Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 46106 77-26,957 CORDELL, Bruce Monteith, 1949* TECTONISM and the INTERIOR of MERCURY

Total Page:16

File Type:pdf, Size:1020Kb

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 46106 77-26,957 CORDELL, Bruce Monteith, 1949* TECTONISM and the INTERIOR of MERCURY TECTONISM AND THE INTERIOR OF MERCURY Item Type text; Dissertation-Reproduction (electronic) Authors Cordell, Bruce Monteith, 1949- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 18:31:37 Link to Item http://hdl.handle.net/10150/289613 INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 46106 77-26,957 CORDELL, Bruce Monteith, 1949* TECTONISM AND THE INTERIOR OF MERCURY. The University of Arizona, Ph.D., 1977 Physics, astronomy and astrophysics Xerox University Microfilms, Ann Arbor, Michigan 48106 TECTONISM AND THE INTERIOR OF MERCURY by Bruce Monteith Cordell A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 19 7 7 THE UNIVERSITY OF ARIZONA. GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by Bruce Monteith Cordell entitled Tectonism and the Interior of Mercury be accepted as fulfilling the dissertation requirement for the degree of Doctor of Philosophy 6r, -7| t?7 >7 Dissertation Director As members of the Final Examination Committee, we certify that we have read this dissertation and agree that it may be presented for final defense. \ V I . (O-Wt r( :vrr) 4 H, ^>7- £( > Final approval and acceptance of this dissertation is contingent on the candidate's adequate performance and defense thereof at the final oral examination. STATEMENT BY AUTHOR This dissertaion has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduc­ tion of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: . ssss _ /*• /_ t r\ A \ (/ x- ACKNOWLEDGMENTS I wish to thank Professor Robert Strom for suggesting this project and serving as the Dissertation Director. I also wish to thank Professors Charles Sonett, Bradford Smith, and John Stunner for serving on the Committee and making helpful comments. Dr. Alex Woronow was kind enough to read and criticize the dissertation. Thanks go to Miss Nancy Moore for transforming my scrawlings into a typed first draft. The last minute efforts of Mrs. Jackie Allen and Mr. Gil McLaughlin were indispensable and are much appreciated. Miss Lee Justice made enormous contributions to the completion of this project by totally distracting me whenever she was visible. Finally, I want to thank my parents for their constant encourage­ ment, interest, and enthusiasm. This research was supported by NASA Grant NGL 03-002-191. iii TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS vi LIST OF TABLES viii ABSTRACT ix 1. INTRODUCTION '. 1 2. REVIEW OF MODERN KNOWLEDGE AND HYPOTHESES 3 Fundamental Quantities 4 Dynamics 4 Atmosphere 8 Magnetic Field 9 Surface 12 Composition 20 Origin, Thermal History, Interior Structure 22 3. FUNDAMENTAL OBSERVATIONS OF GLOBAL TECTONISM ON MERCURY .... 27 Plate Tectonics 27 Mantle Plumes 28 Exterior Basin-Related Concentric Graben 29 Tensional Surface Features 29 Global Scarp System 30 The Lineament System 31 Summary 32 4. MODE OF FORMATION OF SCARPS AND LINEAMENTS 34 Morphology and Structure of Scarps 34 Evidence for the Tectonic Origin of Scarps 44 Evidence for the Thrust Fault Origin of Scarps 51 Lineament Morphology and Mode of Formation 59 5. ORIGIN OF SCARPS AND LINEAMENTS 65 Escarpments 65 Global Stress Field 65 Temporal Constraints 69 iv V TABLE OF CONTENTS—Continued Page Lineaments 75 Evaluation of Mechanisms for Scarp and Lineament Formation 76 Escarpments 78 Lineaments 80 Summary 82 6. CRUSTAL SHORTENING ON MERCURY 84 Determination of Crustal Shortening 85 Method 85 Heaves 86 Limits on Crustal Shortening 87 Planetary Radius Decrease and Implications 90 7. IMPLICATIONS FOR THE PHYSICS OF THE INTERIOR 92 Constraints on Interior Processes 92 Evidence for a Metallic Core 93 Evidence for a Liquid Core . 94 Inhomogeneous Accretion of Mercury 99 Implications for Absence of Plumes and Plate Tectonics . 108 Summary 110 8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 112 Origin and Evolution of Mercury: A Summary 112 Future Research 115 REFERENCES 116 LIST OF ILLUSTRATIONS Figure Page 1. Generalized Geologic Terrain Map of Mercury 14 2. Incoming Hemisphere of Mercury 15 3. Outgoing Hemisphere of Mercury 16 4. Mosaic Showing the 1300KM Diameter Caloris Basin 18 5. Mercator Projection of the Imaged Portion of Mercury .... 19 6. View of Several Typical Lobate Scarps 35 7. Examples of the Smallest Scarps Observed on Mercury .... 