Gluten Free’ Really 100% Gluten Free? Why It Matters

Total Page:16

File Type:pdf, Size:1020Kb

Gluten Free’ Really 100% Gluten Free? Why It Matters 21/07/2020 Is ‘Gluten Free’ really 100% Gluten Free? Why it matters Dr. Kim Faulkner-Hogg Dietitian, Advanced APD BSc, Post Grad Dip Nut & Diet, PhD [email protected] http://www.glutenfreenutrition.com Brought to you by 1 Talk Overview: Gluten ▪ Coeliac Disease & Non-Coeliac Gluten Sensitivity (NCGS) ▪ Defining gluten 3 ways ▪ Gluten digestion ▪ Tests to measure background gluten in a gluten free diet ▪ Accidental and contaminant gluten quantified ▪ Toasters, pastas and cakes with shared cooking equipment ▪ In supermarket and restaurant foods ▪ Impact on Quality of Life ▪ Non-Diet therapies to combat contamination ▪ Enzyme therapies to break down undigested gluten ▪ Proposed role alongside the gluten-free diet. ▪ Dietitians role ▪ Points & resources to reduce background gluten exposure 2 1 21/07/2020 Who is avoiding wheat or gluten? 28% of Australians monitor their gluten intake 1 ▪ 4 % avoid it all together Coeliac Disease: ▪ 1 in 80 males and 1 in 60 females in Australia1 ▪ Villi damage and symptoms ▪ Lifelong avoidance of all gluten Non-Coeliac Wheat/Gluten Intolerance ▪ Common: 11 %2 ▪ Symptoms vary over time ▪ Varying avoidance of possible wheat triggers2 ▪ Gluten ▪ Fructans ▪ Lectins ▪ Amylase/trypsin inhibitors 3 Defining Gluten 1. Bakers definition: 2. Todays definition: Gluten:- is the elastic substance that Gluten:- is the causative agent for forms when water is added to villi damage in those with coeliac flour….which stretches and traps disease. gas….allowing the product to rise and be light and porous. 4 2 21/07/2020 GLUTEN Containing Grains ▪ Wheat (Spelt, Atta, Durum, Burghul, Khorasan) ▪ Triticale (Hybrid of wheat and rye) ▪ Rye (Pumpernickel) ▪ Barley Listed in decreasing order of gluten quantity ▪ Possibly oats: controversial 5 WHEAT STARCH 3. How Science Defines Gluten ~<0.02 % gluten PROTEIN Water ALBUMINS Sodium Chloride GLOBULINS Ethanol WHEAT PROLAMIN (Gliadin) GLUTEN ω GLUTELIN (Glutenin) 6 3 21/07/2020 Amy C Brown (2012) Expert Review of Gastroenterology & Hepatology, 6:1, 43-55, DOI: 10.1586/egh.11.79 7 How Coeliac Disease Defines Gluten 1940’s Dr. Willem-Karel Dicke, discovered that something in the gluten portion of the wheat grain caused villi destruction in those with coeliac disease Today the definition of gluten is synonymous with the physiological damage seen in coeliac disease 8 4 21/07/2020 What is Gluten? Proline Glutamine Gluten Protein Gluten is a protein Proteins are strings of amino acids Amino acids are linked together in different repeating patterns Glutenin Gliadin Gluten containing grains, that can cause damage, have a high proportion of proline and glutamine amino acids in the prolamin portion 9 Picture from: Alessio Fasano. Sci Am. 2009 Aug;301(2):54-61. Surprises from celiac disease. 10 5 21/07/2020 Gluten Digestion Gluten After consumption It is divided into Glutenin Gliadin GIP: Gluten Immunogenic Peptide ▪ Remains toxic to the gut in some Enzymes in our gastrointestinal track digest proteins into peptides and single amino acids Peptides 11 SHUT SHUT Enterocytes Small intestine – Digested food Pass through SHUT Inside the lining of the small intestine Bloodstream 12 6 21/07/2020 Enterocytes Small intestine – Digested food Intestinal damage TTG Inside the lining of TTG the small intestine TTG Bloodstream 13 Coeliac Disease Gluten Ingestion Symptoms Diagnoses CD Raised coeliac-specific blood antibodies Inflamed small intestinal mucosa: Villous atrophy Strict Gluten Free Diet (20ppm) Restoration of Health3 ▪ ↓ symptoms ▪ ↓ antibodies ▪ Villi recovery 14 7 21/07/2020 Gluten Free Internationally The term gluten free defines a quantity of gluten that is