Bringing Biotechnology to Life an Educational Resource

Total Page:16

File Type:pdf, Size:1020Kb

Bringing Biotechnology to Life an Educational Resource FOR GRADES 7–10 VERSION 3.0 BRINGING BIOTECHNOLOGY TO LIFE AN EDUCATIONAL RESOURCE Brought to you by the American Farm Bureau Foundation® for Agriculture www.agfoundation.org in partnership with the International Food Information Council Foundation www.foodinsight.org. WELCOME “Bringing Biotechnology to Life” is a resource for science educators and others interested in learning more about biotechnology and its role in food production. This unit of instruction addresses national learning standards for 7th–10th grade, yet the interest level may be much broader. Eight sequential lessons guide the learner through the process of understanding DNA, selective breeding over time and agricultural biotechnology today, including foods produced through biotechnology (often referred to by consumers as genetically modified organisms or “GMOs”). Students are also presented with tools to evaluate the reliability of information they see and hear. The unit culminates with a relevant research paper and presentation to people beyond the students’ classmates and teacher. This unit follows the principles of Project Based Learning by engaging students with a driving question, encouraging voice and choice, incorporating critique and revision and including a public audience for the final project. Table of Contents: LESSON 1 Driving Question: What is DNA? ______________________________ 1 LESSON 2 Driving Question: How can we examine DNA? __________________ 7 LESSON 3 Driving Question: What is selective breeding? __________________ 13 LESSON 4 Driving Question: What is biotechnology? ______________________ 22 LESSON 5 Driving Question: How is biotechnology used? __________________ 28 LESSON 6 Driving Question: How do researchers compare DNA? ___________ 34 LESSON 7 Driving Question: Where would we be without “GMOs”? ________ 41 LESSON 8 Driving Question: Where is biotechnology headed? ______________ 49 FINAL PROJECT Research and Public Presentation ________________________ 54 The American Farm Bureau Foundation The International Food Information Council (IFIC) for Agriculture® is building awareness, Foundation is dedicated to the mission of effectively understanding and a positive public communicating science-based information on health, perception of agriculture through education. nutrition and food safety for the public good. 800-443-8456 | www.agfoundation.org 202-296-6540 | www.foodinsight.org Bringing Biotechnology to Life • Educator’s Guide LESSON 1 DRIVING QUESTION: WHAT IS DNA? WELCOME LENGTH: 1 hour Suggested Video: Students will be able to: OBJECTIVES: “The Double Helix” by BioInteractive • identify the primary components in a DNA structure http://www.hhmi.org/biointeractive/double-helix (16:53) • describe the role of DNA in trait inheritance Note: Due to the length of this video, you may wish to show only a portion of the history of DNA research. Standards: Next Generation Science Standards Addressed Lesson Context This section provides guidance for teachers for how lessons Disciplinary Core Ideas build on each other. LS1.B Growth and Development of Organisms “Bringing Biotechnology to Life” provides students a journey through the understanding of biotechnology with an emphasis LS3.A Inheritance of Traits on food production. Lesson one presents the foundational knowledge to build upon in regard to DNA’s role in the LS3.B Variation of Traits inheritance of traits and variations of these traits over time. It all starts with the DNA structure discovery, as explained in the suggested video link, and how models played a vital role in the double helix discovery. Students will build their own Practices DNA model during this lesson and get to eat it too! Asking Questions KEY CONCEPTS: Before we can jump into a discussion about biotechnology, we must know how genetic information is passed from generation to generation. In eukaryotic organisms chromosomes are found in the nucleus of the cell. Cross-Cutting Concepts Chromosomes are made up of DNA. Genes on the double helix Structure and Function: Complex and microscopic DNA structure contain genetic information, which will provide structures and systems can be visualized, modeled a blueprint for the characteristics/traits of the offspring. During and used to describe how their function depends on meiosis, this information is passed from parent to offspring. the relationships among its parts, therefore complex Set out lab supplies and prepare copies of the student natural structures/systems can be analyzed to SETUP: handout. determine how they function. Outline: 1. Draw three boxes on a whiteboard. Above the first box, Materials: draw a large pair of eyes. Above the second box, draw a • Copies of Lesson 1 Student Handout: Delicious DNA movie slate board clapper. Above the third box, draw a (1 per group of 2–3 students) question mark. • Paper towels (1 per group of 2–3 students) 2. Ask students to think about what they already know about DNA. Help them “unpack” this knowledge by sorting • *Licorice vines (2 per group of 2–3 students) concepts into three categories: what DNA looks like (eyes), • Toothpicks (20 per group of 2–3 students) what it does (clapper) and why we should care/significance of it (question mark). Solicit responses and capture • *Gummy candy in four colors (20 per group of 2–3 students) information in each box. • Optional: Student science textbook for additional information on DNA (1 per group of 2–3 students) * You may wish to substitute fruit and/or vegetables for the candy options in the DNA model. The materials list suggests using licorice vines for the sugar phosphate backbone; gummy candies such as gummy bears, jellybeans or colored marshmallows for the bases; and toothpicks to connect components. © Copyright 2019 American Farm Bureau Foundation for Agriculture® 1 1 LESSON Bringing Biotechnology to Life • Educator’s Guide 6. Clarify expectations: By the end of the class period, students should have assembled a 3D DNA model and completed LISTEN FOR THE FOLLOWING! the student handout. • double helix, ladder, found in nucleus 7. Distribute lab supplies and one paper towel to each group. • made up of genes that code for traits like eye color, hair Monitor student progress and address questions. color, height, etc. 8. After all students have completed the activity, prompt • all living things have DNA; studying DNA helps us students to clean work areas. understand plants and animals; studying DNA helps 9. Refer back to the boxes of information drawn on the us identify desirable traits like taste, nutritional value and whiteboard at the beginning of class. Ask students to productivity in crops re-evaluate this information, taking into consideration the • Invite students to ask questions to clarify relationships knowledge they now have. Ask students what statements about the role of DNA and genes in coding the instructions they would modify or add to the list. Share additional for characteristic traits passed from parents to offspring. information as needed. Encourage students to think of What?, Why?, How? and 10. As a take-home challenge, ask students to think of a Where? questions. Capture questions on the whiteboard fruit or vegetable that can be found in different varieties or poster paper for review throughout the unit. (e.g., apples), and consider the role genetics plays in the traits we observe about that food item. 3. Preview the activity by sharing with students that they’ll have Additional Content Support a chance to build their own DNA structure and eat it too! • Just like our DNA, DNA in plants and animals contain Pre/Post Assessment what we refer to as the genetics of that organism. Each This section provides a suggested assessment tool that may strand of DNA consists of four nitrogen bases: adenine be used before and after a lesson to assess student readiness. (A), cytosine (C), thymine (T)and guanine (G). It does not See the Pre/Post Assessment file for a ready-to-distribute copy matter if the DNA is from an animal, insect or a human, for your students. we all share the same four bases. In different organisms, the bases are just arranged to code for different 1. What is DNA? Deoxyribonucleic acid proteins.i 2. Where is DNA found? In the cell nucleus of eukaryotic cells • Nitrogen bases follow a base pairing rule: adenine and in the cytoplasm of prokaryotic cells always pairs with thymine. Guanine always pairs with 3. What does DNA look like? A double helix cytosine. 4. What components make up DNA? Cytosine, Guanine, • Gene is the root word of “genetics.” Understanding Adenine, Thymine, Sugar-phosphate backbone genetics is the basis for understanding food production. 5. Why is DNA important in trait inheritance? DNA carries • Genes make up an organism’s “genotype.” The the genetic information from parent to offspring from genotype of an organism is expressed outwardly as the generation to generation organism’s “phenotype.” The phenotype is typically what we see or notice. Suggested Accommodations 4. Distribute student handout Delicious DNA. Pre-read the handout with the students. In this activity, students will This section provides optional tools to enrich learning and meet create a DNA structure using a variety of food items and students where they are. toothpicks. Students must be able to clearly describe the 1. For students struggling to meet performance expectations: components of the DNA structure and create a logical legend using the candies provided. a. Unpacking students’ prior knowledge during the questioning activity will be key to determine level of • Note: Students may elect to use food items for different understanding about the DNA structure. components of the structure. Part of the learning process is giving students the opportunity to make b. If students do not know the primary components of the logical connections and create their own roadmap of DNA structure, the suggested video goes over not only understanding. the history of the DNA structure discovery, but also the components of DNA and the critical use of modeling for 5. Break students into collaborative working groups of two this discovery.