37 8. Typical Appearance of a Small Scarp in High Resolution Imagery 39 9. View of a Moderate Sized Scarp 40 10. View of Santa Maria Scarp in the Intercrater Plains .... 42 11. Rectified Computer Mosaic of the Largest Known Scarp on Mercury — Discovery 43 12. Map of Locations and Dip Directions of Scarps on the Incoming Hemisphere of Mercury '48 13. Map of Locations and Dip Directions of Scarps on the Outgoing Hemisphere of Mercury 49 14. Map of Locations and Dip Directions of Scarps in the South Pole Region of Mercury 50 15. Latitude Distribution of Scarps on Mercury 52 16. Third Encounter View of Vostock Scarp 53 17. High Resolution View of the 60KM Crater Which Is Transected and Offset by Vostock Scarp 54 vi vii LIST OF ILLUSTRATIONS—Continued Figure Page 18. The Lunar Straight Wall Just East of the Crater Birt in Mare Nubium 57 19. Azimuthal Distribution of Mercurian Lineaments 60 20. Typical Examples of Linear Valleys: Arecibo (A) and Valley B 62 21. Mirni Ridge 63 22. Scarp Azimuth-Frequency Distribution 68 23. Length-Weighted Scarp Azimuth-Frequency Distribution .... 70 24. Map of Global Lineament Locations and Trends on the Incoming Hemisphere of Mercury 77 25. Scarp Size-Frequency Distribution 89 LIST OF TABLES Table Page 1. Physical Data for Mercury 5 2. Infinite Temperature Viscosity as a Ftanction of AT 47 viii ABSTRACT The surface expressions of global tectonism on Mercury are investigated and their implications for the planet's interior are explored. The Mariner 10 spacecraft imagery reveals essentially two systems of globally distributed lineaments: the lobate escarpments and the lunar-like lineaments. The dominant system consists of hundreds of lobate scarps, typically the order of 10 2 km long and 10 2 m in relief. About one-fourth of the scarps transect crater walls and are clearly of tectonic origin. Quantitative models of lava dynamics indicate the large vertical relief of most scarps would require unrealistically high viscosities for them to be viscous flow fronts. The horizontal displacement of a crater's wall by Vostock scarp is direct evidence for its thrust fault origin. Morpho­ logic evidence and models of thrust fault dynamics are consistent with a thrust fault origin for most of the scarps. The mercurian lineament system consists of polygonal crater walls, linear valleys, and ridges. Their azimuthal trends and morphol­ ogies resemble lineament systems on the moon and Mars. The mercurian lineaments are judged to be tectonic structures resulting from shear or tensional stresses. Superposition relations suggest that most scarps formed pre- Caloris (= 4 AE BP), and that the lineaments were formed prior to the scarps. The fairly uniform, global distribution of scarps indicates that ix X their generating stress field was also global in influence.
Recommended publications
  • Download the Fall 2020 Virtual Commencement Program
    FALL 2020 VIRTUAL COMMENCEMENT DECEMBER 18 Contents About the SIU System .............................................................................................................................................. 3 About Southern Illinois University Edwardsville ................................................................................................. 4 SIUE’s Mission, Vision, Values and Statement on Diversity .............................................................................. 5 Academics at SIUE ................................................................................................................................................... 6 History of Academic Regalia ................................................................................................................................. 8 Commencement at SIUE ......................................................................................................................................... 9 Academic and Other Recognitions .................................................................................................................... 10 Honorary Degree ................................................................................................................................................... 12 Distinguished Service Award ............................................................................................................................... 13 College of Arts and Sciences: Undergraduate Ceremony .............................................................................
