Protection and Restoration in Mpls Networks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhanced Fast Rerouting Mechanisms for Protected Traffic in Mpls Networks
ENHANCED FAST REROUTING MECHANISMS FOR PROTECTED TRAFFIC IN MPLS NETWORKS Lemma Hundessa Gonfa UPC. Universitat Polit`ecnica de Catalunya Barcelona (Spain). February, 2003 Thesis Advisor: Prof. Jordi Domingo-Pascual A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor en Inform`atica ENHANCED FAST REROUTING MECHANISMS FOR PROTECTED TRAFFIC IN MPLS NETWORKS Lemma Hundessa Gonfa Thesis Advisor: Prof. Jordi Domingo-Pascual vi To my wife Dr. Truwork whose patience, love, support and encouragement enabled me to complete this thesis and was of great help in difficult times. To my parents for their interest and encouragement of my academic success since a very early age. Finally, to great Samson Gobena and Begashaw, in memory. viii ABSTRACT Multiprotocol Label Switching (MPLS) fuses the intelligence of routing with the per- formance of switching and provides significant benefits to networks with a pure IP architecture as well as those with IP and ATM or a mix of other Layer 2 technologies. MPLS technology is key to scalable virtual private networks (VPNs) and end-to-end quality of service (QoS), enabling efficient utilization of existing networks to meet future growth. The technology also helps to deliver highly scalable, differentiated end-to-end IP services with simpler configuration, management, and provisioning for both Internet providers and end-users. However, MPLS is a connection-oriented ar- chitecture. In case of failure MPLS first has to establish a new label switched path (LSP) and then forward the packets to the newly established LSP. For this reason MPLS has a slow restoration response to a link or node failure on the LSP. -
Study of P-Cycle Based Protection in Optical Networks and Removal of Its
STUDY OF P-CYCLE BASED PROTECTION IN OPTICAL NETWORKS AND REMOVAL OF ITS SHORTCOMINGS A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Rachna Asthana (nee Srivastava) to the DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR, INDIA NOVEMBER, 2007 Synopsis SYNOPSIS Name of Student: Rachna Asthana (nee Srivastava) Roll No.: Y110492 Degree for which submitted: Ph.D. Department: Electrical Engineering Thesis Title: “ Study of p-Cycle based Protection in Optical Networks and Removal of its Shortcomings ” Name of thesis supervisor: Dr. Y.N. Singh Month and year of thesis submission: November 2007 ________________________________________________________________________ Today’s optical networks are carrying enormous traffic which is doubling almost every year. The traffic includes voice, video, data and various real time application services like remote monitoring and control, Remote Surgery etc.. The internet has become part of almost every home. The existence of the World Wide Web and Internet can be said to be built on optical long haul networks. The first generation of optical networks is using an optical transmission medium in the form of optical fibers as point-to-point links. Mostly SONET (Synchronous Optical Network) / SDH (Synchronous Digital Hierarchy) standard is used to deploy these networks. At each network node, traffic is subjected to O-E-O (Optical-Electrical-Optical) conversions. The nodes decide transmission bit rate, protocol and format i.e. they are opaque. The advancement in optical devices like optical multiplexers, optical cross-connects, erbium doped fiber amplifiers, wavelength converters, tunable transmitters and receivers etc., has eliminated the need of O-E-O conversions at each node and made way for the second generation of optical networks. -
3272 Movaz Networks Category: Informational A
Network Working Group D. Awduche Request for Comments: 3272 Movaz Networks Category: Informational A. Chiu Celion Networks A. Elwalid I. Widjaja Lucent Technologies X. Xiao Redback Networks May 2002 Overview and Principles of Internet Traffic Engineering Status of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2002). All Rights Reserved. Abstract This memo describes the principles of Traffic Engineering (TE) in the Internet. The document is intended to promote better understanding of the issues surrounding traffic engineering in IP networks, and to provide a common basis for the development of traffic engineering capabilities for the Internet. The principles, architectures, and methodologies for performance evaluation and performance optimization of operational IP networks are discussed throughout this document. Table of Contents 1.0 Introduction...................................................3 1.1 What is Internet Traffic Engineering?.......................4 1.2 Scope.......................................................7 1.3 Terminology.................................................8 2.0 Background....................................................11 2.1 Context of Internet Traffic Engineering....................12 2.2 Network Context............................................13 2.3 Problem Context............................................14 2.3.1 Congestion -
An Implementation of Packet-Switched Communication for Pilot Protection at Tennessee Valley Authority
University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 12-2018 An implementation of packet-switched communication for pilot protection at Tennessee Valley Authority Ha Le Vo University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Recommended Citation Vo, Ha Le, "An implementation of packet-switched communication for pilot protection at Tennessee Valley Authority" (2018). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. An Implementation of Packet-Switched Communication for Pilot Protection at Tennessee Valley Authority Ha Le Vo Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Electrical Engineering Examination Date: 11/16/2018 Gary L. Kobet, M.S., P.E. Stephen D. Craven, Ph.D., P.E. Power System Specialist at TVA Network Specialist at TVA Thesis Director Thesis Director Ahmed H. Eltom, Ph.D., P.E. Raga Ahmed, Ph.D. Department Head and Professor Assistant Professor Department Examiner Department Examiner Table of Contents ABSTRACT ................................................................................................................................... 5 1. INTRODUCTION ................................................................................................................