Recommended publications
  • Molecular Mimicry Modulates Plant Host Responses to Pathogens
    Annals of Botany 121: 17–23, 2018 doi:10.1093/aob/mcx125, available online at www.academic.oup.com/aob INVITED REVIEW Molecular mimicry modulates plant host responses to pathogens Pamela Ronald* and Anna Joe Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA. *For correspondence. E-mail [email protected] Received: 15 June 2017 Returned for revision: 12 July 2017 Editorial decision: 11 September 2017 Accepted: 14 September 2017 • Background Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. • Scope and Conclusion This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. Key words: Molecular mimicry, plant pathogen, microbial mimic, RaxX, XA21, PSY, engineering receptor INTRODUCTION: WHAT IS BIOLOGICAL MIMICRY? these microbially produced molecules mimic plant hormones that control growth, development, and regulation of innate Biological mimicry and molecular mimicry immunity.
    [Show full text]
  • Engineering Disease and Flood Resistant Rice Strains: Pamela Ronald
    iBiology About Us Blog Newsletter Educators Volunteer HOME IBIOSEMINARS IBIOMAGAZINE IBIOEDUCATION BIO FILMS iBiology > iBioSeminars > Plant Biology > Pamela Ronald Part 2 PAMELA RONALD: TOMORROW’S TABLE: ORGANIC FARMING, GENETICS AND THE FUTURE OF FOOD I. Sustainable Agriculture II. Engineering Resistance to Bacterial Infection and Tolerance to Environmental Stresses Part II: Engineering Resistance to Bacterial Infection and Tolerance to Environmental Stresses Download: High Res Low Res Resources: Related Articles Trouble Viewing? Try it on iTunes. Report a problem. Lecture Overview In her lecture, Ronald emphasizes the importance of developing sustainable agricultural practices that will allow the world’s population to be fed without destroying the Earth. Ronald demonstrates that modern genetics approaches have facilitated development of new crop varieties that can increase crop yields while reducing insecticide use. She proposes that the judicious incorporation of two important strands of agriculture—agricultural biotechnology and agroecological practices—is key to helping feed the growing population and she provides compelling examples to support her stand. In Part 2, Ronald discusses one of the greatest challenges of our time: how to feed the growing population in the presence of disease and environmental stresses that threaten the world’s crops. Currently, twenty-five percent of the world’s rice is grown in flood prone areas. Ronald and her colleagues characterized a gene, Sub1A, that confers tolerance to two weeks of flooding. They demonstrate that transferring Sub1A to a highly intolerant rice species is sufficient for the crop to tolerate submergence in water. Ronald shifts gears to discuss another gene, Xa21, that she and her colleagues discovered that controls the rice immune response.
    [Show full text]
  • Plant-Environment Interactions: from Sensory Plant Biology to Active
    Signaling and Communication in Plants Series Editors František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Jorge Vivanco Center for Rhizosphere Biology, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523-1173, USA František Baluška Editor Plant-Environment Interactions From Sensory Plant Biology to Active Plant Behavior Editor František Baluška Department of Plant Cell Biology IZMB University of Bonn Kirschallee 1 D-53115 Bonn Germany email: [email protected] ISSN 1867-9048 ISBN 978-3-540-89229-8 e-ISBN 978-3-540-89230-4 DOI: 10.1007/978-3-540-89230-4 Library of Congress Control Number: 2008938968 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com František Baluška dedicates this book to Prof.