thought to do no harm While the details of the standards differ4 <20ppm United States, Canada and Europe + gluten free oats 20mg gluten/1kg of food <10ppm Argentina + no oats 10mg gluten/1kg of food <3ppm Australia, New Zealand and Chile + no oats 3mg gluten/1kg of food 15 Coeliac Disease Recovery Gluten Free Diets before the year 2000 5,6,7,8,9 ▪ daily gluten intake between 5-150mg ▪ Wheat starch people Number of of Number 0mg 2mg 10mg 30mg 50mg (aim for <20ppm) Potential small bowel damage Mg gluten/day 16 8 21/07/2020 Coeliac Disease Recovery 10mg gluten daily9 ▪ Generally safe for those with CD ▪ International Food Standard aim Regular ingestion of 50mg daily9 ▪ Leads to damage of the small bowel people Number of of Number 0mg 2mg 10mg 30mg 50mg (aim for <20ppm) Potential small bowel damage Mg gluten/day 17 Coeliac Disease Recovery 10mg gluten daily9 ▪ Generally safe for those with CD Biopsy ▪ International Food Standard aim ≤7mg gluten 9 people Regular ingestion of 50mg daily per day10 Number of of Number ▪ Leads to damage of the small bowel Symptoms 0.15mg gluten There is a high variability of per day10 sensitivity among those with coeliac disease 0mg 2mg 10mg 30mg 50mg (aim for <20ppm) Potential small bowel damage Mg gluten/day 18 9 21/07/2020 Gluten Quantities Using the figure of ~2.5g gluten in a slice of wheat bread (=2,500mg gluten) ~50mg gluten = 1/50 of a slice of wheat bread 50 ~400-500 mg 19 Gluten Quantities ~ 2.5 g gluten in a slice of wheat bread Average gluten intake on 20 ppm GFD 10 is 66 – 108 mg gluten/day ~ 10 mg gluten = 1/250 slice of bread Several crumbs ≡ 6 -10 mg gluten 20 10 21/07/2020 Recovery of Coeliac Disease Stats vary from paper to paper Villi ▪ Most suggest between 30-50% of patients have ongoing villi damage on a GFD 11,12,13,14,15 ▪ Slow recovery ▪ 4-15% were not recovered at 5 years16,17,18 Symptoms ▪ Despite adherence, there is a high rate of GI symptoms in people on GFD’s 19 . ▪ 25-40% of patients have ongoing symptoms despite the GFD20,21,22 ▪ Generally those diagnosed as kids have the best outcomes Probably from trace sources of gluten 21 Adherence to a GFD Adherence to the GFD varies from 36-96%23 New tests: detect Gluten Immunogenic ▪ Demographic Peptides in faeces and urine ▪ Psychosocial ▪ Clinical factors Made the theory of background gluten a reality Adherence has 2 main components ▪ Deliberate choice to eat a gluten product GIP ▪ Inadvertent ingestion of gluten ▪ Trace backwards and find the gluten ▪ Background contamination 22 11 21/07/2020 GIP Detection Kits Morenos’ 2017 study reports11 GIP: Gluten Immunogenic peptides ▪ GIP’s can be detected in urine ▪ Make it through the intestine unabsorbed ▪ 4-6 hours after ingesting gluten ▪ Excreted in stool and urine ▪ Remain detectable for 1-2 days 50% of the study group Developing tests to measure this suggest…. ▪ Had positive urine GIPs ▪ Stool: ▪ Detects gluten intakes greater than 40mg/day Patients with no villi damage: ▪ Could be positive ~2-7 days after ingestion ▪ 89% had negative urine GIPs ▪ Detects a more chronic exposure ▪ Urine: Patients with villous damage ▪ Detect from about 40-500mg of gluten /day ▪ All had detectable urine GIP’s ▪ Detects a more accurate exposure 23 GIP Detection Kits Syage 2018 study reports 24 ▪ Background gluten ingestion on a GFD was ▪ Between 200-400mg gluten/day ▪ Moderate symptoms :- significantly more than 200mg/day More research is needed to define ▪ Cut off points ▪ Conversion factors to gluten consumed ▪ Potential gut microbiota influences on GIPs ▪ Best uses 24 12 21/07/2020 Uses for the GIP test Caution with use as they could create anxiety Do not want people to use them after eating at restaurants to say ▪ You glutened me!!! ▪ Socially and emotionally damaging leading to isolation Useful in refractory CD if