Grid Computing and Netsolve

Total Page:16

File Type:pdf, Size:1020Kb

Grid Computing and Netsolve Between Now and the End Grid Computing Today March 30th Grids and NetSolve and April 6th Felix Wolf: More on Grid computing, peer-to-peer, grid NetSolve infrastructure etc April 13th Jack Dongarra Performance Measurement with PAPI (Dan Terpstra) April 20th: Debugging (Shirley Moore) April 25th (Monday): Presentation of class projects 1 2 More on the In-Class Presentations Distributed Computing Start at 1:00 on Monday, 4/25/05 Concept has been around for two decades Roughly 20 minutes each Basic idea: run scheduler across systems to Use slides runs processes on least-used systems first Describe your project, perhaps motivate via Maximize utilization application Minimize turnaround time Describe your method/approach Have to load executables and input files to Provide comparison and results selected resource Shared file system See me about your topic File transfers upon resource selection 3 4 Examples of Distributed Computing SETI@home: Global Distributed Computing Running on 500,000 PCs, ~1000 CPU Years per Day Workstation farms, Condor flocks, etc. 485,821 CPU Years so far Sophisticated Data & Signal Processing Analysis Generally share file system Distributes Datasets from Arecibo Radio Telescope SETI@home project, United Devices, etc. Only one source code; copies correct binary code and input data to each system Napster, Gnutella: file/data sharing NetSolve Runs numerical kernel on any of multiple independent systems, much like a Grid solution 5 6 1 SETI@home Grid Computing - from ET to Use thousands of Internet- connected PCs to help in the Anthrax search for extraterrestrial intelligence. Uses data collected with the Arecibo Radio Telescope, in Puerto Rico Largest distributed When their computer is idle or computation project in being wasted this software will existence download a 300 kilobyte chunk ~ 400,000 machines of data for analysis. Averaging 27 Tflop/s The results of this analysis are sent back to the SETI team, Today many companies trying combined with thousands of this for profit. other participants. 7 8 United Devices and Cancer Screening Grid Computing Enable communities (“virtual organizations”) to share geographically distributed resources as they pursue common goals—in the absence of central control, omniscience, trust relationships. Resources (HPC systems, visualization systems & displays, storage systems, sensors, instruments, people) are integrated via ‘middleware’ to facilitate use of all resources. 9 10 Why Grids? Why Grids? A biochemist exploits 10,000 computers to screen Resources have different functions, but 100,000 compounds in an hour multiple classes resources are necessary for 1,000 physicists worldwide pool resources for most interesting problems. petaop analyses of petabytes of data Power of any single resource is small Civil engineers collaborate to design, execute, & compared to aggregations of resources analyze shake table experiments Network connectivity is increasing rapidly in Climate scientists visualize, annotate, & analyze bandwidth and availability terabyte simulation datasets An emergency response team couples real time Large problems require teamwork and data, weather model, population data computation 11 12 2 Why Grids? (contd.) The Grid Problem A multidisciplinary analysis in aerospace couples Flexible, secure, coordinated resource code and data in four companies sharing among dynamic collections of A home user invokes architectural design individuals, institutions, and resource From “The Anatomy of the Grid: Enabling Scalable Virtual Organizations” functions at an application service provider Enable communities (“virtual organizations”) An application service provider purchases cycles to share geographically distributed from compute cycle providers resources as they pursue common goals -- Scientists working for a multinational soap assuming the absence of… company design a new product central location, central control, A community group pools members’ PCs to analyze alternative designs for a local road omniscience, existing trust relationships. 13 14 Elements of the Problem Grid vs. Internet/Web Services? Resource sharing We’ve had computers connected by networks Computers, storage, sensors, networks, … for 20 years Sharing always conditional: issues of trust, policy, negotiation, payment, … We’ve had web services for 5-10 years Coordinated problem solving The Grid combines these things, and brings Beyond client-server: distributed data analysis, additional notions computation, collaboration, … Virtual Organizations Dynamic, multi-institutional virtual organisations Infrastructure to enable computation to be carried out Community overlays on classic org structures across these Large or small, static or dynamic Authentication, monitoring, information, resource discovery, status, coordination, etc Can I just plug my application into the Grid? No! Much work to do to get there! 