Plasticity of Chasmogamous and Cleistogamous Reproductive Allocation in Grasses Gregory P

Total Page:16

File Type:pdf, Size:1020Kb

Plasticity of Chasmogamous and Cleistogamous Reproductive Allocation in Grasses Gregory P Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 23 2007 Plasticity of Chasmogamous and Cleistogamous Reproductive Allocation in Grasses Gregory P. Cheplick College of Staten Island, City University of New York, Staten Island Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Cheplick, Gregory P. (2007) "Plasticity of Chasmogamous and Cleistogamous Reproductive Allocation in Grasses," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 23. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/23 Aliso 23, pp. 286–294 ᭧ 2007, Rancho Santa Ana Botanic Garden PLASTICITY OF CHASMOGAMOUS AND CLEISTOGAMOUS REPRODUCTIVE ALLOCATION IN GRASSES GREGORY P. CHEPLICK Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA ([email protected]) ABSTRACT Cleistogamy is more common in grasses than in any other angiosperm family. Both self-fertilized cleistogamous (CL) spikelets and open-pollinated chasmogamous (CH) spikelets are typically pro- duced. Relative allocation to CL and CH varies among species and populations, and is influenced by ontogeny and environment. The balance between reproductive modes can be expressed as a CH/CL ratio. This ratio is very plastic and stressful conditions can result in values Ͻ1.0. In Amphicarpum purshii, an annual with subterranean CL spikelets, CH/CL declined as density increased because CH decreased more than CL as size was reduced by intraspecific competition. In the shade-tolerant annual Microstegium vimineum, CH/CL was lowest in large greenhouse-grown plants in an unlimited, sunny environment, but was highest in small plants from a shady forest interior; tiller vegetative mass often showed a negative allometric relation to CH and CL allocation. In the perennial Dichanthelium clan- destinum, CH and CL allocation varied among populations, but there was no consistent effect of light on CH/CL. The phenology of reproduction strongly affects CH/CL. In Danthonia spicata, CH/CL was high early in the season as CH flowering commenced, but dropped quickly as axillary CL spikelets matured; A. purshii showed the opposite pattern because CL reproduction occurred first. The assump- tion that cleistogamy simply provides reproductive assurance should be reevaluated in light of new information on phenology and allometry. Changes in the balance between CH and CL caused by environmental factors may be indirect effects of size. Evolutionary models that do not explore the plasticity and allometry of CH and CL reproduction may not be useful in predicting the myriad patterns in nature. Key words: allometry, chasmogamy, cleistogamy, grasses, phenotypic plasticity, Poaceae, reproduc- tive allocation. INTRODUCTION of CL may be difficult to detect in the field and have prob- ably led to underestimates of the extent of self-fertilization Cleistogamy (CL) is the production of flowers that do not in grasses. Other types of CL are more readily observed by open and undergo self-fertilization ‘‘in the bud’’ (Lord casual inspection. ‘‘Sheath fertilization’’ involves the reten- 1981). Most species that have CL flowers can and do con- tion of spikelets on non-emergent, axillary inflorescences en- tinue to make open, potentially cross-pollinated chasmoga- closed within leaf sheaths and is the most common type of mous (CH) flowers. Because an individual usually can make CL in grasses (Campbell et al. 1983). Depending on the both floral forms and they may be present at the same time, species, axillary spikelets may be found all along the stem CL species are often considered to have a mixed breeding axis or be mostly concentrated at the basal nodes (Dykster- system or ‘‘multiple strategy’’ (Lloyd 1984; Schoen 1984; huis 1945; Dobrenz and Beetle 1966; Cheplick and Clay Redbo-Torstensson and Berg 1995; Masuda et al. 2001). Due 1989; Cheplick 1996). In a few grasses, CL spikelets and to the structural and developmental differences typically found between CH and CL flowers (and sometimes, between caryopses (seeds) mature at the ends of specialized culms the resulting fruits and seeds), CL species are also consid- beneath the soil surface (Campbell et al. 1983; Cheplick ered to show reproductive dimorphism (Lord 1981; Clay 1994). 