    [Show full text]
  • Caractérisation Des Xanthomonas Oryzae Au Mali Et Déterminisme Génétique De La Résistance Du Riz Au Flétrissement Bactérien Et À La Strie Foliaire Cheick Tekete
    Caractérisation des Xanthomonas oryzae au Mali et déterminisme génétique de la résistance du riz au flétrissement bactérien et à la strie foliaire Cheick Tekete To cite this version: Cheick Tekete. Caractérisation des Xanthomonas oryzae au Mali et déterminisme génétique de la résistance du riz au flétrissement bactérien et à la strie foliaire. Biologie végétale. Université Mont- pellier; Université des sciences, des techniques et des technologies de Bamako (Mali), 2019. Français. NNT : 2019MONTG059. tel-02612221 HAL Id: tel-02612221 https://tel.archives-ouvertes.fr/tel-02612221 Submitted on 19 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Biologie des Interactions École doctorale GAIA Unité de recherche IPME En partenariat international avec l’Université des Sciences , des Techniques et des Technologies de Bamako, Mali Caractérisation des Xanthomonas oryzae au Mali et déterminisme génétique de la résistance du riz au flétrissement bactérien et à la strie foliaire
    [Show full text]
  • Plant Science Bangladesh: Improving Crops C
    Cassie He A&M Consolidated High School College Station, TX Bangladesh, Factor 1: Plant Science Bangladesh: Improving Crops Coupling With Abiotic Stresses Bangladesh, located in South Asia, is considered one of the least developed nations in the world with some of the worst health and nutrition outcome data (Bangladesh Country, Web). It is the world’s eighth- most populous country. Totaling 156.6 million citizens with an area of 147,570 km2, it is the most densely populated non-island nation in the world (Harris, Web). Out of the 156.6 million people, 37 million-a quarter of the population-struggle with food security (World Food, Web). The average household in Bangladesh consists of four-to-five people, usually with two parents and two- three children (Bangladesh, Web). Typically, families live in a small wooden shack with a tin roof referred to as “tin shade” in the slums outside of major cities. These tin shades provide little protection against the blistering heat in the summer and are easily destroyed by annual monsoon rains (World Food, Web). Despite the low unemployment rate of 4.5 percent, 43 percent of Bangladeshi live under $1.25 per day which is below the international extreme poverty line (Feed the Future, Web). Agriculture remains the most important sector of the Bangladesh economy, accounting for 19.6 percent to the national gross domestic product (GDP) and providing 63 percent of the population with employment (Bangladesh- Agriculture, Web). Although the government funds most schools, education in Bangladesh remains poorly developed. The literacy rate is 57.5 percent on average with a significant disparity between female (53 percent) and male (62 percent) (Education, Web).
    [Show full text]
  • Organic Gmos Could Be the Future of Food—If We Let Them | WIRED
    4/2/2020 Organic GMOs Could Be The Future of Food—If We Let Them | WIRED SUBSCRIBE FERRIS JABR BACKCHANNEL 10.07.15 12:00 AM Organic GMOs Could Be The Future of Food — If We Let Them Get unlimited WIRED access Subscribe Sign In https://www.wired.com/2015/10/organic-gmos-could-be-the-future-of-food-if-we-let-them/ 1/16 4/2/2020 Organic GMOs Could Be The Future of Food—If We Let Them | WIRED SUBSCRIBE Rice plants used for genetics research by scientist Pamela Ronald. Two years ago, I traveled to Woodland, California, to meet scientists who were developing tastier and more nutritious fruits and vegetables. On the way to the research center, my taxi driver asked what had brought me to town. “Well,” I started, “I’m a journalist and I’m here Get unlimited WIRED access Subscribe Sign In to visit Monsanto.” “Monsanto? They do all that unnatural GMO stuff, right?” “They do make https://www.wired.com/2015/10/organic-gmos-could-be-the-future-of-food-if-we-let-them/ 2/16 4/2/2020 Organic GMOs Could Be The Future of Food—If We Let Them | WIRED a lot of GMOs,” I replied, “but the scientists I’m visiting do not use genetic engineerinSgU.B”SCRIBE Instead, they perform marker-assisted breeding. They chip off tiny bits of seeds and young plants and analyze their genes in search of desirable traits. Then they use that information to decide which seeds to plant and, later, cross-pollinate and which ones to reject, speeding up the traditional plant breeding process.
    [Show full text]
  • AR 2016 Online.Ai
    “So, by helping men to study plants, I may perhaps be able to contribute something to mankind.” William Boyce Thompson TABLE OF CONTENTS 4 MESSAGE FROM THE PRESIDENT 5 MESSAGE FROM THE CHAIR 6 MESSAGE FROM THE VP OF RESEARCH 7 RESEARCH COLLABORATORS 8 RESEARCH HIGHLIGHTS 13 TECHNOLOGY TRANSFER 14 TRAINING, EDUCATION AND OUTREACH 16 POST GRADUATE SOCIETY 17 ALUMNI 18 PHILANTHROPY 22 FINANCIAL STATEMENTS 23 BOARD & COUNCILS 3 LETTER from THE PRESIDENT Dear Friends, Like explorers scoung out new terrain, BTI sciensts extend the boundaries that define our understanding of the life sciences. 2016 Cultural richness gives BTI strength, saw breakthrough discoveries about molecular signals in the beneficial interacons between plants and fungi in the periphery of the roots, diversity, connections, and a unique with potenal future applicaons as natural ferlizers. Greater environment for scholarship and learning. understanding of roots and their microbial neighbors holds promise for more harmonious relaons between agricultural systems and our environment. BTI exploraons into the poorly-understood universe users and informaon, and make that informaon accessible and of small biological molecules brought new perspecves in the meaningful. BTI is launching a new computaonal biology iniave science of aging, challenging us to imagine how we might extend to help this process locally, much as we provide resources to our life-spans. At the lab bench, at the computer, or in the field, our students, postdocs and technicians to advance their careers in the sciensts pulse with the same thrill of discovery that William B. direcon of their choice. Thompson expressed when founding the Instute, “The possibilies! I lie awake at night somemes, thinking about them.” The global nature of science is reflected in the 40 countries whose cizens currently work at BTI – a number that is astounding given Science is ever more global, interdisciplinary, informaon-rich, and that we are a family-sized organizaon.