obvious gluten has been excluded ▪ measure if background gluten could be a contributing factor Research clinical trials ▪ Measure compliance 25 Typical Western Diet 10-20g gluten/day25 (ie 10 000- 20 000 mg) 26 13 21/07/2020 Accidental & Inadvertent Gluten Ingestion May be a reason for symptoms and villi damage Some potential sources of contamination of gluten free foods Hidden in Foods26 Farm, Factory & Market Kitchen/Restaurant/Take-away Soy sauce Share transport trucks with wheat Self-serve buffets Beer battered chips Share storage facilities with wheat Toasters Boost low protein flour Share equipment with wheat Chopping Boards Salad dressing Unlabelled fresh food Shared cupboard & fridge space Thickeners Open bulk container foods Shared food crumbs:-jam, butter Imitation crab Self serve outlets Shared food preparation areas Gravies and marinades Ambiguous food labels Knives Confectionary Pasta colanders Pharmaceutical tablets 27 Contamination Potential Weisbrod V et al. Gastroenterology 2020 Jan;158(1):273-275. doi: 10.1053/j.gastro.2019.09.007 28 14 21/07/2020 Contamination Summary27 ▪ Shared pop-up toasters OK ▪ Be wary of GF pasta and GF cut cakes ▪ Restaurants ▪ School fetes OVERALL Cross contamination when cooking is not a huge risk for most people 29 Food labelled Gluten Free Gluten Free in Gluten Free Not Gluten Free Australia Internationally Country Ref # of products Under 5ppm <20ppm Over 20ppm n (%) n (%) n (%) Canada Gelinas 2008 28 77 70 90% 7 9% Canada Koerner 2013 29 268 265 99% 3 1% Europe Gibert 2013 30 205 193 94% 10 with detectable gluten USA Sharma 2015 31 275 265 96% Australia Forbes & Dods 169 imported GF 169 100% Not R5-Eliza 2016 32 foods Italy Verma 2017 33 93 91 98% 2 2% 30 15 21/07/2020 Gluten free by ingredient but not labelled Gluten Free Gluten Free in Gluten Free Not Gluten Free Australia Internationally Country Ref # of products Under 5ppm <20ppm Over 20ppm n (%) n (%) n (%) Finland Collin 2004 34 59 46 75% 13 22% Canada Gelinas 2008 28 71 55 74.5% 16 22.5% USA Thompson 2010 35 22 15 68% 7 32% USA Sharma 2015 31 186 138 74% 12 6% 36 19%
Recommended publications
  • Celiac Disease Resource Guide for a Gluten-Free Diet a Family Resource from the Celiac Disease Program
    Celiac Disease Resource Guide for a Gluten-Free Diet A family resource from the Celiac Disease Program celiacdisease.stanfordchildrens.org What Is a Gluten-Free How Do I Diet? Get Started? A gluten-free diet is a diet that completely Your first instinct may be to stop at the excludes the protein gluten. Gluten is grocery store on your way home from made up of gliadin and glutelin which is the doctor’s office and search for all the found in grains including wheat, barley, gluten-free products you can find. While and rye. Gluten is found in any food or this initial fear may feel a bit overwhelming product made from these grains. These but the good news is you most likely gluten-containing grains are also frequently already have some gluten-free foods in used as fillers and flavoring agents and your pantry. are added to many processed foods, so it is critical to read the ingredient list on all food labels. Manufacturers often Use this guide to select appropriate meals change the ingredients in processed and snacks. Prepare your own gluten-free foods, so be sure to check the ingredient foods and stock your pantry. Many of your list every time you purchase a product. favorite brands may already be gluten-free. The FDA announced on August 2, 2013, that if a product bears the label “gluten-free,” the food must contain less than 20 ppm gluten, as well as meet other criteria. *The rule also applies to products labeled “no gluten,” “free of gluten,” and “without gluten.” The labeling of food products as “gluten- free” is a voluntary action for manufacturers.