    [Show full text]
  • Profile of a Plant: the Olive in Early Medieval Italy, 400-900 CE By
    Profile of a Plant: The Olive in Early Medieval Italy, 400-900 CE by Benjamin Jon Graham A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (History) in the University of Michigan 2014 Doctoral Committee: Professor Paolo Squatriti, Chair Associate Professor Diane Owen Hughes Professor Richard P. Tucker Professor Raymond H. Van Dam © Benjamin J. Graham, 2014 Acknowledgements Planting an olive tree is an act of faith. A cultivator must patiently protect, water, and till the soil around the plant for fifteen years before it begins to bear fruit. Though this dissertation is not nearly as useful or palatable as the olive’s pressed fruits, its slow growth to completion resembles the tree in as much as it was the patient and diligent kindness of my friends, mentors, and family that enabled me to finish the project. Mercifully it took fewer than fifteen years. My deepest thanks go to Paolo Squatriti, who provoked and inspired me to write an unconventional dissertation. I am unable to articulate the ways he has influenced my scholarship, teaching, and life. Ray Van Dam’s clarity of thought helped to shape and rein in my run-away ideas. Diane Hughes unfailingly saw the big picture—how the story of the olive connected to different strands of history. These three people in particular made graduate school a humane and deeply edifying experience. Joining them for the dissertation defense was Richard Tucker, whose capacious understanding of the history of the environment improved this work immensely. In addition to these, I would like to thank David Akin, Hussein Fancy, Tom Green, Alison Cornish, Kathleen King, Lorna Alstetter, Diana Denney, Terre Fisher, Liz Kamali, Jon Farr, Yanay Israeli, and Noah Blan, all at the University of Michigan, for their benevolence.
    [Show full text]
  • Eighteenth-Century English and French Landscape Painting
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2018 Common ground, diverging paths: eighteenth-century English and French landscape painting. Jessica Robins Schumacher University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Other History of Art, Architecture, and Archaeology Commons Recommended Citation Schumacher, Jessica Robins, "Common ground, diverging paths: eighteenth-century English and French landscape painting." (2018). Electronic Theses and Dissertations. Paper 3111. https://doi.org/10.18297/etd/3111 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. COMMON GROUND, DIVERGING PATHS: EIGHTEENTH-CENTURY ENGLISH AND FRENCH LANDSCAPE PAINTING By Jessica Robins Schumacher B.A. cum laude, Vanderbilt University, 1977 J.D magna cum laude, Brandeis School of Law, University of Louisville, 1986 A Thesis Submitted to the Faculty of the College of Arts and Sciences of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Arts in Art (C) and Art History Hite Art Department University of Louisville Louisville, Kentucky December 2018 Copyright 2018 by Jessica Robins Schumacher All rights reserved COMMON GROUND, DIVERGENT PATHS: EIGHTEENTH-CENTURY ENGLISH AND FRENCH LANDSCAPE PAINTING By Jessica Robins Schumacher B.A.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Oil Sketches and Paintings 1660 - 1930 Recent Acquisitions
    Oil Sketches and Paintings 1660 - 1930 Recent Acquisitions 2013 Kunsthandel Barer Strasse 44 - D-80799 Munich - Germany Tel. +49 89 28 06 40 - Fax +49 89 28 17 57 - Mobile +49 172 890 86 40 [email protected] - www.daxermarschall.com My special thanks go to Sabine Ratzenberger, Simone Brenner and Diek Groenewald, for their research and their work on the text. I am also grateful to them for so expertly supervising the production of the catalogue. We are much indebted to all those whose scholarship and expertise have helped in the preparation of this catalogue. In particular, our thanks go to: Sandrine Balan, Alexandra Bouillot-Chartier, Corinne Chorier, Sue Cubitt, Roland Dorn, Jürgen Ecker, Jean-Jacques Fernier, Matthias Fischer, Silke Francksen-Mansfeld, Claus Grimm, Jean- François Heim, Sigmar Holsten, Saskia Hüneke, Mathias Ary Jan, Gerhard Kehlenbeck, Michael Koch, Wolfgang Krug, Marit Lange, Thomas le Claire, Angelika and Bruce Livie, Mechthild Lucke, Verena Marschall, Wolfram Morath-Vogel, Claudia Nordhoff, Elisabeth Nüdling, Johan Olssen, Max Pinnau, Herbert Rott, John Schlichte Bergen, Eva Schmidbauer, Gerd Spitzer, Andreas Stolzenburg, Jesper Svenningsen, Rudolf Theilmann, Wolf Zech. his catalogue, Oil Sketches and Paintings nser diesjähriger Katalog 'Oil Sketches and Paintings 2013' erreicht T2013, will be with you in time for TEFAF, USie pünktlich zur TEFAF, the European Fine Art Fair in Maastricht, the European Fine Art Fair in Maastricht. 14. - 24. März 2013. TEFAF runs from 14-24 March 2013. Die in dem Katalog veröffentlichten Gemälde geben Ihnen einen The selection of paintings in this catalogue is Einblick in das aktuelle Angebot der Galerie. Ohne ein reiches Netzwerk an designed to provide insights into the current Beziehungen zu Sammlern, Wissenschaftlern, Museen, Kollegen, Käufern und focus of the gallery’s activities.
