An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Offshore Wind Energy Sector in Taiwan
THE OFFSHORE WIND ENERGY SECTOR IN TAIWAN The Offshore Wind Power Industry in Taiwan Flanders Investment & Trade Taipei Office The Offshore Wind Power Industry in Taiwan | 01/2014 ____________________________________________________ 3 1. CONTENTS 2. INTRODUCTION .......................................................................................... 7 3. CURRENT ONSHORE WIND POWER IN TAIWAN ............................................... 8 4. CURRENT OFFSHORE WIND POWER DEVELOPMENT IN TAIWAN ....................... 10 A. OFFSHORE WIND POTENTIAL ................................................................... 10 B. TAIWAN’S TARGETS & EFFORTS FOR DEVELOPING WIND ENERGY ................. 11 C. LOCALIZATION OF SUPPLY CHAIN TO MEET LOCAL ENVIRONMENT NEEDS ...... 16 5. MAJOR PLAYERS IN TAIWAN ....................................................................... 17 A. GOVERNMENT AGENCIES ......................................................................... 17 B. MAJOR WIND FARM DEVELOPERS ............................................................. 18 C. MAJOR R&D INSTITUTES, INDUSTRIAL ASSOCIATIONS AND COMPANIES ........ 19 6. INTERACTION BETWEEN BELGIUM AND TAIWAN ............................................ 23 The Offshore Wind Power Industry in Taiwan | 01/2014 ____________________________________________________ 5 2. INTRODUCTION Taiwan is an island that highly relies on imported energy (97~99%) to sustain the power supply of the country. Nuclear power was one of the solutions to be pursued to resolve the high dependency of the -
Enel Green Power: Is China an Attractive Market for Entry?
Department of Business and Management Chair of M&A and Investment Banking ENEL GREEN POWER: IS CHINA AN ATTRACTIVE MARKET FOR ENTRY? SUPERVISOR Prof. Luigi De Vecchi CANDIDATE Mario D’Avino matr. 641711 CO – SUPERVISOR Prof. Simone Mori ACADEMIC YEAR 2012/13 “A chi mi ha trasmesso l’umiltà e la curiosità, sorgenti prime per la sete del sapere. A chi mi ha sempre smosso dagli allori, forgiandomi di una continua motivazione, perché il vincente è colui che non si ferma, ma imperterrito, già guarda oltre. A chi mi ha insegnato la costanza e la precisione, onniscienti linee guida nel raggiungimento di ogni traguardo. A chi mi ha mostrato la forza della tenacia, arma imprescindibile per lottare senza tregua e non mollare mai. Ed infine a colui che, onnipresente, accompagna ogni mio passo, senza far rumore.” 1 TABLE OF CONTENTS INTRODUCTION……………………………………………………. 7 CHAPTER 1 - “AN OVERVIEW OF THE RENEWABLE SECTOR” 1.1. RENEWABLE ENERGY…………………………………………… 9 1.1.1. History……………………………………………………………….. 11 1.1.2. Wind Power………………………………………………………….. 12 1.1.3. Hydropower………………………………………………………….. 13 1.1.4. Solar Power…………………………………………………………... 14 1.1.5. Biomass Power………………………………………………………. 16 1.1.6. Geothermal Power…………………………………………………… 17 1.2. GLOBAL MARKET OVERVIEW………………………………….. 18 1.2.1. Power Sector…………………………………………………………. 20 CHAPTER 2 - “ANALYSIS OF THE HISTORICAL AND PLANNED INVESTMENTS IN THE RENEWABLE SECTOR” 2.1. HISTORICAL TREND……………………………………………… 26 2.1.1. Global Overview 2012……………………………………………….. 26 2.1.2. Investment Breakdown by Country………………………………….. 27 2.1.3. Investment Breakdown by Sector……………………………………. 30 2.1.4. Investment Breakdown by Type……………………………………... 32 2.1.5. Bank Finance………………………………………………………… 34 2.2. PLANNED INVESTMENT…………………………………………. -
Wind Turbine Industry Association March 2, 2017
Development and Business Cooperation of Offshore Wind Power in Taiwan Taiwan Wind Turbine Industry Association March 2, 2017 Taiwan Wind Turbine Industry Association Contents of Presentation 1. Short Briefing of Taiwan Wind Turbine Industry Association (TWTIA) 2. Current Status and Future Prospects of Wind Power Industry In Taiwan 3. Conclusion Remark 1 Taiwan Wind Turbine Industry Association 1. Short Briefing of Taiwan Wind Turbine Industry Association (TWTIA) 2 Taiwan Wind Turbine Industry Association Taiwan Wind Turbine Industry Association Introduction History and Characteristics Taiwan Wind Turbine Industry Assocation (TWTIA) was established in 2005 as Taiwan Wind Turbine Industry Alliance under the support of the Industrial Development Bureau (IDB) and Metal Industry Research and Development Center (MIRDC). It grew into the full- service membership association in Apr 2012,with 62 group memberships, and 12 individual memberships now all over Taiwan. It’s purpose is to combine personnel from industry, academia and research institutions and personnel together to promote wind power industry development strategy, to provide information and technical exchanges, to actively promote industrial vertical and horizontal integration, and thus to enhance wind- power industry in Taiwan and its ability to compete with the rest of the world. 3 Taiwan Wind Turbine Industry Association The Organization of TWTIA General Assembly Board of Directors Board of Supervisors Standing President Wang Shyi-Chin Lin Hui Zheng (NTU) Secretariat Member Standing -
Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends
energies Review Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends Alexandre Mathern 1,2,* , Christoph von der Haar 3 and Steffen Marx 4 1 Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins Gata 6, SE-41296 Gothenburg, Sweden 2 Research and Innovation, NCC AB, Lilla Bomen 3c, SE-41104 Gothenburg, Sweden 3 grbv Ingenieure im Bauwesen GmbH & Co. KG, Expo Plaza 10, 30539 Hannover, Germany; [email protected] 4 Institute of Concrete Structures, Technische Universität Dresden, August-Bebel-Straße 30/30A, 01219 Dresden, Germany; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Today’s offshore wind turbine support structures market is largely dominated by steel structures, since steel monopiles account for the vast majority of installations in the last decade and new types of multi-leg steel structures have been developed in recent years. However, as wind turbines become bigger, and potential sites for offshore wind farms are located in ever deeper waters and ever further from the shore, the conditions for the design, transport, and installation of support structures are changing. In light of these facts, this paper identifies and categorizes the challenges and future trends related to the use of concrete for support structures of future offshore wind projects. To do so, recent advances and technologies still under development for both bottom-fixed and floating concrete support structures have been reviewed. It was found that these new developments meet the Citation: Mathern, A.; von der Haar, challenges associated with the use of concrete support structures, as they will allow the production C.; Marx, S. -
Blueprint for Renewable Power
SECTION FIVE BLUEPRINT FOR RENEWABLE POWER Blueprint for Renewable Power | Section 5 197 Renewable Power everywhere, due to their high up-front costs, are significantly exacerbated by a general lack of domestic 5.1 Introduction sources of long-term debt in most countries in the region. In some countries, including Argentina and Rising costs for fossil fuels, growing energy security Ecuador, renewable power development has been concerns, and the persistent gaps in electricity service hamstrung by political risks that have crippled the entire provision in rural areas throughout LAC call for the power sector, and in others, such as Mexico, it has been targeted and strategic expansion of renewable power slowed by regulatory barriers. technologies throughout the region. In addition to these powerful drivers and the evident need, the region’s While the renewables sector has yet to establish a strong abundant wind, solar, geothermal, and small hydro legal and regulatory foundation, there have been resources offer a clear opportunity for the region to successes in the region. Brazil has led the region in match the explosive growth that the sector has small hydro as well as wind power development, thanks experienced elsewhere around the world. Renewable to its PROINFA program, a feed-in tariff policy that power technologies can truly transform the region, stands as the most effective policy for renewable power offering an escape from the electricity supply crises that development in LAC, as well as the availability of low- have frequently disrupted economic development in past interest loans from the Brazilian National Social and decades as well as a means to achieve important social Economic Development Bank (BNDES). -
Systematic Review of the Human Health Effects of Wind Farms
Exhibit A4-2c Systematic review of the human health effects of wind farms CAICOS PROVIDER 00123M Page 1 of 296 adelaide.edu.au seek LIGHT Exhibit A4-2c © National Health and Medical Research Council, 2015 ISBN (online): 978-0-9923968-0-0 Internet site: http://www.nhmrc.gov.au/ The National Health and Medical Research Council commissioned this research from: A/Prof Tracy Merlin Adelaide Health Technology Assessment (AHTA) Skye Newton School of Population Health Benjamin Ellery University of Adelaide Joanne Milverton Adelaide, South Australia Claude Farah This document should be cited as: Merlin, T, Newton, S, Ellery, B, Milverton, J & Farah, C 2015, Systematic review of the human health effects of wind farms, National Health and Medical Research Council, Canberra. Conflicts of interest The authors of this document have no financial or other conflicts of interest pertaining to wind farms or wind turbines. Acknowledgments We would like to acknowledge the comprehensive peer review of this document by the NHMRC Wind Farms and Human Health Reference Group and the methodological peer review undertaken by the National Collaborating Centre for Environmental Health (NCCEH, Canada); the feedback was helpful and contributed to the rigour of analysis and reporting in this document. With thanks to Ms Jessica Tyndall, Flinders University Librarian, for her assistance in developing the grey literature search; and Professor Persson Waye for providing additional clarification with respect to her publications. This document was edited by Jo Mason at MasonEdit, Adelaide. Minor amendments published in February 2015 The following amendments to the contents of this report were published in February 2015: Addition of a footnote in Table 27 and in Appendix B, indicating that the apparent error in the data presented in the table was directly transcribed from the source material (page 98 and page 251). -