    [Show full text]
  • White Paper : the Current State of Scientific Knowledge About Gluten
    White Paper : The Current State of Scientific Knowledge about Gluten April 27, 2018 Table of Contents Introduction .......................................................................................................................................... 2 1. Gluten—A Complex Group of Cereal Proteins ............................................................................. 4 1.1 Definition .................................................................................................................................... 4 1.2 Protein Classification in Gluten-containing Cereals .................................................................. 4 1.3 Gluten-containing Cereals in the Food Industry ........................................................................ 6 1.4 Gluten-free Replacements .......................................................................................................... 6 1.5 Effects of Processing on Gluten Proteins ................................................................................... 6 2. Gluten-related Disorders .............................................................................................................. 8 2.1 Celiac Disease .............................................................................................................................. 8 2.2 Dermatitis Herpetiformis............................................................................................................ 9 2.3 Gluten Ataxia .............................................................................................................................
    [Show full text]
  • Celiac Disease – National Concerns
    84 Celiac disease – national concerns CELIAC DISEASE - NATIONAL CONCERNS R. Siminiuc Technical University of Moldova INTRODUCTION in the Mother and Child Health prevalence of celiac disease is 1:670, and the number of diagnosed Coeliac disease is a pathology caused by persons is just a part of the top of iceberg. Presently, permanent intolerance to gluten, a lipoprotein the only treatment for celiac disease is life-long substance composed of two types of protein glutelin adherence to a strict gluten-free diet: Untreated and prolamin. Gluten is contained in essential celiac disease puts patients at risk for serious quantities in: wheat, barley, rye and other cereals, complications. that’s why is present in many common alimentary foods such as bread, biscuits, pasta and more. Normally, the nutrients in food are absorbed 2. CONCERNS VIS-A VIS OF into the bloodstream through the cells on the villi. COELIAC DISEASE When the villi become atrophied, there is less surface area for nutrient absorption, and a condition Developing functional foods which, in known as malabsorption results. Consequences of addition to nutrients has good specific actions malabsorption include vitamin and mineral to human body is one of priority directions of deficiencies, osteoporosis and other problems [1]. development in science and food technology. Preventive and therapeutic role of food is 1. PREVALENCE OF COELIAC currently of great importance in the developed DISEASE world with high research potential. In European countries are based and work celiac associations and specialized centers, where Currently there an increasing incidence of patients and interested persons may receive celiac disease , which reaches an average 1% of the information for symptomatic, prevention, treatment population, being highest in the following countries: of this disease, which actually consists of a gluten Irland-1:122, USA-1:133, Sarawi (located in West free diet.
    [Show full text]
  • Antioxidant Peptides and Biodegradable Films Derived from Barley Proteins
    University of Alberta Antioxidant Peptides and Biodegradable Films Derived from Barley Proteins by Yichen Xia A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Food Science and Technology Department of Agricultural, Food and Nutritional Science ©Yichen Xia Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission Abstract Barley protein derived antioxidant peptides and biodegradable /edible films have been successfully prepared. Alcalase hydrolyzed barley glutelin demonstrated significantly higher antioxidant capacity than those treated by flavourzyme in · 2+ radical scavenging capacity (O2 ¯/OH˙), Fe -chelating effect and reducing power assays. The alcalase hydrolysates (AH) was separated using ultra-filtration and reversed-phase chromatography, and assessment of the fractions indicated that the molecular size, hydrophobicity and amino acid composition of AH all contributed to their activity. Final peptides sequences were identified using LC-MS/MS. Hydrolyzed barley glutelin is a potential source of antioxidant peptides for food and nutraceutical applications.
