Ecological Impacts of Southern Pine Beetle Maria D

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Impacts of Southern Pine Beetle Maria D Ecological Impacts of Southern Pine Beetle Maria D. Tchakerian1 and Robert N. Coulson2 1Associate Research Scientist, Department of Entomology, Knowledge Engineering Laboratory, Texas A&M University, 15 College Station, TX 77843-2475 2Professor, Department of Entomology, Knowledge Engineering Laboratory, Texas A&M University, College Station, TX 77843-2475 Abstract The southern pine beetle (SPB) is the most important biotic disturbance in southern pine forests and causes extensive changes to the forest environment. In this chapter we provide an overview of the ecological impacts of the SPB on forest conditions (the state of the forest) and on forest resources (uses and values associated with the forest). We define ecological impact as the effects—positive or negative—of Keywords SPB activities on the forest ecosystem. The impact on forest conditions is the result of widespread tree mortality, which affects ecological processes such as: biotic disturbance primary production, nutrient cycling, forest succession, and forest composition ecological impact and configuration. We discuss how the SPB affects these ecological processes forest succession through modification of the physical environment and the temporal distribution hydrology of resources. For the ecological impact on forest resources, we emphasize the nutrient cycling impacts of SPB on resources that are affected from an ecological point of view primary production (e.g., hydrology and wildlife). Changes in forest structure resulting from SPB wildlife habitat herbivory can modify key hydrologic processes that control the quantity and quality of water reaching a stream. The ecological impacts of the SPB on wildlife are the result of changes in the distribution and abundance of plant species and insect populations. Increases in SPB densities directly affect the food available for insectivore birds, mainly bark-foraging woodpeckers. The impacts on wildlife have been deduced from changes in wildlife habitat as a result of SPB infestations. An approach to estimate the impacts of SPB herbivory on wildlife habitat in a forest landscape is introduced. 223 15.1.INTRODUCTION The structure, function, and processes of Evaluating the ecological effects of the SPB has forest ecosystems have evolved with natural been a more difficult task than characterizing disturbances such as fire, windthrow, and its social and economic impacts. Understanding pest epidemics (Crow and Perera 2004). In of the natural role of the insect is essential for a the Southeastern United States, southern pine true understanding of the impact (Stark 1987). beetle (Dendroctonus frontalis Zimmermann) Insufficient and inadequate historical data and (SPB) is the most important biotic disturbance lack of ecological theory have limited the efforts and, along with fire, regulates the dynamics of to evaluate the probable role of the SPB in nutrient cycling and succession of pine forests. forest ecosystems. In spite of this, considerable Southern pine beetle outbreaks cause extensive research has been made on the role of the beetle change in forest conditions (the state of the forest as a regulator of southern forest ecosystems at environment) by modifying the processes of multiple scales (Coulson and Stephen 2006, primary production, nutrient cycling, ecological Raffa and others 2008, Schowalter and others succession, and the size, composition, and 1981a). configuration of forest trees. The cumulative effects of SPB outbreaks can impact forest The goal of this chapter is to present a current resources (uses and values associated with the overview of the existing information on the forest environment) such as timber production, impacts of SPB herbivory on forest ecosystems. water quality and quantity, fish and wildlife The specific objectives are: 1. to consider the populations, recreation, grazing capacity, real effects of the SPB on forest conditions (the estate values, biodiversity, endangered species, state of the forest) and 2. to examine the effects and cultural resources (Coulson and Stephen of SPB herbivory on forest resources (uses and 2006). It is obvious that the impact on forest values associated with the forest). Figure 15.1 resources results in economic losses to forest outlines the organization