1983a; Schoen and Lloyd 1984; Cheplick 1994; Plitmann The relative extent of CL can vary greatly both between 1995). and within phylogenetically related species (Campbell In Poaceae, CL is more common than in any other angio- 1982). Perhaps the best example is Clay’s (1983a) detailed sperm family and has been reported in over 320 species comparison of multiple populations of four species of Dan- (Campbell et al. 1983). Cleistogamy may be due to spikelets thonia DC. Percent CL was defined as the number of CL that do not open because of modified floral parts, precocious spikelets divided by the number of CH ϩ CL spikelets. maturation while retained within enclosing leaf sheaths, or Hence, % CL shows the fraction of the total flowers that lodicule failure (Campbell 1982; Heslop-Harrison and Hes- were CL at the time the population was sampled. For five lop-Harrison 1996). For example, Campbell (1982) de- populations of D. sericea Nutt., mean % CL (Ϯ SE) was scribed how, in some species of Andropogon L., spikelets only 2.7 Ϯ 0.3%, while for two populations of D. compressa within the raceme sheath can go through anthesis and self- Austin % CL was 50.2 Ϯ 1.0%. Populations were most var- fertilize before the inflorescence fully emerges from the en- iable for D. spicata (L.) P. Beauv., ranging from 5 to 43% closing sheath. Without detailed observation, the above types CL (x Ϯ SE ϭ 24.5 Ϯ 0.4%). Because higher % CL in D. VOLUME 23 Chasmogamy/Cleistogamy in Grasses 287 spicata was associated with disturbed and mown habitats; grasses (Clay 1982, 1983a; Bell and Quinn 1987; Cheplick Clay (1983a) suggested grazing pressure might generally fa- 1995). Environmental factors known to affect the extent of vor increased levels of CL in grasses, a view shared by oth- CL in grasses include light, soil nutrition and moisture, and ers (Dyksterhuis 1945; Campbell et al. 1983). competition and herbivory. Because CL flowers are energy Other research has indicated that the extent of CL in efficient for a plant to produce and provide reproductive as- grasses can vary among seed-derived sibships (Clay 1982; surance (Schemske 1978; Schoen 1984; Schoen and Lloyd Cheplick and Quinn 1988) and among clonal replicates in 1984), it has long been noted that whenever environmental perennials (Cheplick 1995). In Amphicarpum purshii Kunth, conditions are stressful there tends to be greater reproduction an annual, the ratio of seeds from CH spikelets to those from by CL compared to CH (Dyksterhuis 1945; Wilken 1982; CL spikelets had a significant narrow-sense heritability of Campbell et al. 1983). Hence, the ratio of CH to CL is ex- 0.56 (Cheplick and Quinn 1988). For the perennial Dan- pected to decline with increasing environmental stress. It is thonia spicata, Clay (1982) reported broad-sense heritabili- also recognized that both CH and CL depend on ontogeny, ties of 0.53 and 0.72 in the field and greenhouse, respec- varying with plant size and phenological stages in ways that tively, for the proportion of CL spikelets produced per tiller. may be predictable for some species (Clay 1982; Jasieniuk Although simple recessive inheritance of CL (one to three and Lechowicz 1987; Cheplick and Clay 1989; Cheplick genes) has been reported in some grain crops (Merwine et 1994; Diaz and Macnair 1998). As will be explored later in al. 1981; Chhabra and Sethi 1991; Kurauchi et al. 1993; this paper, the challenge for the future generation of models Ueno and Itoh 1997), like most life-history traits in wild of the evolution of mixed CH/CL breeding systems will be species, CL is likely to be under quantitative genetic control to account for the marked plasticity of the two reproductive (Mazer and LeBuhn 1999). Given the primacy of genetic modes in relation to environmental factors. In addition, they variation to the microevolution of populations, it is surpris- will need to explore the relations of plant size and pheno- ing that so little effort has gone into documenting quantita- logical stage to observed changes in the extent of CL shown tive genetic variation in the extent of CL vs. CH in different during plant development. species. Objectives Theory Given the