    [Show full text]
  • NOVEDADES SOBRE CRISPR–Cas9 a GRF–GIF Chimeric Protein
    NOVEDADES SOBRE CRISPR–Cas9 (Hoy con autores santafesinos) A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants David M. Tricoli, Maria F. Ercoli, Sadiye Hayta, Pamela Ronald, Javier F. Palatnik & Jorge Dubcovsky Nature Biotechnology (2020)Cite this article • Published: 12 October 2020 Abstract The potential of genome editing to improve the agronomic performance of crops is often limited by low plant regeneration efficiencies and few transformable genotypes. Here, we show that expression of a fusion protein combining wheat GROWTH-REGULATING FACTOR 4 (GRF4) and its cofactor GRF-INTERACTING FACTOR 1 (GIF1) substantially increases the efficiency and speed of regeneration in wheat, triticale and rice and increases the number of transformable wheat genotypes. GRF4– GIF1 transgenic plants were fertile and without obvious developmental defects. Moreover, GRF4–GIF1 induced efficient wheat regeneration in the absence of exogenous cytokinins, which facilitates selection of transgenic plants without selectable markers. We also combined GRF4–GIF1 with CRISPR–Cas9 genome editing and generated 30 edited wheat plants with disruptions in the gene Q (AP2L-A5). Finally, we show that a dicot GRF– GIF chimera improves regeneration efficiency in citrus, suggesting that this strategy can be applied to dicot crops. Data availability Accession numbers and gene names are available in the phylogenetic tree in Supplementary Fig. 1. All wheat gene names are based on genome release RefSeq v1.0. The raw data for the different experiments are available in Supplementary Tables 3, 4, 6 and 7. The steps for the generation of the different vectors and the transformation protocols are described in the Methods.
    [Show full text]
  • UC Davis Conference Center
    BLPII: 2nd Annual Biotechnology Literacy Project Bootcamp World Food Center Institute for Food and Agricultural Literacy University of California‐Davis| May 31‐June 3 Optional related public event on June 3 When it comes to food and agricultural biotechnology, public opinion is divided. And because food and farming are such visceral issues, public opinion is deeply rooted in our beliefs and ideology, as well as our understanding of science. What can be done to address legitimate concerns and raise the scientific literacy of the public and media on these critical concerns? Independent scientists and researchers can play a unique role in reframing the GMO debate because the public holds them in such high esteem. They are poised to connect emotionally with environmentally conscious individuals and with parents concerned about their children’s health. However, scientists and other credible influencers often lack the resources, support, networking and training necessary to successfully engage in a broad‐based discussion. The Biotechnology Literacy Project (BLP) is dedicated to helping scientists, academic researchers and journalists work together to bring biotechnology directly to the public in a way that is accessible and persuasive. The Genetic Literacy Project and Academics Review, a 501c3 independent non‐profit, are working in partnership with the University of California‐Davis to bring together academics, non‐profit leaders, journalists, business owners and scientists committed to improving the quality and accuracy of public dialogue on issues associated with agricultural biotechnology. This program will take place as a friendly “boot camp” with a select group of participants, from the evening of May 31 to mid‐day on June 3, 2015 at the University of California in Davis.