of the topics covered landowners (economic impact) and affects how in this chapter. Although forest resources are humans perceive and use the forest environment considered in this review, we place emphasis (social impact); these topics are discussed in on the impacts of the SPB on resources that are chapters 14 and 16 respectively. affected from an ecological point of view (e.g., water quality and quantity, wildlife, endangered For the purposes of this chapter, ecological species). impact of the SPB is defined as the effects of SPB herbivory on the forest ecosystem. The effects can be perceived as qualitative or quantitative 15.2.SPBimpact on forest changes in conditions and resources associated with the forest ecosystem, and can be positive CONDITIONS or negative (Coulson and Stephen 2006). The Widespread tree mortality by SPB herbivory most evident impact of SPB herbivory on modifies the structure, composition, and pine forests ecosystems is the reduction or function of southern pine ecosystems. This mortality of host tree species. Tree mortality section examines how the SPB brings about by insect herbivory results in increased light change in the forest environment. It considers penetration through the forest canopy, reduced how SPB outbreaks influence the abundance, competition among plants, changes in plant composition, and configuration of forest species composition and biomass, increased vegetation through modifications of the physical rates of water runoff and nutrient leaching, environment and the spatial and temporal higher rates of litter decomposition, and distribution of resources. The ecological redistribution of nutrients (Coulson and Witter processes of primary production, nutrient 1984). One ecological effect of SPB outbreaks cycling, ecological succession, and forest is the shift of forest structure from mature composition and configuration are addressed in and overmature host trees to regenerating further detail. seedlings and competing vegetation species (Land and Rieske 2006). This shift is known 15.2.1.PrimaryProductionand to influence other ecological processes such as NutrientCycling nutrient redistribution, ecosystem succession, Little is known about the effects of SPB and alteration of wildlife habitat (Coulson and outbreaks on ecosystem processes such as Witter 1984). primary production and nutrient cycling. Insect herbivory may stimulate forest productivity by 224 Tchakerian | Coulson Ecological Impact of the Southern Pine Beetle Impacts on Impacts on Forest Conditions Forest Resources Figure 15.1—Diagram outlines the topics and organization of chapter Effects on Primary Effects on Water 15. The probable impacts Quality and of the SPB on forest Production and conditions and forest Nutrient Cycling Quantity resources are examined. Effects on Forest Effects on Wildlife Succession Habitat Effects on Forest Compositions and Configuration selectively killing less productive plants or SPB outbreak have been reported. In contrast, plant parts, therefore enhancing light, water, Romme and others (1986) reported that after and nutrient availability for the survivor a mountain pine beetle (MPB) (Dendroctonus individuals (Mattson and Addy 1975). In ponderosae Hopkins) outbreak, stand level general, nutrients become locked up in living primary productivity declines and leads to a biomass as mature ecosystems tend to have more equitable distribution of biomass and more closed nutrient cycles, with internal resources. With time, individual surviving nutrient cycling exceeding nutrient input and plants respond to the changes produced by the output (Schowalter 1981). Insect herbivory beetle outbreak and plant growth accelerates. accelerates the nutrient cycling by weakening/ The authors described growth increases of 20- killing plants and increasing nutrient transfer 70 percent in canopy lodgepole pines, and by from these nutrient-rich plants to the litter/soil 60-260 percent in understory vegetation for a complex. In addition, plant mortality releases period of 5-20 years after the outbreak. resources such as space, nutrients, and light, increasing the establishment and vigor to other 15.2.2.ForestSuccession vegetation. The SPB is the primary biotic agent affecting yellow pine forest ecosystems, and, in association Successfully SPB-infested trees are usually with fire, determines the successional dynamics dead within weeks of colonization. Resource