15 16 What does this mean now for users and Network Bandwidth Growth developers? There is a grand vision of the future Network vs. computer performance Collecting resources around the world into Vos Computer speed doubles every 18 months Seamless access to them, with a single signon Network speed doubles every 9 months NEW applications to exploit of them in unique ways! Today we want to help you prepare for this Difference = order of magnitude per 5 years There is a frustrating reality of the present 1986 to 2000 These technologies are not yet fully mature Computers: x 500 Not fully deployed Networks: x 340,000 Not consistent across even single Vos But centers and funding agencies worldwide are 2001 to 2010 pushing this very, very hard Computers: x 60 Better get ready now Networks: x 4000 You can help! Work with your centers to get this deployed 17 Moore’s Law vs. storage improvements vs. optical improvements. Graph from Scientific American18(Jan- 2001) by Cleo Vilett, source Vined Khoslan, Kleiner, Caufield and Perkins. 3 Computational Grids and The Grid Electric Power Grids To treat CPU cycles and software like commodities. Why the Computational Why the Computational Grid is like the Electric Grid is different from Napster on steroids. Power Grid the Electric Power Grid Electric power is Wider spectrum of Enable the coordinated use of geographically distributed resources – in the absence of central control and existing trust relationships. ubiquitous performance Computing power is produced much like utilities such as power and Don’t need to know the Wider spectrum of water are produced for consumers. source of the power services Users will have access to “power” on demand (transformer, Access governed by “When the Network is as fast as the computer’s internal links, the generator) or the power more complicated machine disintegrates across the Net into a set of special purpose company that serves it issues appliances” Security Gilder Technology Report June 2000 Performance Socio-political factors 19 20 What is Grid Computing? The Computational Grid is… Resource sharing & coordinated problem solving in dynamic, multi-institutional …a distributed control infrastructure that allows virtual organizations applications to treat compute cycles as commodities. Power Grid analogy Power producers: machines, software, networks, storage DATA ADVANCED systems ACQUISITION VISUALIZATION ,ANALYSIS Power consumers: user applications Applications draw power from the Grid the way appliances draw electricity from the power utility. QuickTime™ and a decompressor are needed to see this picture. COMPUTATIONAL Seamless RESOURCES IMAGING INSTRUMENTS LARGE-SCALE DATABASES High-performance Ubiquitous Dependable 21 22 Introduction Introduction Grid systems can be classified depending on Computational Grid: their usage: denotes a system that has a higher aggregate Distributed Computational Supercomputing capacity than any of its constituent machine Grid High it can be further categorized based on how the Throughput overall capacity is used Grid Data Grid Systems Distributed Supercomputing Grid: On Demand executes the application in parallel on multiple Service machines to reduce the completion time of a job Collaborative Grid Multimedia 23 24 4 Introduction Introduction Grand challenge problems typically require a Data Grid: distributed supercomputing Grid – one of the systems that provide an infrastructure for motivating factors of early Grid research – synthesizing new information from data still driving in some quarters repositories such as digital libraries or data High throughput Grid: warehouses increases the completion rate of a stream of jobs applications for these systems would be special arriving in real time purpose data mining that correlates information ASIC or processor design verifications tests would from multiple different high volume data sources be run on a high throughput Grid 25 26 Introduction Introduction Service Grid: Multimedia Grid: systems that provide services that are not provides an infrastructure for real time multimedia provided by any single machine applications -- requires the support quality of subdivided based on the type of service they service across multiple different machines provide whereas a multimedia application on a single dedicated machine can be deployed without QoS collaborative Grid: synchronization between network and end-point connects users and applications into collaborative QoS workgroups -- enable real time interaction between
Recommended publications
  • Grid Computing: What Is It, and Why Do I Care?*
    Grid Computing: What Is It, and Why Do I Care?* Ken MacInnis <[email protected]> * Or, “Mi caja es su caja!” (c) Ken MacInnis 2004 1 Outline Introduction and Motivation Examples Architecture, Components, Tools Lessons Learned and The Future Questions? (c) Ken MacInnis 2004 2 What is “grid computing”? Many different definitions: Utility computing Cycles for sale Distributed computing distributed.net RC5, SETI@Home High-performance resource sharing Clusters, storage, visualization, networking “We will probably see the spread of ‘computer utilities’, which, like present electric and telephone utilities, will service individual homes and offices across the country.” Len Kleinrock (1969) The word “grid” doesn’t equal Grid Computing: Sun Grid Engine is a mere scheduler! (c) Ken MacInnis 2004 3 Better definitions: Common protocols allowing large problems to be solved in a distributed multi-resource multi-user environment. “A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities.” Kesselman & Foster (1998) “…coordinated resource sharing and problem solving in dynamic, multi- institutional virtual organizations.” Kesselman, Foster, Tuecke (2000) (c) Ken MacInnis 2004 4 New Challenges for Computing Grid computing evolved out of a need to share resources Flexible, ever-changing “virtual organizations” High-energy physics, astronomy, more Differing site policies with common needs Disparate computing needs