predictions made by theoretical models for the Theoretical considerations of the evolution of CL have evolution of CH/CL and the complexities inherent in trying involved comparative cost-benefit analyses of CH vs. CL to understand life-history traits that vary greatly with envi- flower production (Schoen and Lloyd 1984) or variation in ronmental conditions, one objective of this paper will be to the relative fertility of the two floral types (Redbo-Torstens- summarize information on the relative allocation to CH and son and Berg 1995; Masuda et al. 2001). Because the pa- CL in a variety of grasses exposed to variable environments. ternal costs of producing prodigious amounts of pollen in The balance between reproductive modes will be expressed outcrossed spikelets may be high in grasses (e.g., Schoen as a CH/CL ratio. Because many of the changes in this bal- 1984), maternal reallocation of conserved resources to CL ance that are mediated by environmental factors may be the spikelets could enhance plant fitness by increasing the num- indirect effect of plant size, a second objective will be to ber or size of maturing seeds (Schoen and Lloyd 1984; present allometric relationships of CH and CL to vegetative Lloyd 1987). Indeed, seeds of CL spikelets are heavier than mass for several grass species for which data are available.
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
    Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Natural Communities of Michigan: Classification and Description
    Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Carex Gigantea Rudge in Florida
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. c f ConservationAssessment for the Giant Sedge (Carex giganteaRudge) 31 July 2006 Steven R. Hill, Ph.D. Illinois Natural History Survey Center for Wildlife and Plant Ecology 1816 South Oak Street Champaign, Illinois 61820 ILLINOIS NATURAL HISTORY SURVEY Illinois Natural History Survey Center for Wildlife and Plant Ecology Technical Report 2006 (10) Cover photo: Carex gigantea Rudge in Florida. Photo by Shirley Denton. http://www.simple-grandeur.com/plants/native.php This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. 2 Conservation Assessment for the Giant Sedge (Carex gigantea Rudge) Table of Contents Acknowledgm
    [Show full text]
  • NJ Native Plants - USDA
    NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana
    [Show full text]
  • Grasses of the Texas Hill Country: Vegetative Key and Descriptions
    Hagenbuch, K.W. and D.E. Lemke. 2015. Grasses of the Texas Hill Country: Vegetative key and descriptions. Phytoneuron 2015-4: 1–93. Published 7 January 2015. ISSN 2153 733X GRASSES OF THE TEXAS HILL COUNTRY: VEGETATIVE KEY AND DESCRIPTIONS KARL W. HAGENBUCH Department of Biological Sciences San Antonio College 1300 San Pedro Avenue San Antonio, Texas 78212-4299 [email protected] DAVID E. LEMKE Department of Biology Texas State University 601 University Drive San Marcos, Texas 78666-4684 [email protected] ABSTRACT A key and a set of descriptions, based solely on vegetative characteristics, is provided for the identification of 66 genera and 160 grass species, both native and naturalized, of the Texas Hill Country. The principal characters used (features of longevity, growth form, roots, rhizomes and stolons, culms, leaf sheaths, collars, auricles, ligules, leaf blades, vernation, vestiture, and habitat) are discussed and illustrated. This treatment should prove useful at times when reproductive material is not available. Because of its size and variation in environmental conditions, Texas provides habitat for well over 700 species of grasses (Shaw 2012). For identification purposes, the works of Correll and Johnston (1970); Gould (1975) and, more recently, Shaw (2012) treat Texas grasses in their entirety. In addition to these comprehensive works, regional taxonomic treatments have been done for the grasses of the Cross Timbers and Prairies (Hignight et al. 1988), the South Texas Brush Country (Lonard 1993; Everitt et al. 2011), the Gulf Prairies and Marshes (Hatch et al. 1999), and the Trans-Pecos (Powell 1994) natural regions. In these, as well as in numerous other manuals and keys, accurate identification of grass species depends on the availability of reproductive material.