    [Show full text]
  • Corn Gluten. Tion of This Ingredient As Generally Rec- Ognized As Safe (GRAS) As a Direct (A) Corn Gluten (CAS Reg
    Food and Drug Administration, HHS § 184.1323 (1) The ingredient is used as a curing § 184.1322 Wheat gluten. and pickling agent as defined in (a) Wheat gluten (CAS Reg. No. 8002– § 170.3(o)(5) of this chapter, leavening 80–0) is the principal protein compo- agent as defined in § 170.3(o)(17) of this nent of wheat and consists mainly of chapter; pH control agent as defined in gliadin and glutenin. Wheat gluten is § 170.3(o)(23) of this chapter; and obtained by hydrating wheat flour and sequestrant as defined in § 170.3(o)(26) of mechanically working the sticky mass this chapter. to separate the wheat gluten from the (2) The ingredient is used at levels starch and other flour components. not to exceed current good manufac- Vital gluten is dried gluten that has re- turing practice. tained its elastic properties. (d) Prior sanctions for this ingredient (b) The ingredient must be of a pu- different from the uses established in rity suitable for its intended use. this section do not exist or have been (c) In accordance with § 184.1(b)(1), waived. the ingredient is used in food with no [51 FR 33896, Sept. 24, 1986] limitation other than current good manufacturing practice. The affirma- § 184.1321 Corn gluten. tion of this ingredient as generally rec- ognized as safe (GRAS) as a direct (a) Corn gluten (CAS Reg. No. 66071– human food ingredient is based upon 96–3), also known as corn gluten meal, the following current good manufac- is the principal protein component of turing practice conditions of use: corn endosperm.
    [Show full text]
  • Knowledge and Perceptions of a Gluten-Free Diet: a Mixed-Methods Approach
    Knowledge and Perceptions of a Gluten-Free Diet: A Mixed-Methods Approach A thesis presented to the faculty of the College of Health Sciences and Professions of Ohio University In partial fulfillment of the requirements for the degree Master of Science Hannah E. Johnson August 2017 © 2017 Hannah E. Johnson. All Rights Reserved. 2 This thesis titled Knowledge and Perceptions of a Gluten-Free Diet: A Mixed-Methods Approach by HANNAH E. JOHNSON has been approved for the School of Applied Health Sciences and Wellness and the College of Health Sciences and Professions by Robert G. Brannan Associate Professor of Food and Nutrition Sciences Randy Leite Dean, College of Health Sciences and Professions 3 Abstract JOHNSON, HANNAH E., M.S., August 2017, Food and Nutrition Sciences Knowledge and Perceptions of a Gluten-Free Diet: A Mixed-Methods Approach Director of Thesis: Robert G. Brannan The practice of gluten-free diets is on the rise, yet many people are still unaware of what gluten is and how it functions in food. It is important that food and nutrition professionals are knowledgeable on this topic due to the prevalence of gluten-related disorders and the popularity of gluten-free as a fad diet. The purpose of this research was to use a mixed methods approach using qualitative and quantitative methods to obtain and evaluate knowledge and perceptions of a gluten-free diet from future and current food and nutrition professionals. In the first phase of the research, a laboratory questionnaire was administered to assess students enrolled in the Food Science course on their knowledge of gluten.