in these forests (Clarke and others 2000, distribution occurs as a result of leaf fall Coleman and others 2008, Lafon and others episodes lasting a few months and the falling of 2007, Waldron and others 2007). Schowalter dead trees over a period of years (Romme and and others (1981a) suggested the interaction others 2006). The SPB selectively kills suitable of SPB herbivory and fire disturbance as a mature host trees, and subsequent mortality mechanism to maintain early-successional increases nutrient release from pine biomass southeastern coniferous forests, therefore and increases growth of remaining trees preventing ecosystem development toward later- (Schowalter 1981). A review of the literature successional, shade-tolerant hardwood forest. revealed that no direct estimates on primary These authors proposed that herbivory by the production and nutrient
Recommended publications
  • Southern Pine Bark Beetles
    Chapter 15. Advances in the Control and Management of the Southern Pine Bark Beetles T. Evan Nebeker1 Because of its history, aggressive behavior, and reproductive potential, SPB causes more concern than the other bark beetles of the Southeastern United States. Although Ips spp. have been associated with tree mortality, they Abstract—Management of members of the are generally considered a less-aggressive species. southern pine bark beetle guild, which consists Ips prefer host material that is stressed due to a 155 of five species, is a continually evolving process. moisture deficit, slash from harvesting operations, A number of management strategies and tactics or windthrown material. It is essential to recognize have remained fairly constant over time as new that not just one species kills our pines. However, ones are being added. These basic practices during periods of drought, as in 1999 and 2000, include doing nothing, direct control, and Ips beetles attacked and killed considerable areas indirect control. This chapter focuses primarily of pine. These events increased public awareness on the latter two. Emphasis is given to recent of the impact Ips can have. During that same and possible future management strategies period, SPB populations were low across the region, especially west of the Mississippi River, that may become part of our overall programs. where they were at record lows with zero The World Wide Web will play a key role or near zero attacks reported. The reason for in the distribution of information about the this apparent anomaly is unknown. One could management of the southern pine bark beetles.
    [Show full text]
  • Using Prescribed Fire to Regenerate Table Mountain Pine in the Southern Appalachian Mountains
    USING PRESCRIBED FIRE TO REGENERATE TABLE MOUNTAIN PINE IN THE SOUTHERN APPALACHIAN MOUNTAINS Patrick H. Brose u.s. Department of Agriculture, Forest Service, Northeastern Research Station, Irvine, PA 16329 Thomas A. Waldrop U.S. Department of Agriculture, Forest Service, Southern Research Station, 223 Lehotsky Hall, Clemson, SC 29634 ABSTRACT Stand-replacing prescribed fires are recommended to regenerate stands of Table Mountain pine (Pinus pungens) in the southern Ap­ palachian Mountains because the species has serotinous cones and its seedlings require abundant sunlight and a thin forest floor. A 350-hectare prescribed fire in northeastern Georgia provided an opportunity to observe regeneration success at various fire intensity levels. Fires of low and medium-low intensity produced abundant regeneration but may not have killed enough of the overstory to prevent shading. High-intensity fires killed almost all overstory trees but may have destroyed some of the seed source. Medium-high intensity fires may be the best choice because they killed overstory trees and produced abundant regeneration. The forest floor remained thick after fires of all intensities, but roots of pine seedlings were able to penetrate a duff layer of up to 7.5 centimeters thick to reach mineral soil. keywords: fire intensity, Pinus pungens, prescribed fire, southern Appalachian Mountains, Table Mountain pine. Citation: Brose, P.H., and T.A. Waldrop. 2000. Using prescribed fire to regenerate Table Mountain pine in the southern Appalachian Mountains. Pages 191-196 in W. Keith Moser and Cynthia F. Moser (eds.). Fire and forest ecology: innovative silviculture and vegetation management. Tall Timbers Fire Ecology Conference Proceedings, No.