    [Show full text]
  • Contributions to Desktop Grid Computing Gilles Fedak
    Contributions to Desktop Grid Computing Gilles Fedak To cite this version: Gilles Fedak. Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures. Calcul parallèle, distribué et partagé [cs.DC]. Ecole Normale Supérieure de Lyon, 2015. tel-01158462v2 HAL Id: tel-01158462 https://hal.inria.fr/tel-01158462v2 Submitted on 7 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright University of Lyon Habilitation `aDiriger des Recherches Contributions to Desktop Grid Computing From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures Gilles Fedak 28 Mai 2015 Apr`esavis de : Christine Morin Directeur de Recherche, INRIA Pierre Sens Professeur, Universit´eParis VI Domenico Talia Professeur, University of Calabria Devant la commission d'examen form´eede : Vincent Breton Directeur de Recherche, CNRS Christine Morin Directeur de Recherche, INRIA Manish Parashar Professeur, Rutgers University Christian Perez Directeur de Recherche, INRIA Pierre Sens Professeur, Universit´eParis VI Domenico Talia Professeur, University of Calabria Contents 1 Introduction 9 1.1 Historical Context . .9 1.2 Contributions . 13 1.3 Summary of the Document . 16 2 Evolution of Desktop Grid Computing 19 2.1 A Brief History of Desktop Grid and Volunteer Computing .
    [Show full text]
  • Resume Ivo Janssen
    Ivo J. Janssen 13266 Kerrville Folkway Austin, TX 78729 (512) 750-9455 / [email protected] Objective To be part of a successful professional services team in a pre-sales and post-sales architecture and deployment role. Summary I'm an experienced, enthusiastic and skilled professional services consultant with experience in architecting and supporting large-scale enterprise software, with extensive experience in designing and implementing custom solutions as part of pre- and post sales support activities in diverse industry verticals across five continents. I'm as comfortable in designing and coding in an engineering role as I am in on-site planning, executing and troubleshooting customer deployments in a professional services role, as well as in participating in sales calls and drafting proposals in a sales engineering role. I'm able to adapt to new environments quickly and rapidly become proficient with new systems, tools and skills. I'm a good team player who thinks beyond the problem at hand instead of following the established paths in order to find a better solution that meets both current and future needs. Professional experience • Virtual Bridges , Austin, TX, USA (Nov 2010 – present) Senior Solution Architect o Solution architect for VDI product line. • Initiate Systems / IBM , Austin, TX, USA (Sep 2008 – Nov 2010) Senior Consultant o Senior implementation engineer for Healthcare sector of Master Data Management product line. o Responsibilities include requirements gathering, product installation and configuration, custom coding, connectivity scripting on Windows and Unix, database performance tuning, customer training workshops, pre/post-sales support. o Successfully architected, implemented and brought live custom implementation projects for major hospital systems and labs in the US, including customers with up to 250 million records (1TB database) connected to 20 auxiliary systems.
    [Show full text]
  • Grid Computing in Research and Business Status and Direction
    Unicore Summit, Sophia Antipolis Oct 11 – 12, 2005 Grid Computing In Research and Business Status and Direction Wolfgang Gentzsch, D-Grid and RENCI Unicore Summit Sophia Antipolis, October 11 – 12, 2005 Topics of the Day What is a Grid ? Why should we care about Grid ? Grid Examples: Research, Industry, Community 12 good reasons why grids are ready for research and early adopters in business Grid challenges and opportunities in business The future of Grid Computing Unicore Summit Sophia Antipolis, October 11 – 12, 2005 What is a Grid ? 1001 Definitions Distributed, networked computing & data resources Networking and computing infrastructure for utility computing Distributed platform for sharing scientific experiments and instruments The next generation of enterprise IT architecture The next generation of the Internet and the WWW Computing from the wall socket The Advanced Network …and 994 more… Unicore Summit Sophia Antipolis, October 11 – 12, 2005 What is a Grid ? 1001 Definitions It’s all about distributed, networked, shared resources in (virtual) organizations Unicore Summit Sophia Antipolis, October 11 – 12, 2005 Industry is on a Journey Old World New World Static Dynamic Silo Shared Physical Virtual Courtesy Mark Linesch, GGF Manual Automated Application Service Transitioning from Silo Oriented Architecture to Service Oriented Architecture Unicore Summit Sophia Antipolis, October 11 – 12, 2005 Example: Tele-Science Grid coordinated problem solving on dynamic and heterogeneous resource assemblies DATA ADVANCED ACQUISITION VISUALIZATION ,ANALYSIS QuickTime™ and a decompressor are needed to see this picture. COMPUTATIONAL RESOURCES IMAGING INSTRUMENTS LARGE-SCALE DATABASES Courtesy of Ellisman & Berman /UCSD&NPACI Unicore Summit Sophia Antipolis, October 11 – 12, 2005 Why should we care about Grids ? Three Examples Research Grid Industry Grid Community Grid Unicore Summit Sophia Antipolis, October 11 – 12, 2005 Grids for Research: NEES, Network for Earthquake Engineering Simulation NEESgrid links earthquake researchers across the U.S.