    [Show full text]
  • Extraction and Structure Studies on Corn Glutelin Proteinsl
    Purchased by Agricultural Research Service, 2 5 U.S. Department of Agricu Iture, for official use. Reprinted from CEREAL CHEMISTRY, Sept. 1970, Volume 47: Number 5 Published by The American Association of Cereal Chemists, Inc. 1821 University Avenue, 81. Paul, Minnesota 55104 Extraction and Structure Studies on Corn Glutelin Proteins l H. C. NIELSEN, J. W. PAULlS, C. JAMES, and J. S. WALL, Northern Regional Research Laboratory, Peoria, Illinois ABSTRACT Various methods were compared for isolating glutelin from the glutelin-starch residue remaining after extraction of salt-soluble and alcohol-soluble proteins from corn endosperm. Glutelin was prepared best by removing starch from the residue either by extraction with 90% dimethyl sulfoxide or by digestion with alpha-amylase. Either procedure yielded glutelin as a residue which was insoluble in even the most potent protein solvents and only became soluble upon disulfide cleavage. Its insolubility and its high cystine content indicate that glutelin is present in corn endosperm in the form of a three-dimensional disulfide cross--linked network. Electrophoresis of the peptide subunits of disulfide-cleaved glutelin shows a range of mobilities between that of zein and the salt-soluble proteins of corn endosperm. Sodium hydroxide (0.1M) extracted almost all the glutelin from the glutelin-starch residue but degraded the protein, as shown by its diffu se electrophoretic pattern and by loss of cystine and lysine. Aqueous 2-chloroethanol extracted only 30% of the glutelin from the glutelin-starch residue, and gel electrophoresis and amino acid analysis showed that the protein was contaminated with zein. Glutelin is classically defined as the protein of corn endosperm extractable with dilute NaOH after albumins, globulins, and zein have been separated out.
    [Show full text]
  • Isolation and Characterization of Gluten Protein Types from Wheat, Rye, Barley and Oats for Use As Reference Materials
    RESEARCH ARTICLE Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials Kathrin Schalk, Barbara Lexhaller, Peter Koehler, Katharina Anne Scherf* Deutsche Forschungsanstalt fuÈr Lebensmittelchemie, Leibniz Institut, Freising, Germany * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Gluten proteins from wheat, rye, barley and, in rare cases, oats, are responsible for trigger- ing hypersensitivity reactions such as celiac disease, non-celiac gluten sensitivity and wheat allergy. Well-defined reference materials (RM) are essential for clinical studies, diag- nostics, elucidation of disease mechanisms and food analyses to ensure the safety of glu- OPEN ACCESS ten-free foods. Various RM are currently used, but a thorough characterization of the gluten source, content and composition is often missing. However, this characterization is essential Citation: Schalk K, Lexhaller B, Koehler P, Scherf KA (2017) Isolation and characterization of gluten due to the complexity and heterogeneity of gluten to avoid ambiguous results caused by dif- protein types from wheat, rye, barley and oats for ferences in the RM used. A comprehensive strategy to isolate gluten protein fractions and use as reference materials. PLoS ONE 12(2): gluten protein types (GPT) from wheat, rye, barley and oat flours was developed to obtain e0172819. doi:10.1371/journal.pone.0172819 well-defined RM for clinical assays and gluten-free compliance testing. All isolated
    [Show full text]
  • Delayed Diagnoses in the Spectrum of Gluten-Averse Conditions
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2011 Delayed diagnoses in the spectrum of gluten-averse conditions Crystal L. (Crystal Leigh) Maki Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Anthropology Commons Recommended Citation Maki, Crystal L. (Crystal Leigh), "Delayed diagnoses in the spectrum of gluten-averse conditions" (2011). WWU Graduate School Collection. 183. https://cedar.wwu.edu/wwuet/183 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. DELAYED DIAGNOSES IN THE SPECTRUM OF GLUTEN-AVERSE CONDITIONS By Crystal Leigh Maki Accepted in Partial Completion of the Requirements for the Degree Master of Arts Moheb A. Ghali, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. M.J. Mosher Dr. Joan Stevenson Mr. Phil Everson MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files.