    [Show full text]
  • Southern Pine Beetle Prevention and Restoration Program3
    Southern Pine Beetle September 2005 Prevention and Restoration Program Introduction In 2003, the USDA Forest Service and the Southern Group of State Foresters initiated a proactive Southern Figure 1. Southern pine beetle (Dendroctonus frontalis) adult Pine Beetle (SPB) Prevention male. and Restoration Program. Restoration activities are designed to return damaged Program Highlights areas to healthy forest conditions and to create Figure 2. Large SPB infestation in the Turkey Hill Wilderness, Angelina National Forests, Texas. Program started in 2003. stands that are less Funding levels have susceptible to future SPB increased annually, with infestation. Prevention Background $14 million allocated in activities are designed to 2005. improve forest health and The southern pine beetle (SPB) (Fig. 1) is the most Over 50,000 acres have been therefore reduce SPB hazard, destructive and costly insect pest of pines throughout restored to forest conditions while still providing desired the South. From 1999 to 2003, SPB caused under program guidelines. forest values. This program unprecedented damage in Alabama, Florida, Over 100,000 acres in high- has led to the treatment Georgia, Kentucky, North Carolina, South Carolina hazard pine stands have been (restoration and thinning) of and Tennessee. More than 1 million acres on private thinned. more than 150,000 acres since farms and forests, industry lands, State lands, national its inception and has set a 10- forests, and other Federal lands were affected (Table year target of 2 million acres. 1). The estimated economic cost of the outbreak was $1.5 billion. These losses severely impact the natural resource base that supports the South’s tourism and wood-based manufacturing industries, and also destroys the habitat of threatened and Impacted Area Estimated $ Lost endangered species, such as the red-cockaded (Acres) woodpecker.
    [Show full text]
  • Past Fire Regimes of Table Mountain Pine (Pinus Pungens L.) Stands in the Central Appalachian Mountains, Virginia, U.S.A
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2007 Past Fire Regimes of Table Mountain Pine (Pinus pungens L.) Stands in the Central Appalachian Mountains, Virginia, U.S.A. Georgina DeWeese University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Forest Sciences Commons, and the Other Earth Sciences Commons Recommended Citation DeWeese, Georgina, "Past Fire Regimes of Table Mountain Pine (Pinus pungens L.) Stands in the Central Appalachian Mountains, Virginia, U.S.A.. " PhD diss., University of Tennessee, 2007. https://trace.tennessee.edu/utk_graddiss/150 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Georgina DeWeese entitled "Past Fire Regimes of Table Mountain Pine (Pinus pungens L.) Stands in the Central Appalachian Mountains, Virginia, U.S.A.." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geography. Henri D. Grissino-Mayer, Major Professor We have read this dissertation
    [Show full text]
  • Genetic Resource Conservation of Table Mountain Pine (Pinus Pungens) in the Central and Southern Appalachian Mountains Robert M
    Genetic Resource Conservation of Table Mountain Pine (Pinus pungens) in the Central and Southern Appalachian Mountains Robert M. Jetton, Barbara S. Crane, W. Andrew Whittier, and William S. Dvorak Research Assistant Professor, Camcore, Department of Forestry & Environmental Resources, North Carolina State University (NC State), Raleigh, NC; Regional Geneticist, U.S. Department of Agriculture, Forest Service, Southern Region National Forest System, Atlanta, GA; Research Forester, Camcore, Department of Forestry & Environmental Resources, NC State, Raleigh, NC; Professor and Director Emeritus, Camcore, Department of Forestry & Environmental Resources, NC State, Raleigh, NC Abstract associated with small isolated mountains. The typically small, geographically isolated populations occur mostly along south- Table Mountain pine (Pinus pungens Lambert) was historically and west-facing ridgelines and outcroppings at elevations a widespread pine species native to the central and southern between 1,000 and 4,000 ft (300 and 1,200 m). Soils are incep- Appalachian Mountains, but, in recent decades, its current tisols that are low in productivity, shallow, stony, and highly natural distribution has been reduced to less than 30,000 ac acidic and have poor profile development (Zobel 1969). Trees (12,000 ha). Reasons for this decline include wildfire suppres- growing on these sites have a stunted, gnarled, wind-sculpted sion programs of the early 20th century, southern pine beetle appearance, but the species can grow taller and straighter on out breaks, and recent climate fluctuations. Part of the effort to better quality sites (figure 2). mitigate this decline is a 5-year, cooperative, genetic-resource conservation effort being conducted by Camcore (International Table Mountain pine is a member of the pine subsection Aus- Tree Breeding and Conservation, North Carolina [NC] State trales and is most closely related to pitch pine (Pinus rigida University) and the U.S.