    [Show full text]
  • Russian Museums Visit More Than 80 Million Visitors, 1/3 of Who Are Visitors Under 18
    Moscow 4 There are more than 3000 museums (and about 72 000 museum workers) in Russian Moscow region 92 Federation, not including school and company museums. Every year Russian museums visit more than 80 million visitors, 1/3 of who are visitors under 18 There are about 650 individual and institutional members in ICOM Russia. During two last St. Petersburg 117 years ICOM Russia membership was rapidly increasing more than 20% (or about 100 new members) a year Northwestern region 160 You will find the information aboutICOM Russia members in this book. All members (individual and institutional) are divided in two big groups – Museums which are institutional members of ICOM or are represented by individual members and Organizations. All the museums in this book are distributed by regional principle. Organizations are structured in profile groups Central region 192 Volga river region 224 Many thanks to all the museums who offered their help and assistance in the making of this collection South of Russia 258 Special thanks to Urals 270 Museum creation and consulting Culture heritage security in Russia with 3M(tm)Novec(tm)1230 Siberia and Far East 284 © ICOM Russia, 2012 Organizations 322 © K. Novokhatko, A. Gnedovsky, N. Kazantseva, O. Guzewska – compiling, translation, editing, 2012 [email protected] www.icom.org.ru © Leo Tolstoy museum-estate “Yasnaya Polyana”, design, 2012 Moscow MOSCOW A. N. SCRiAbiN MEMORiAl Capital of Russia. Major political, economic, cultural, scientific, religious, financial, educational, and transportation center of Russia and the continent MUSEUM Highlights: First reference to Moscow dates from 1147 when Moscow was already a pretty big town.
    [Show full text]
  • 100M Dash (5A Girls) All Times Are FAT, Except
    100m Dash (5A Girls) All times are FAT, except 2 0 2 1 R A N K I N G S A L L - T I M E T O P - 1 0 P E R F O R M A N C E S 1 12 Nerissa Thompson 12.35 North Salem 1 Margaret Johnson-Bailes 11.30a Churchill 1968 2 12 Emily Stefan 12.37 West Albany 2 Kellie Schueler 11.74a Summit 2009 3 9 Kensey Gault 12.45 Ridgeview 3 Jestena Mattson 11.86a Hood River Valley 2015 4 12 Cyan Kelso-Reynolds 12.45 Springfield 4 LeReina Woods 11.90a Corvallis 1989 5 10 Madelynn Fuentes 12.78 Crook County 5 Nyema Sims 11.95a Jefferson 2006 6 10 Jordan Koskondy 12.82 North Salem 6 Freda Walker 12.04c Jefferson 1978 7 11 Sydney Soskis 12.85 Corvallis 7 Maya Hopwood 12.05a Bend 2018 8 12 Savannah Moore 12.89 St Helens 8 Lanette Byrd 12.14c Jefferson 1984 9 11 Makenna Maldonado 13.03 Eagle Point Julie Hardin 12.14c Churchill 1983 10 10 Breanna Raven 13.04 Thurston Denise Carter 12.14c Corvallis 1979 11 9 Alice Davidson 13.05 Scappoose Nancy Sim 12.14c Corvallis 1979 12 12 Jada Foster 13.05 Crescent Valley Lorin Barnes 12.14c Marshall 1978 13 11 Tori Houg 13.06 Willamette Wind-Aided 14 9 Jasmine McIntosh 13.08 La Salle Prep Kellie Schueler 11.68aw Summit 2009 15 12 Emily Adams 13.09 The Dalles Maya Hopwood 12.03aw Bend 2016 16 9 Alyse Fountain 13.12 Lebanon 17 11 Monica Kloess 13.14 West Albany C L A S S R E C O R D S 18 12 Molly Jenne 13.14 La Salle Prep 9th Kellie Schueler 12.12a Summit 2007 19 9 Ava Marshall 13.16 South Albany 10th Kellie Schueler 12.01a Summit 2008 20 11 Mariana Lomonaco 13.19 Crescent Valley 11th Margaret Johnson-Bailes 11.30a Churchill 1968
    [Show full text]
  • Mark Twain's Theories of Morality. Frank C