    [Show full text]
  • Safety Food in Celiac Disease Patients: a Systematic Review
    Food and Nutrition Sciences, 2013, 4, 55-74 http://dx.doi.org/10.4236/fns.2013.47A008 Published Online July 2013 (http://www.scirp.org/journal/fns) Safety Food in Celiac Disease Patients: A Systematic Review Mariarita Dessì1*, Annalisa Noce2, Sara Vergovich1,3, Gianluca Noce1, Nicola Di Daniele2 1Laboratory Medicine Department, University of Rome Tor Vergata, Rome, Italy; 2Nephrology and Hypertension Unit, Department of Medicine System, University of Rome Tor Vergata, Rome, Italy; 3Department of Neuroscience, Division of Human Nutrition, University of Rome Tor Vergata, Rome, Italy. Email: *[email protected] Received March 28th, 2013; revised April 28th, 2013; accepted May 6th, 2013 Copyright © 2013 Mariarita Dessì et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT The prevalence of Celiac Disease (CD), an autoimmune enteropathy, characterized by chronic inflammation of the in- testinal mucosa, atrophy of intestinal villi and several clinical manifestations has increased in recent years. Epidemiol- ogical studies have shown that CD is very common and affects about one in 250 people. The mechanism of the intesti- nal immune-mediated response is not completely clear, but involves an HLA-DQ2 or HLA-DQ8 restricted T-cell im- mune reaction in the lamina propria as well as an immune reaction in the intestinal epithelium. Subjects affected by CD cannot tolerate gluten protein, a mixture of storage proteins contained in several cereals (wheat, rye, barley and deriva- tives). Gluten free-diet remains the cornerstone treatment for celiac patients.
    [Show full text]
  • Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems
    foods Review Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems Javier Espinoza-Herrera, Luz María Martínez , Sergio O. Serna-Saldívar and Cristina Chuck-Hernández * Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; [email protected] (J.E.-H.); [email protected] (L.M.M.); [email protected] (S.O.S.-S.) * Correspondence: [email protected]; Tel.: +52-81-83581400 (ext. 4895) Abstract: The substitution of wheat gluten in the food industry is a relevant research area because the only known treatment for celiac disease is abstinence from this protein complex. The use of gluten-free cereals in dough systems has demonstrated that the viscoelastic properties of gluten cannot be achieved without the modification of the protein fraction. The quality of the final product is determined by the ability of the modification to form a matrix similar to that of gluten and to reach this, different methods have been proposed and tested. These procedures can be classified into four main types: chemical, enzymatic, physical, and genetic. This article provides a comprehensive review of the most recent research done in protein modification of cereal and pseudocereals for gluten substitution. The reported effects and methodologies for studying the changes made with each type of modification are described; also, some opportunity areas for future works regarding the study of the effect of protein modifications on gluten-free products are presented. Keywords: gluten; prolamin; sorghum; maize; rice; protein modification Citation: Espinoza-Herrera, J.; 1. Introduction Martínez, L.M.; Serna-Saldívar, S.O.; Chuck-Hernández, C.
    [Show full text]
  • Composition, Physicochemical Properties of Pea Protein and Its Application in Functional Foods
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: https://www.tandfonline.com/loi/bfsn20 Composition, physicochemical properties of pea protein and its application in functional foods Z. X. Lu, J. F. He, Y. C. Zhang & D. J. Bing To cite this article: Z. X. Lu, J. F. He, Y. C. Zhang & D. J. Bing (2019): Composition, physicochemical properties of pea protein and its application in functional foods, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2019.1651248 To link to this article: https://doi.org/10.1080/10408398.2019.1651248 Published online: 20 Aug 2019. Submit your article to this journal Article views: 286 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2019.1651248 REVIEW Composition, physicochemical properties of pea protein and its application in functional foods Z. X. Lua,J.F.Heb, Y. C. Zhanga, and D. J. Bingc aLethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada; bInner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, P.R. China; cLacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada ABSTRACT KEYWORDS Field pea is one of the most important leguminous crops over the world. Pea protein is a rela- Pea; protein; composition; tively new type of plant proteins and has been used as a functional ingredient in global food physicochemical property; industry.
    [Show full text]