Offshore Wind Potential of West Central Taiwan: a Case Study
energies Article Offshore Wind Potential of West Central Taiwan: A Case Study Wen-Ko Hsu and Chung-Kee Yeh * Department of Biomechatronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; [email protected] * Correspondence: [email protected] Abstract: In this study, we present the wind distributions from a long-term offshore met mast and a novel approach based on the measure–correlate–predict (MCP) method from short-term onshore- wind-turbine data. The annual energy production (AEP) and capacity factors (CFs) of one onshore and four offshore wind-turbine generators (WTG) available on the market are evaluated on the basis of wind-distribution analysis from both the real met mast and the MCP method. Here, we also consider the power loss from a 4-month light detection and ranging (LiDAR) power-curve test on an onshore turbine to enhance the accuracy of further AEP and CF evaluations. The achieved Weibull distributions could efficiently represent the probability distribution of wind-speed variation, mean wind speed (MWS), and both the scale and shape parameters of Weibull distribution in Taiwan sites. The power-loss effect is also considered when calculating the AEPs and CFs of different WTGs. Successful offshore wind development requires (1) quick, accurate, and economical harnessing of a wind resource and (2) selection of the most suitable and efficient turbine for a specific offshore site. Keywords: measure–correlate–predict (MCP); wind-turbine generator (WTG); annual energy production (AEP); capacity factors (CFs); light detection and ranging (LiDAR); mean wind speed (MWS) Citation: Hsu, W.-K.; Yeh, C.-K. -
Feasibility of Taiwan's Offshore Wind Power Development
Feasibility of Taiwan’s Offshore Wind Power Development Pei-Ling Wen1, Jin-Xu Lin2, Chun-Chiang Feng3, Fu-Kuang Ko4, and Shih-Mo Lin5 1 Researcher, Industrial Technology Research Institute, Taiwan 2 Assistant Professor, Department of International Business, Chung Yuan Christian University, Taiwan 3 Ph.D. Candidate, Institute of Industrial Economics, National Central University, Taiwan 4 Researcher, Institute of Nuclear Energy Research, Taiwan 5 Professor, Department of International Business, Chung Yuan Christian University, Taiwan Abstract Harnessing renewable energy sources such as wind energy can strengthen a country's energy security while also curbing environmental degradation. For these benefits, Taiwan aims to develop its potential offshore wind power by promoting wind turbine applications. To meet its wind power installation targets, the government implements feed-in tariffs (FITs) policy, offering subsidies on capital, and funding research and development. At present, there is still a wide gap between the country's installed offshore wind capacity and the long-term government targets due to economic risks and geographic uncertainties. This paper aims to develop an analysis framework to support a full-range techno-economic and cost-benefit analysis for Taiwan’s offshore wind power development. This paper performs both cost-benefit and computable general equilibrium analyses. To support policy formulation in related agencies, this study also provides suggestions on how to commercialize the developed wind turbine technologies, and how to create an industrial chain based on the results. Keywords: cost-benefit analysis, offshore wind power, Taiwan, computable general equilibrium model JEL Codes: Q 41, Q43, Q48 1. Introduction Taiwan imports more than 98% of its energy requirements (BOE, 2015). -
Risk Analysis and Management of Construction and Operations in Offshore Wind Power Project
sustainability Article Risk Analysis and Management of Construction and Operations in Offshore Wind Power Project Jui-Sheng Chou 1,* , Pin-Chao Liao 2 and Chung-Da Yeh 1 1 Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; [email protected] 2 Department of Construction Management, Tsinghua University, Beijing 100084, China; [email protected] * Correspondence: [email protected] Abstract: Many countries have increased the use of renewable energy and strongly promoted offshore wind power (OWP). However, OWP in Asia is in the preliminary stage of development, for which no precedents exist. The literature on wind energy generation has mostly investigated the causes of onshore wind turbine accidents and risk prevention, and more work on the risks associated with domestic OWP is required for energy market development. According to statistics on international wind power accidents, most offshore accidents occur in the construction and operation stages. Therefore, this work investigates risk management in the construction and operations of offshore windfarms in Taiwan. The goal is to help decision-makers to understand better the risks of the industry and so more effectively manage them. In this study, risk factors are identified from organizing data in the literature, and research methods and action strategies are developed. Research and analysis follow the risk management steps in the PMBOK® Guide (A Guide to the Project Management Body of Knowledge). The risk rankings and preventive measures that are based on the results of this study can serve as references for relevant industry personnel in island cities and Citation: Chou, J.-S.; Liao, P.-C.; Yeh, nearby Asian countries to reduce risk in the management of OWP projects. -