    [Show full text]
  • Conservation Magazine » Blo
    Conservation Magazine » Blog Archive » The Problem of What to Eat http://www.conservationmagazine.org/articles/v9n3/the-problem-of-what-... A publication of the Society for Conservation Biology Feature The Problem of What to Eat Organic farming and eating locally make intuitive sense. But does conventional wisdom about eating sustainably hold up to the science? By Natasha Loder, Elizabeth Finkel, Craig Meisner, and Pamela Ronald July-September 2008 (Vol. 9, No. 3) At first glance, it doesn’t seem that tough a question. Organic farming and eating locally make intuitive sense. Yet does conventional wisdom about eating sustainably hold up to the science? It turns out that many core issues such as pesticide use, soil health, and the impact of food miles are more nuanced and complicated than you might think. Does Buying Local Reduce Your Carbon Footprint? There is a growing legion of eaters who describe themselves as “locavores,” people who eat only food grown within 100 miles of where they live. Until recently, it was no more than a subculture on the food fringe in San Francisco—an area conveniently within easy reach of a wide range of seasonal produce. But now eating local has gone mainstream. Even Marks & Spencer (the iconic British retailer) has recently announced plans to track and label foods for food mile–conscious shoppers. But does eating locally really have a lower carbon footprint than eating food transported halfway round the world? Surprisingly, there’s scant science to lean on. True, when it comes to air freight, many local foods do have a lower carbon footprint.
    [Show full text]
  • September/October 2005
    ASPB News THE NEWSLETTER OF THE AMERICAN SOCIETY OF PLANT BIOLOGISTS Volume 32, Number 5 September/October 2005 Inside This Issue Mike Thomashow Assumes Presidency October 1 President’s Letter Michael F. Thomashow became ASPB and then a full professor. In 2002, he president October 1, 2005. He succeeds was named university distinguished Amasino Becomes President-Elect Roger Hangarter, who is now immedi- professor. ate past president. Thomashow’s early research Carptia Elected Secretary “I am very much looking forward was directed toward understanding Koch Joins Executive to the coming year,” Thomashow said. how Agrobacterium tumefaciens Committee “As president-elect, I came to appreci- causes the formation of tumors on ate, more than I had in the past, how plants. As a Damon Runyon–Walter strong and vibrant our Society is due Winchell Cancer Fund Research fel- Plant Biology 2005 to the hard work and commitment of low, he and coworkers demonstrat- coverage starts on its membership in a variety of areas, ed that the T-DNA is integrated page 8 ranging from education to outreach, to into the nuclear genome, where the public affairs, scientific meetings and, genes that it encodes are expressed. of course, publication of our eminent Mike Thomashow Further studies in his own lab estab- scientific journals. I have also observed lished that the auxin-independent firsthand the excellence and dedication of the staff phenotype of crown gall tumors is due to the ex- at ASPB headquarters who keep us on a steady pression of two genes carried on the T-DNA that course moving forward.
    [Show full text]
  • Senior Editors
    Editor-in-Chief Dr. Jens Stougaard, Laboratory of Gene Expression, Dept. of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark / Phone: +45.89425011 / Fax: +45.86201222 / E-mail: [email protected] Senior Editors fungus–plant interactions plant–bacterial symbiosis insect–plant interactions JIM SWEIGARD MICHAEL UDVARDI LINDA WALLING DuPont Experimental Station Max Planck Institute of Molecular Department of Botany & Plant Sciences, Wilmington, Delaware, U.S.A. Plant Physiology University of California, Riverside, U.S.A. E-mail: [email protected] Golm, Germany E-mail: [email protected] E-mail: [email protected] plant responses to pathogens molecular microbial ecology bacterial–plant symbiosis GUIDO V. BLOEMBERG Plant Pathogen Recognition OTTO GEIGER Institute of Biology, Leiden University MURRAY GRANT Centro de Investigacion sobre Clusius Laboratory Dept. of Agricultural Science Fijacion de Nitrogeno, UNAM Leiden, The Netherlands Imperial College London, Wye Campus Cuernavaca, Morelos, CP 62210, Mexico E-mail: [email protected] Ashford, U.K. E-mail: [email protected] E-mail: [email protected] nematode–plant interactions Plant Defense Signaling virus determinants in virus–plant GODELIEVE GHEYSEN PAMELA RONALD interactions Department Molecular Biotechnology Department of Plant Pathology HERMAN B. SCHOLTHOF Faculty of Agricultural and Applied University of California, Davis, U.S.A. Department of Plant Pathology and Biological Sciences E-mail: [email protected] Microbiology Ghent University, Belgium Model Pathosystems/Functional Genomics Texas A&M University E-mail: [email protected] PETER DODDS College Station, Texas, U.S.A. CSIRO Plant Industry E-mail: [email protected] mycorrhizal interactions Canberra, Australia MARTIN PARNISKE E-mail: [email protected] plant determinants in virus–plant Department of Biology I, Genetics interactions University of Munich (LMU), Germany bacterial pathogenesis S.
    [Show full text]