    [Show full text]
  • Host Specificity of Ischnodemus Variegatus, an Herbivore of West
    BioControl DOI 10.1007/s10526-008-9188-3 Host specificity of Ischnodemus variegatus, an herbivore of West Indian marsh grass (Hymenachne amplexicaulis) Rodrigo Diaz Æ William A. Overholt Æ James P. Cuda Æ Paul D. Pratt Æ Alison Fox Received: 31 January 2008 / Accepted: 17 July 2008 Ó International Organization for Biological Control (IOBC) 2008 Abstract West Indian marsh grass, Hymenachne to suboptimal hosts occurred in an area where amplexicaulis Rudge (Nees) (Poaceae), is an emer- H. amplexicaulis was growing in poor conditions gent wetland plant that is native to South and Central and there was a high density of I. variegatus. Thus, America as well as portions of the Caribbean, but is laboratory and field studies demonstrate that considered invasive in Florida USA. The neotropical I. variegatus had higher performance on H. amplexi- bug, Ischnodemus variegatus (Signoret) (Hemiptera: caulis compared to any other host, and that suboptimal Lygaeoidea: Blissidae) was observed feeding on hosts could be colonized temporarily. H. amplexicaulis in Florida in 2000. To assess whether this insect could be considered as a specialist Keywords Blissidae Á Hemiptera Á Herbivore biological control agent or potential threat to native performance Á Host quality Á Poaceae and cultivated grasses, the host specificity of I. variegatus was studied under laboratory and field conditions. Developmental host range was examined Introduction on 57 plant species across seven plant families. Complete development was obtained on H. amplexi- West Indian marsh grass, Hymenachne amplexicaulis caulis (23.4% survivorship), Paspalum repens (0.4%), Rudge (Nees) (Poaceae), is a perennial emergent Panicum anceps (2.2%) and Thalia geniculata weed in wetlands of Florida USA and northeastern (0.3%).
    [Show full text]
  • Supplemental Table 1 the Phenology of Chasmogamous (CH) and Cleistogamous (CL) Flower Production by Life History (Annual Or Perennial) and Genus
    Supplemental Table 1 The phenology of chasmogamous (CH) and cleistogamous (CL) flower production by life history (annual or perennial) and genus. Phenology is described as sequential (no overlap in the production of CH and CL flowers), overlapping (partial overlap), or simultaneous (complete overlap in production of CH and CL flowers). Flower type initiated first indicates which flower type is produced first within a flowering season. Flower Flower type Genus (Family) phenology initiated first Reference Annuals Amphicarpaea (Fabaceae) Overlapping CL 1-2 Amphicarpum (Poaceae) Overlapping CL 3-4 Andropogon (Poaceae) Overlapping CL 5 Centaurea (Asteraceae) Overlapping CL 6 Ceratocapnos (Fumariaceae) Overlapping CL 7 Collomia (Polemoniaceae) Overlapping CL 8-9 Emex (Polygonaceae) Overlapping CL 10 Impatiens (Balsaminaceae) Overlapping CL 11-16 Lamium (Lamiaceae) Overlapping CL 17 Mimulus (Scrophulariaceae) Overlapping CL 18 Salpiglossis (Solanaceae) Overlapping CL 19 Perennials Ajuga (Lamiaceae) Overlapping CL 20 Amphibromus (Poaceae) Overlapping CL 21 Calathea (Marantaceae) Simultaneous, NA 22 year round Danthonia (Poaceae) Overlapping CL 21; 23-24 Dichanthelium (Poaceae) Sequential CH 25 Microleana (Poaceae) Simultaneous unknown 26 Oxalis (Oxalidaceae) Sequential CH 27-29 Scutellaria (Lamiaceae) Sequential CH 30 Viola (Violaceae) Sequential CH 28; 31-34 LITERATURE CITED 1. Schnee BK, Waller DM. 1986. Reproductive-behavior of Amphicarpaea bracteata (Leguminosae), an amphicarpic annual. Am. J. Bot. 73: 376–86 2. Trapp EJ, Hendrix SD. 1988. Consequences of a mixed reproductive system in the hog peanut, Amphicarpaea bracteata (Fabaceae). Oecologia 75: 285–90 3. Cheplick GP, Quinn JA. 1982. Amphicarpum purshii and the pessimistic strategy in amphicarpic annuals with subterranean fruit. Oecologia 52: 327–32 4. Cheplick GP. 1989. Nutrient availability, dimorphic seed production, and reproductive allocation in the annual grass Amphicarpum purshii.