The Offshore Wind Market in Taiwan
THE OFFSHOREMARKET WIND IN TAIWAN FLANDERS INVESTMENT & TRADE MARKET SURVEY The Offshore Wind Market in Taiwan April 2017 Doris WU, Trade and Investment Commissioner Belgian Office Taipei Flanders Investment & Trade Suite 601 131, Ming-Sheng E. Road., Sec. 3, Taipei 10596 Taiwan [email protected] 1 Introduction .............................................................................................................................................................................. 4 2 Onshore Wind Power in Taiwan - Saturation ......................................................................................................... 4 3 Current Offshore Wind Power Development in Taiwan .................................................................................... 6 3.1 Strong Development Potential ............................................................................................................................. 6 3.1.1 Abundant offshore wind resources .......................................................................................................... 6 3.1.2 High full-load hours ........................................................................................................................................... 6 3.1.3 High development feasibility........................................................................................................................ 7 3.2 Government Commitment ...................................................................................................................................... -
Research Into Renewable Electricity Systems
Research into renewable electricity systems CLIENT: National Infrastructure Commission DATE: 10/12/2020 Version History Version Date Description Prepared by Approved by 1.0 10/12/2020 Final Matthew Grant Duncan Sinclair George Batts Contact Duncan Sinclair ([email protected] +44 7887 500 856) Matthew Grant ([email protected] +44 7878 755 644) Copyright Copyright © Baringa Partners LLP 2020. All rights reserved. This document is subject to contract and contains confidential and proprietary information. No part of this document may be reproduced without the prior written permission of Baringa Partners LLP. Confidentiality and Limitation Statement This document: (a) is proprietary and confidential to Baringa Partners LLP (“Baringa”) and should not be disclosed to third parties without Baringa’s consent; (b) is subject to contract and shall not form part of any contract nor constitute an offer capable of acceptance or an acceptance; (c) excludes all conditions and warranties whether express or implied by statute, law or otherwise; (d) places no responsibility on Baringa for any inaccuracy or error herein as a result of following instructions and information provided by the requesting party; (e) places no responsibility for accuracy and completeness on Baringa for any comments on, or opinions regarding, the functional and technical capabilities of any software or other products mentioned where based on information provided by the product vendors; and (f) may be withdrawn by Baringa within the timeframe specified by the requesting party and if none upon written notice. Where specific Baringa clients are mentioned by name, please do not contact them without our prior written approval. -
Annual Report 2012
Annual Report 2012 WorldReginfo - c26efdc6-8695-4082-b733-ece4b14f7a1e Contents Report on operations ..................................................................................... 4 The Enel Green Power structure ...................................................................... 5 Enel Green Power España ............................................................................... 5 Enel Brasil Participações Enel .......................................................................... 5 Energia Alerce ............................................................................................... 5 Enel de Costa Rica ......................................................................................... 5 Enel Guatemala ............................................................................................. 5 Impulsora Nacional de Electricidad ................................................................... 5 Letter to the shareholders and stakeholders ...................................................... 8 Summary of results ...................................................................................... 10 Significant events in 2012 ............................................................................. 15 The contribution of renewable energy to sustainability ...................................... 22 Reference scenario ....................................................................................... 26 Overview of the Group’s performance and financial position ..............................