    [Show full text]
  • SOUTHERN PINE BEETLE (Dendroctonus Frontalis Zimmermann)
    SOUTHERN PINE BEETLE (Dendroctonus frontalis Zimmermann): SEMIOCHEMICAL ECOLOGY, RELATIONSHIP BETWEEN OUTBREAK POPULATIONS AND LIGHTNING STRIKE, AND ECOLOGICAL IMPACTS OF SUPPRESSION AND CONTROL TECHNIQUES. by JENNY C. STAEBEN (Under the Direction of Kamal J. K. Gandhi) ABSTRACT The economically damaging southern pine beetle (Dendroctonus frontalis Zimmermann) is one of the most destructive insect pests in southeastern United States. SPB populations are monitored using a racemic kairomone, α-pinene, and pheromone, frontalin to capture SPB and predator, Thanasimus dubius (Fabricius). I assessed whether SPB and T. dubius differentiate between enantiomers of α-pinene. Results indicated the response of female and male SPB to α-pinene enantiomers did not significantly differ, although males were somewhat more responsive to (+)-α-pinene. Captures of T. dubius increased with volumes of α-pinene, and T. dubius did not differentiate between enantiomers. Typically SPB infest pines other southern pine bark beetle guild (SPBBG) members (which include Dendroctonus terebrans (Olivier) and Ips beetle species). Colonizing Ips species release either ipsdienol and/or ipsenol. I assessed the inter- and intraspecies attraction among SPBBG and their predators. Results indicate SPB and T. dubius are not attracted to Ips attractants and vice versa. BTB and Ips calligraphus (Germar) were attracted to Ips attractants. SPBBG predators (other than Pycnomerus sulcicollis LeConte) did not differentiate between SPB and Ips attractants. Using linear regression, I assessed the relationship between lightning strike and SPB infestations. Results indicated a relationship between SPB infestations developing within 100-250 m of a negatively-charged lightning strike with a magnitude of > 150 kilo amps. There was no relationship between the basal area pine stands and the likelihood of lightning strike.
    [Show full text]
  • Two Species Within Dendroctonus Frontalis (Coleoptera: Curculionidae
    Two Species within Dendroctonus frontalis (Coleoptera: Curculionidae): Evidence from Morphological, Karyological, Molecular, and Crossing Studies Author(s): Francisco Armendáriz-Toledano, Alicia Niño, Brian T. Sullivan, Jorge Macías-Sámano, Javier Víctor, Stephen R. Clarke, and Gerardo Zúñiga Source: Annals of the Entomological Society of America, 107(1):11-27. 2014. Published By: Entomological Society of America URL: http://www.bioone.org/doi/full/10.1603/AN13047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. SYSTEMATICS Two Species Within Dendroctonus frontalis (Coleoptera: Curculionidae): Evidence From Morphological, Karyological, Molecular, and Crossing Studies FRANCISCO ARMENDA´ RIZ-TOLEDANO,1 ALICIA NIN˜ O,2 BRIAN T. SULLIVAN,3 2,4 1 5 1,6 JORGE MACI´AS-SA´ MANO, JAVIER VI´CTOR, STEPHEN R. CLARKE, AND GERARDO ZU´ N˜ IGA Ann. Entomol. Soc. Am. 107(1): 11Ð27 (2014); DOI: http://dx.doi.org/10.1603/AN13047 ABSTRACT Dendroctonus frontalis Zimmermann is considered one of the most important economic and ecological forest pests in the United States, Mexico, and Central America.