    [Show full text]
  • The Grid: Past, Present, Future
    1 The Grid: past, present, future Fran Berman,1 Geoffrey Fox,2 and Tony Hey3,4 1University of California, San Diego, California, 2Indiana University, Bloomington, Indiana, 3EPSRC, Swindon, United Kingdom, 4University of Southampton, Southampton, United Kingdom 1.1 THE GRID The Grid is the computing and data management infrastructure that will provide the elec- tronic underpinning for a global society in business, government, research, science and entertainment [1–5]. Grids idealized in Figure 1.1 integrate networking, communication, computation and information to provide a virtual platform for computation and data man- agement in the same way that the Internet integrates resources to form a virtual platform for information. The Grid is transforming science, business, health and society. In this book we consider the Grid in depth, describing its immense promise, potential and com- plexity from the perspective of the community of individuals working hard to make the Grid vision a reality. The Grid infrastructure will provide us with the ability to dynamically link together resources as an ensemble to support the execution of large-scale, resource-intensive, and distributed applications. Grid Computing – Making the Global Infrastructure a Reality, edited by F. Berman, G. Fox and T. Hey. 2002 John Wiley & Sons, Ltd. 10 FRAN BERMAN, GEOFFREY FOX, AND TONY HEY Data Advanced acquisition visualization Analysis Computational resources Imaging instruments Large-scale databases Figure 1.1 Managed digital resources as building blocks of the Grid. Large-scale Grids are intrinsically distributed, heterogeneous and dynamic. They pro- mise effectively infinite cycles and storage, as well as access to instruments, visualization devices and so on without regard to geographic location.
    [Show full text]
  • Grid Computing
    TheThe EmergingEmerging GridGrid ExperienceExperience BaseBase Dr. Francine Berman Director, SDSC and NPACI Professor and High Performance Computing Endowed Chair, Department of Computer Science and Engineering, UC San Diego NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE SAN DIEGO SUPERCOMPUTER CENTER, UCSD Grid Computing • Google shows 434 refs for “Grid Computing” • Amazon.com has 69 books on “Grid Computing” • IBM, SUN, HP, United Devices, Cray, Intel, etc. have efforts in Grid computing • The Global Grid Forum participants come from over 400 organizations in over 50 countries • GridToday reaches over 37,000 readers How come there aren’t more users? NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE SAN DIEGO SUPERCOMPUTER CENTER, UCSD The many faces of Grid Computing The Grid as a balancing act The Grid as core infrastructure The Grid as The Grid as over-hyped software technology Tower of Babel NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE SAN DIEGO SUPERCOMPUTER CENTER, UCSD Enough already … Roland Piquepaille's Technology Trends How new technologies are modifying our way of life Do Plants Practice Grid Computing? According to Nature, plants seem to optimize their 'breathing' by conducting simple calculations through a distributed computing scheme. "Plants appear to 'think', according to US researchers, who say that green plants engage in a form of problem-solving computation.“ January 2004 … NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE SAN DIEGO SUPERCOMPUTER CENTER,
    [Show full text]
  • The Grid: Past, Present, Future
    1 The Grid: past, present, future Fran Berman,1 Geoffrey Fox,2 and Tony Hey3,4 1San Diego Supercomputer Center, and Department of Computer Science and Engineering, University of California, San Diego, California, 2Indiana University, Bloomington, Indiana, 3EPSRC, Swindon, United Kingdom, 4University of Southampton, Southampton, United Kingdom 1.1 THE GRID The Grid is the computing and data management infrastructure that will provide the elec- tronic underpinning for a global society in business, government, research, science and entertainment [1–5]. Grids, illustrated in Figure 1.1, integrate networking, communica- tion, computation and information to provide a virtual platform for computation and data management in the same way that the Internet integrates resources to form a virtual plat- form for information. The Grid is transforming science, business, health and society. In this book we consider the Grid in depth, describing its immense promise, potential and complexity from the perspective of the community of individuals working hard to make the Grid vision a reality. Grid infrastructure will provide us with the ability to dynamically link together resources as an ensemble to support the execution of large-scale, resource-intensive, and distributed applications. Grid Computing – Making the Global Infrastructure a Reality. Edited by F. Berman, G. Fox and T. Hey 2002 John Wiley & Sons, Ltd ISBN: 0-470-85319-0 10 FRAN BERMAN, GEOFFREY FOX, AND TONY HEY Data Advanced acquisition visualization Analysis Computational resources Imaging instruments Large-scale databases Figure 1.1 Grid resources linked together for neuroscientist Mark Ellisman’s Telescience appli- cation (http://www.npaci.edu/Alpha/telescience.html). Large-scale Grids are intrinsically distributed, heterogeneous and dynamic.