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1941 Mark Twain's Theories of Morality. Frank C. Flowers Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Flowers, Frank C., "Mark Twain's Theories of Morality." (1941). LSU Historical Dissertations and Theses. 99. https://digitalcommons.lsu.edu/gradschool_disstheses/99 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. MARK TWAIN*S THEORIES OF MORALITY A dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College . in. partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of English By Prank C. Flowers 33. A., Louisiana College, 1930 B. A., Stanford University, 193^ M. A., Louisiana State University, 1939 19^1 LIBRARY LOUISIANA STATE UNIVERSITY COPYRIGHTED BY FRANK C. FLOWERS March, 1942 R4 196 37 ACKNOWLEDGEMENT The author gratefully acknowledges his debt to Dr. Arlin Turner, under whose guidance and with whose help this investigation has been made. Thanks are due to Professors Olive and Bradsher for their helpful suggestions made during the reading of the manuscript, E. C»E* 3 7 ?. 7 ^ L r; 3 0 A. h - H ^ >" 3 ^ / (CABLE OF CONTENTS ABSTRACT . INTRODUCTION I. Mark Twain— philosopher— appropriateness of the epithet 1 A.
    [Show full text]
  • September 16-30, 1971
    RICHARD NIXON PRESIDENTIAL LIBRARY DOCUMENT WITHDRAWAL RECORD DOCUMENT DOCUMENT SUBJECT/TITLE OR CORRESPONDENTS DATE RESTRICTION NUMBER TYPE 1 Manifest Helicopter Passenger Manifest – 9/18/1971 A Appendix “A” 2 Manifest Helicopter Passenger Manifest – 9/19/1971 A Appendix “A” 3 Manifest Helicopter Passenger Manifest – 9/23/1971 A Appendix “A” 4 Manifest Helicopter Passenger Manifest – 9/25/1971 A Appendix “A” 5 Manifest Helicopter Passenger Manifest – 9/26/1971 A Appendix “B” 6 Manifest Helicopter Passenger Manifest – 9/27/1971 A Appendix “B” 7 Manifest Helicopter Passenger Manifest – 9/30/1971 A Appendix “E” COLLECTION TITLE BOX NUMBER WHCF: SMOF: Office of Presidential Papers and Archives RC-8 FOLDER TITLE President Richard Nixon’s Daily Diary September 16, 1971 – September 30, 1971 PRMPA RESTRICTION CODES: A. Release would violate a Federal statute or Agency Policy. E. Release would disclose trade secrets or confidential commercial or B. National security classified information. financial information. C. Pending or approved claim that release would violate an individual’s F. Release would disclose investigatory information compiled for law rights. enforcement purposes. D. Release would constitute a clearly unwarranted invasion of privacy G. Withdrawn and return private and personal material. or a libel of a living person. H. Withdrawn and returned non-historical material. DEED OF GIFT RESTRICTION CODES: D-DOG Personal privacy under deed of gift --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Dust Coatings on Basaltic Rocks and Implications for Thermal Infrared Spectroscopy of Mars Jeffrey R
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E6, 10.1029/2000JE001405, 2002 Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars Jeffrey R. Johnson Branch of Astrogeology, U.S. Geological Survey, Flagstaff, Arizona, USA Philip R. Christensen Department of Geology, Arizona State University, Tempe, Arizona, USA Paul G. Lucey Hawaii Institute for Geology and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii, USA Received 2 October 2000; revised 6 July 2001; accepted 12 October 2001; published 5 June 2002. [1] Thin coatings of atmospherically deposited dust can mask the spectral characteristics of underlying surfaces on Mars from the visible to thermal infrared wavelengths, making identification of substrate and coating mineralogy difficult from lander and orbiter spectrometer data. To study the spectral effects of dust coatings, we acquired thermal emission and hemispherical reflectance spectra (5–25 mm; 2000–400 cmÀ1) of basaltic andesite coated with different thicknesses of air fall-deposited palagonitic soils, fine-grained ceramic clay powders, and terrestrial loess. The results show that thin coatings (10–20 mm) reduce the spectral contrast of the rock substrate substantially, consistent with previous work. This contrast reduction continues linearly with increasing coating thickness until a ‘‘saturation thickness’’ is reached, after which little further change is observed. The saturation thickness of the spectrally flat palagonite coatings is 100–120 mm, whereas that for coatings with higher spectral contrast is only 50–75 mm. Spectral differences among coated and uncoated samples correlate with measured coating thicknesses in a quadratic manner, whereas correlations with estimated surface area coverage are better fit by linear functions.