    [Show full text]
  • Red Turpentine Beetle)
    Diagnostic protocol for the identification and detection of Dendroctonus valens LeConte (Red Turpentine Beetle) PEST STATUS Not present in Australia PROTOCOL NUMBER NDP 24 VERSION NUMBER V1.2 PROTOCOL STATUS Endorsed ISSUE DATE May 2013 REVIEW DATE May 2018 ISSUED BY SPHDS Prepared for the Subcommittee on Plant Health Diagnostic Standards (SPHDS) This version of the National Diagnostic Protocol (NDP) for Dendroctonus valens LeConte (Red Turpentine Beetle) is current as at the date contained in the version control box on the front of this document. NDPs are updated every 5 years or before this time if required (i.e. when new techniques become available). The most current version of this document is available from the National Plant Biosecurity Diagnostic Network (NPBDN) website: http://plantbiosecuritydiagnostics.net.au/resource- hub/priority-pest-diagnostic-resources/ Cover photograph: J. Bartlett, QPIF DEEDI CONTENTS 1 Introduction ..........................................................................................................1 1.1 Appearance .....................................................................................................1 1.2 Native Host Range ...........................................................................................2 1.3 Effect on host ...................................................................................................2 1.4 Relationship with other organisms ...................................................................2 2 Taxonomy ............................................................................................................4
    [Show full text]
  • Species Composition and Succession in Yellow Pine Stands Following Southern Pine Beetle Outbreaks in Tennessee – Preliminary Results
    SPECIES COMPOSITION AND SUCCESSION IN YELLOW PINE STANDS FOLLOWING SOUTHERN PINE BEETLE OUTBREAKS IN TENNESSEE – PRELIMINARY RESULTS Christopher M. Oswalt, Sonja N. Oswalt, and Jason R. Meade1 Abstract—The southern pine beetle (Dendroctonus frontalis) is a bark beetle that is native to the Southern United States, including Tennessee. The beetle is periodically epidemic and can cause high levels of mortality during epidemic years, particularly in dense or aging pine (Pinus spp.) stands. An epidemic outbreak of the Southern pine beetle occurred in 1999-2001. By 2001, at the peak of the epidemic, 55 counties in Tennessee were in outbreak status. Subsequent estimations suggest that over 350,000 acres of pine timber in the State were affected by the outbreak, causing hundreds of millions of dollars in damage. Given the relative scarcity of the softwood resource in the State compared to the abundance of hardwood species and the significant economic importance of softwoods in Tennessee, the composition and successional trajectory of pine stands impacted by southern pine beetle in the most recent 1999-2001 outbreak is of interest. Here, we measure and quantify the impacts of this southern pine beetle outbreak on the successional trajectory of impacted yellow pine stands. Plots from the Forest Service, U.S. Department of Agriculture Forest Inventory and Analysis Program measured prior, during, and after the outbreak are used to estimate the changes that occurred in southern yellow pine systems within Tennessee. The results from this study suggest that approximately 25 percent of the softwood-dominated forests in Tennessee was lost following the 2000 southern pine beetle event.
    [Show full text]
  • Southern Pine Beetle Fact Sheet
    SOUTHERN PINE BEETLE Dendroctonus frontalis ▐ What is the southern pine beetle (SPB)? The southern pine beetle, or SPB, is a bark beetle that infests pine trees. The beetle is small, only 2-4 mm in length, about the size of a grain of rice, and is red-brown to black in color. SPB is native to the southeastern United States but has been expanding up the Eastern Seaboard in recent years. Warming of winter temperatures has most likely contributed to this range expansion. ▐ Where is SPB located? SPB was first reported in New York in late September, 2014 in Suffolk County Southern pine beetle on Long Island. It has now been found throughout Suffolk County, but the USDA Forest Service, Bugwood.org largest infestations are located in Wertheim National Wildlife Refuge, Connetquot River State Park, and the Henry's Hollow Pine Barrens State Forest. SPB has also been found in Bear Mountain State Park in Orange and Rockland Counties and in Minnewaska State Park in Ulster County. ▐ What does it do to trees? The adult beetle enters the tree through crevices in the bark and then creates S-shaped tunnels in the cambium tissue, just beneath the bark. This disrupts the flow of nutrients, killing the tree in typically 2-4 months. Most trees resist the initial attacks by secreting resin that can "pitch out" some adults and slow the entry of others, but trees almost always die as their defenses are overwhelmed by thousands of attacking beetles. SPB has always been the most destructive pest of southern pine forests.