    [Show full text]
  • A Review and Classification of Grid Computing Systems
    International Journal of Computational Intelligence Research ISSN 0973-1873 Volume 13, Number 3 (2017), pp. 369-402 © Research India Publications http://www.ripublication.com A Review and Classification of Grid Computing Systems Manoj Kumar Mishra1, Yashwant Singh Patel2, Moumita Ghosh3, G. B. Mund4 1,3,4School of Computer Engineering, KIIT University, India. 2Department of Computer Science, CDGI, India. Abstract Grid Computing is used for high throughput computing at a lower-cost. It has the ability to accumulate the power of geographically scattered and heterogeneous resources to form a cohesive resource for performing higher level computations. Today’s multidimensional and multidomain applications need multiple resources with diverse characteristics, i.e. huge computational power, larger storage capacity, higher processing speed and quicker accessibility of data. In recent past, many Grid Systems emerged in the form of various projects to solve many real-world complex problems. The resources required for efficient and reliable execution of the applications should be selected in accordance with the application requirements. This may be possible by classifying the Grid resources based on their major characteristics. The distinction of various Grid Systems into different categories aims towards supporting resource selection process in accordance with the application requirements. This paper presents a review and the state-of-the-art classification of Grid Systems in the perspective of scheduling and selection. A sequence of Grid System classification is presented based on Application type, Functionality, Scale, and Scope, including a brief study on each type. Finally, concluding remarks provides an assessment of various Grid Systems with the help of information collected from different sources.
    [Show full text]
  • A Distributed System for Enumerating Main Classes of Sets of Mutually Orthogonal Latin Squares
    A distributed system for enumerating main classes of sets of mutually orthogonal Latin squares Johannes Gerhardus Benad´e Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of Science at Stellenbosch University Supervisor: Prof JH van Vuuren Co-supervisor: Dr AP Burger December 2014 Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly oth- erwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 1, 2014 Copyright c 2014 Stellenbosch University All rights reserved i ii Abstract A Latin square is an n × n array containing n copies of each of n distinct symbols in such a way that no symbol is repeated in any row or column. Two Latin squares are orthogonal if, when superimposed, the ordered pairs in the n2 cells are all distinct. This notion of orthogonality ex- tends naturally to sets of k > 2 mutually orthogonal Latin squares (abbreviated in the literature as k-MOLS), which find application in scheduling problems and coding theory. In these instances it is important to differentiate between structurally different k-MOLS. It is thus useful to classify Latin squares and k-MOLS into equivalence classes according to their structural properties | this thesis is concerned specifically with main classes of k-MOLS, one of the largest equivalence classes of sets of Latin squares.
