamethasone: o carfilzomib with lenalidomide and dexamethasone; o elotuzumab with lenalidomide and dexamethasone; or o ixazomib with lenalidomide and dexamethasone. 2. Is the evidence adequate to distinguish the net health benefit of treatment between these three regimens: o carfilzomib with lenalidomide and dexamethasone; o elotuzumab with lenalidomide and dexamethasone; or o ixazomib with lenalidomide and dexamethasone? For adults with multiple myeloma who are not currently on maintenance treatment, are not being considered for stem cell transplant, and whose disease has not responded to or has relapsed following two or more lines of therapy: 3. Is the evidence adequate to demonstrate that the net health benefit of treatment with any of the regimens listed below is greater than that of comparator treatment (either lenalidomide and dexamethasone OR bortezomib and dexamethasone): o carfilzomib with lenalidomide and dexamethasone; o elotuzumab with lenalidomide and dexamethasone; o ixazomib with lenalidomide and dexamethasone; or o panobinostat with bortezomib and dexamethasone. 1Voting questions do not include a question regarding pomalidomide due to the difference in populations and the comparator not being widely used in practice.
    [Show full text]
  • WO 2016/179306 Al 10 November 2016 (10.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/179306 Al 10 November 2016 (10.11.2016) P O P C T (51) International Patent Classification: 358508 (SG). RASHID, Masturah Mohd Abdul; BLK A61K 31/706 (2006.01) A61K 31/573 (2006.01) 456, Hougang Ave. 10, #04-445, Singapore 530456 (SG). A61K 31/407 (2006.01) A61K 31/404 (2006.01) (74) Agents: LIU, Cliff Z. et al; Foley & Lardner LLP, 3000 K A61K 31/69 (2006.01) A61P 35/00 (2006.01) Street N.W., Suite 600, Washington, District of Columbia A61K 31/13 (2006.01) 20007-5 109 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 16/0308 19 kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 4 May 2016 (04.05.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/157,348 5 May 2015 (05.05.2015) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (71) Applicants: THE REGENTS OF THE UNIVERSITY TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Panobinostat: a Novel Mechanism of Action Shows Promise in Multiple Myeloma
    Community Translations Panobinostat: a novel mechanism of action shows promise in multiple myeloma ollowing an initial “no” vote from the Oncologic Drugs Advisory Committee (ODAC) in late 2014, What’s new, what’s important F the US Food and Drug Administration eventu- Early this year, the US Food and Drug Administration gave ally awarded accelerated approval in February 2015 to accelerated approval to panobinostat, a histone deacetylase the histone deacetylase (HDAC) inhibitor panobinostat inhibitor, in combination with bortezomib and dexamethasone for use in select patients with relapsed multiple myeloma. for the treatment of patients with multiple myeloma who have Panobinostat has a novel mechanism of action that demon- received at least 2 prior regimens, including bortezomib and an strates synergy with the proteasome inhibitor bortezomib immunomodulatory agent. and the immunomodulatory agent dexamethasone, which The approval was based on the progression-free survival translated into improved progression-free survival (PFS) (PFS) results in a subgroup of patients from a randomized, inter- for patients with multiple myeloma who had received at national, two-arm, placebo-controlled trial that was evaluating least 2 prior therapies, according to data from a prespecifed panobinostat (or placebo) in combination with bortezomib and subgroup analysis from the Panorama-1 trial. dexamethasone. The median PFS values were 10.6 and 5.8 Data from an overall analysis of the Panorama-1 trial months, respectively, in the panobinostat-containing arm (pan- was initially submitted to the FDA for approval of pano- obinostat-bortezomib-dexamethasone) and control (placebo- binostat in patients with relapsed multiple myeloma. Tat bortezomib-dexamethasone), with a hazard ratio of 0.52 (95% multicenter, randomized, placebo-controlled, double-blind CI, 0.36, 0.76).
    [Show full text]