    [Show full text]
  • Geologic Map of the Victoria Quadrangle (H02), Mercury
    H01 - Borealis Geologic Map of the Victoria Quadrangle (H02), Mercury 60° Geologic Units Borea 65° Smooth plains material 1 1 2 3 4 1,5 sp H05 - Hokusai H04 - Raditladi H03 - Shakespeare H02 - Victoria Smooth and sparsely cratered planar surfaces confined to pools found within crater materials. Galluzzi V. , Guzzetta L. , Ferranti L. , Di Achille G. , Rothery D. A. , Palumbo P. 30° Apollonia Liguria Caduceata Aurora Smooth plains material–northern spn Smooth and sparsely cratered planar surfaces confined to the high-northern latitudes. 1 INAF, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy; 22.5° Intermediate plains material 2 H10 - Derain H09 - Eminescu H08 - Tolstoj H07 - Beethoven H06 - Kuiper imp DiSTAR, Università degli Studi di Napoli "Federico II", Naples, Italy; 0° Pieria Solitudo Criophori Phoethontas Solitudo Lycaonis Tricrena Smooth undulating to planar surfaces, more densely cratered than the smooth plains. 3 INAF, Osservatorio Astronomico di Teramo, Teramo, Italy; -22.5° Intercrater plains material 4 72° 144° 216° 288° icp 2 Department of Physical Sciences, The Open University, Milton Keynes, UK; ° Rough or gently rolling, densely cratered surfaces, encompassing also distal crater materials. 70 60 H14 - Debussy H13 - Neruda H12 - Michelangelo H11 - Discovery ° 5 3 270° 300° 330° 0° 30° spn Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy. Cyllene Solitudo Persephones Solitudo Promethei Solitudo Hermae -30° Trismegisti -65° 90° 270° Crater Materials icp H15 - Bach Australia Crater material–well preserved cfs -60° c3 180° Fresh craters with a sharp rim, textured ejecta blanket and pristine or sparsely cratered floor. 2 1:3,000,000 ° c2 80° 350 Crater material–degraded c2 spn M c3 Degraded craters with a subdued rim and a moderately cratered smooth to hummocky floor.
    [Show full text]
  • Global Spectral Classification of Martian Low-Albedo Regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) Data A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E02004, doi:10.1029/2006JE002726, 2007 Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data A. Deanne Rogers,1 Joshua L. Bandfield,2 and Philip R. Christensen2 Received 4 April 2006; revised 12 August 2006; accepted 13 September 2006; published 14 February 2007. [1] Martian low-albedo surfaces (defined here as surfaces with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) albedo values 0.15) were reexamined for regional variations in spectral response. Low-albedo regions exhibit spatially coherent variations in spectral character, which in this work are grouped into 11 representative spectral shapes. The use of these spectral shapes in modeling global surface emissivity results in refined distributions of previously determined global spectral unit types (Surface Types 1 and 2). Pure Type 2 surfaces are less extensive than previously thought, and are mostly confined to the northern lowlands. Regional-scale spectral variations are present within areas previously mapped as Surface Type 1 or as a mixture of the two surface types, suggesting variations in mineral abundance among basaltic units. For example, Syrtis Major, which was the Surface Type 1 type locality, is spectrally distinct from terrains that were also previously mapped as Type 1. A spectral difference also exists between southern and northern Acidalia Planitia, which may be due in part to a small amount of dust cover in southern Acidalia. Groups of these spectral shapes can be averaged to produce spectra that are similar to Surface Types 1 and 2, indicating that the originally derived surface types are representative of the average of all low-albedo regions.
    [Show full text]