    [Show full text]
  • Good Practice Guide No. 17 Distributed Computing for Metrology
    NPL REPORT DEM-ES 006 Software Support for Metrology - Good Practice Guide No. 17 Distributed computing for metrology applications T J Esward, N J McCormick, K M Lawrence and M J Stevens NOT RESTRICTED March 2007 National Physical Laboratory | Hampton Road | Teddington | Middlesex | United Kingdom | TW11 0LW Switchboard 020 8977 3222 | NPL Helpline 020 8943 6880 | Fax 020 8943 6458 | www.npl.co.uk Software Support for Metrology Good Practice Guide No. 17 Distributed computing for metrology applications T J Esward, N J McCormick, K M Lawrence and M J Stevens Mathematics and Scientific Computing Group March 2007 ABSTRACT This guide aims to facilitate the effective use of distributed computing methods and techniques by other National Measurement System (NMS) programmes and by metrologists in general. It focuses on the needs of those developing applications for distributed computing systems, and on PC desktop grids in particular, and seeks to ensure that application developers are given enough knowledge of system issues to be able to appreciate what is needed for the optimum performance of their own applications. Within metrology, the use of more comprehensive and realistic mathematical models that require extensive computing resources for their solution is increasing. The motivation for the guide is that in several areas of metrology the computational requirements of such models are so demanding that there is a strong requirement for distributed processing using parallel computing on PC networks. Those who need to use such technology can benefit from guidance on how best to structure the models and software to allow the effective use of distributed computing.
    [Show full text]
  • Gridrid Iirrumperrumpe Eenn La Empresa
    Informe GGridrid iirrumperrumpe eenn la empresa Grid computing es un nuevo paradigma de computación distribuida propuesto por Ian Foster y Carl Kesselman a mediados de los años 90 como una revolucionaría tecnología para resolver problemas complejos entre diversas organizaciones optimizando costes y tiempo. Hoy, cuando es ya una realidad en el ámbito científi co y académico, la computación grid prepara el salto defi nitivo al mundo de la empresa. ➜ 30 Comunicaciones World / Marzo 2006 330-380-38 IInforme209.inddnforme209.indd 3300 221/02/20061/02/2006 111:51:141:51:14 rid computing está dejando de ser una herramien- ta tecnológica dedicada exclusivamente a unir re- cursos informáticos en grades redes de compu- Arquitectura grid tación de centros académicos y de investigación Las aplicaciones que se para empezar a estar presente también en los en- desarrollen para ser ejecutadas tornos de empresa como alternativa estratégica en un ordenador concreto para el nuevo concepto de centro de datos. En deberán ser adaptadas teniendo este centro de datos de próxima generación, la en cuenta la arquitectura grid computing representa para muchos el paradigma último de la informática del grid. Habitualmente se Gdistribuida, en combinación con las nuevas tendencias que, como la virtualiza- describe la arquitectura del ción, la utility computing, la autonomic computing o la informática bajo deman- grid en términos de “capas”, da, están cambiando radicalmente la visión de los recursos TIC, que ahora de- cada una de ellas con una jan de ser considerados desde una perspectiva física para ser concebidos des- determinada función. Las capas de un punto de vista lógico.
    [Show full text]
  • Grid Connections Spring 03.Pmd
    Spring 2003 Vol. 1 Issue 2 Inside This Issue GGF8, HPDC-12 to Shine in Seattle 2 Chairman’s Forum Two heavyweights of grid information come European Commission—and special “Grid together in Seattle, Washington, this June as 2, 3 GGF@Work Debate” panels. Panel topics will include: GGF8 and HPDC-12 are set to provide “Real Grids I (Taxicab Confessions),” 4 Sponsor Spotlight keynote speeches, panels, updates and “International Grid Infrastructure: Is It Real tutorials highlighting recent innovations and 4, 5 GGF News or Simply a Dream?,” and “What Needs to be current developments in grid computing. The Done to Achieve International Cooperation 5 Membership Update 12th IEEE International Symposium on High- on Open Software?”. In addition, a town hall Performance Grid Computing (HPDC-12) meeting will be held to discuss hot grid 6 Upcoming Events will be held June 22-24 and the 8th Global topics. The full plenary program is available 6 Novel Solutions Grid Forum (GGF8) will be held June 24-27, at www.ggf.org. both at the Sheraton Seattle Hotel and Towers. Beyond the plenary sessions, Birds-of-a- 7 Grids in the News With the theme “Building Grids: Obstacles Feather (BOFs) sessions, workshops, 8 GGF Network and Opportunities,” GGF8 will update global working group/research group sessions and grid practitioners, enthusiasts and tutorials will round out the four-day program. GGF Mission Statement researchers on the current state of grid The GGF8 program has been developed by a technology. The plenary program will run number of dedicated grid practitioners from To focus on the promotion and from June 25-27 and feature six keynote both research and industry, including development of Grid speakers—John Gage, Sun Microsystems, Program Co-Chairs Fabrizio Gagliardi, technologies and applications Shane Robison, HP, David Wallace, CERN, and Dr.
    [Show full text]