    [Show full text]
  • Evaluation of Phenological Indicators for Optimizing Spring Southern Pine Beetle (Coleoptera: Curculionidae: Scolytinae) Trapping Surveys
    Evaluation of phenological indicators for optimizing spring southern pine beetle (Coleoptera: Curculionidae: Scolytinae) trapping surveys John W. Thomason1, Stephen Clarke2, and John J. Riggins1,* Abstract Since 1987, as many as 16 southeastern US states participate in a 4 wk annual spring Dendroctonus frontalis (Zimmerman) (Coleoptera: Curculioni- dae) trapping survey. The purpose of the survey is to assess the current D. frontalis outbreak potential, and anticipate prevention and suppression needs for the coming yr. This prediction system relies on capturing the peak D. frontalis spring dispersal, thus timing of trap deployment is crucial. Forest managers traditionally attempt to deploy traps at the onset of flowering dogwood (Cornus florida L.; Cornaceae) bloom, which is commonly assumed to coincide with peak D. frontalis spring dispersal. The objective of this study is to examine the validity of dogwood bloom as an indicator of peak D. frontalis spring dispersal. Yr-round trapping data in 2014 and 2015 from Mississippi and Florida were used to identify peak D. frontalis and Thanasimus dubius (Fabricius) (Coleoptera: Cleridae) dispersal periods. Peak D. frontalis dispersal then was compared with dogwood bloom- ing dates from the USA National Phenology Network and personal records. Then, both dogwood bloom dates and peak D. frontalis dispersal were compared with timing of actual historic stateD. frontalis trapping efforts. We also compared peakD. frontalis dispersal with T. dubius peak dispersal, because T. dubius trap captures are used in the prediction model. Last, we examined the utility of extending the spring survey to 6 wk by comparing the 4 wk peak D. frontalis trap captures with a corresponding 6 wk peak.
    [Show full text]
  • Table Mountain Pine Conservation and Restoration Strategies
    Table Mountain Pine Conservation and Restoration Strategies Robert Jetton1, Barbara Crane2, Bill Dvorak1, Valerie Hipkins3 Table Mountain Pine (TMP), Pinus pungens Lamb., is endemic to the Appalachian Mountains where it typically occupies xeric, southwest facing ridges between 305 and 1220 meters elevation (Zobel 1969). The native range of TMP extends from southern Pennsylvania south to northern Georgia, with numerous outlying Piedmont populations to the east and west of the Appalachian chain that are invariably associated with monadnocks. The species has been used commercially as a source of pulpwood, low-grade sawtimber, and firewood, but is most valuable for the ecosystem services it provides. The serotinous seed cones are a year-round source of food for wildlife, and the trees themselves help to stabilize soils along ridgelines, minimizing erosion and runoff (Della-Bianca 1990). In the Southern Appalachian Mountains TMP populations are declining due to wild-fire suppression programs (Williams 1998) and periodic outbreaks of the Southern Pine Beetle, Dendroctonus frontalis Zimm. (Knebel and Wentworth 2007). As of 2008, U.S. Forest Service inventory data indicated less than 11,000 hectares of the Table Mountain Pine–Pitch Pine forest type surviving in the region (B.S. Crane, personal communication). TMP is a fire-adapted species, and historically successful regeneration on a site has been dependent on lightning and human caused wildfires that eliminate hardwood competition, release advanced TMP regeneration, and stimulate seed release from the serotinous cones of mature trees (Williams 1998). Since the late 1930s, an emphasis on fire suppression in the Southern Appalachians has prevented this process from occurring and allowed succession in these sites to move toward permanent dominance of oaks and other hardwoods.
    [Show full text]