    [Show full text]
  • New York Natural Heritage Program Rare Plant Status List May 2004 Edited By
    New York Natural Heritage Program Rare Plant Status List May 2004 Edited by: Stephen M. Young and Troy W. Weldy This list is also published at the website: www.nynhp.org For more information, suggestions or comments about this list, please contact: Stephen M. Young, Program Botanist New York Natural Heritage Program 625 Broadway, 5th Floor Albany, NY 12233-4757 518-402-8951 Fax 518-402-8925 E-mail: [email protected] To report sightings of rare species, contact our office or fill out and mail us the Natural Heritage reporting form provided at the end of this publication. The New York Natural Heritage Program is a partnership with the New York State Department of Environmental Conservation and by The Nature Conservancy. Major support comes from the NYS Biodiversity Research Institute, the Environmental Protection Fund, and Return a Gift to Wildlife. TABLE OF CONTENTS Introduction.......................................................................................................................................... Page ii Why is the list published? What does the list contain? How is the information compiled? How does the list change? Why are plants rare? Why protect rare plants? Explanation of categories.................................................................................................................... Page iv Explanation of Heritage ranks and codes............................................................................................ Page iv Global rank State rank Taxon rank Double ranks Explanation of plant
    [Show full text]
  • Investigation of Mitochondrial-Derived Plastome Sequences in the Paspalum Lineage (Panicoideae; Poaceae) Sean V
    Burke et al. BMC Plant Biology (2018) 18:152 https://doi.org/10.1186/s12870-018-1379-1 RESEARCH ARTICLE Open Access Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae) Sean V. Burke1* , Mark C. Ungerer2 and Melvin R. Duvall1 Abstract Background: The grass family (Poaceae), ca. 12,075 species, is a focal point of many recent studies that aim to use complete plastomes to reveal and strengthen relationships within the family. The use of Next Generation Sequencing technology has revealed intricate details in many Poaceae plastomes; specifically the trnI - trnL intergenic spacer region. This study investigates this region and the putative mitochondrial inserts within it in complete plastomes of Paspalum and other Poaceae. Results: Nine newly sequenced plastomes, seven of which contain an insert within the trnI - trnL intergenic spacer, were combined into plastome phylogenomic and divergence date analyses with 52 other species. A robust Paspalum topology was recovered, originating at 10.6 Ma, with the insert arising at 8.7 Ma. The alignment of the insert across Paspalum reveals 21 subregions with pairwise homology in 19. In an analysis of emergent self- organizing maps of tetranucleotide frequencies, the Paspalum insert grouped with mitochondrial DNA. Conclusions: A hypothetical ancestral insert, 17,685 bp in size, was found in the trnI - trnL intergenic spacer for the Paspalum lineage. A different insert, 2808 bp, was found in the same region for Paraneurachne muelleri. Seven different intrastrand deletion events were found within the Paspalum lineage, suggesting selective pressures to remove large portions of noncoding DNA. Finally, a tetranucleotide frequency analysis was used to determine that the origin of the insert in the Paspalum lineage is mitochondrial DNA.
    [Show full text]