Dunlop, Katherine Mary (2013) Baited Underwater Camera Studies of the Biodiversity and Abundance of Animals in the Temperate, Tr

Total Page:16

File Type:pdf, Size:1020Kb

Dunlop, Katherine Mary (2013) Baited Underwater Camera Studies of the Biodiversity and Abundance of Animals in the Temperate, Tr Dunlop, Katherine Mary (2013) Baited underwater camera studies of the biodiversity and abundance of animals in the temperate, tropical and Antarctic marine environment. PhD thesis. http://theses.gla.ac.uk/4633/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Baited underwater camera studies of the biodiversity and abundance of animals in the temperate, tropical and Antarctic marine environment Katherine Mary Dunlop Bsc Marine and Environmental Biology/ Mres Marine and Freshwater Biology and Environmental Management Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow September 2013 1 Abstract Baited underwater camera (BUC) systems are becoming popular in the shallow water environment to monitor the relative diversity and abundance of fish and invertebrate assemblages. This thesis describes methods developed to use BUCs in temperate, tropical and Antarctic environments and their application to questions concerning the factors controlling shallow water marine biodiversity and abundance. In Chapter 2 the design and development of a BUC system suitable for attracting, identifying and counting temperate shallow water (< 30 m) fish and crustacean species on the West coast of Scotland is described. The use of BUC systems has been limited in temperate waters and a cost- and – time efficient method could be valuable to monitor the before and after impact of the proposed Scottish Marine Protected Area network. As a test of the BUC, deployments were made in Lamlash Bay no-take zone (NTZ) and in two control open sites to provide baseline data early in the life of the NTZ against which future BUC studies can be compared. The tropical Gulf of Aqaba supports unique coral reef fish assemblages and it is important to perform a study specific in this distinct biogeographical region to understand whether BUC surveys could be useful in this sensitive environment. In Chapter 3 we therefore compared the predatory fish assemblages recorded in BUC deployments to the established method of Underwater Visual Census (UVC) surveys in the northern Gulf of Aqaba. Abundance metrics from the arrival pattern of fish at the BUC did not correlate with population abundance estimates from UVCs and it was concluded that until improved methods of interpreting BUC data are developed the deployment of BUCs could be used to assess predator species richness but is not able to indicate relative variation in population abundance. Chapter 4 demonstrates how BUC systems can be used to gather data on a complicated ecological question in extreme conditions. A BUC system was used to examine the distribution of scavenging fauna in relation to the spatial variation in exposure to iceberg impacts experienced at difference iceberg scouring conditions and depths within Marguerite Bay. The results indicate that different scavenger species are adapted to high and low iceberg scouring environments and that they are distributed in accordance with the recognised pattern of decreasing iceberg scouring frequency with depth. The above studies used relative measures of abundance such as recording the highest number of individuals observed at a single time (MaxN). Such measures are limited in their usefulness but there are no robust means of estimating absolute abundance, especially for complex shallow water systems. In Chapter 5 a modelling approach, using a stochastic 2 simulation, was developed and used to estimate population abundance for species commonly observed in the above studies. Model abundance estimates were generally found to be comparable to those from corresponding UVC transects. This modelling approach has the potential to substantially improve the ability of BUC systems around the world to assess fish and invertebrate diversity and abundance. 3 Table of Contents Chapter 1. Overview ……..………………………………………………………..1 - 28 1.1 What is Marine Biodiversity?………………….……………………………………..1 1.2. Why is Marine Biodiversity Important? …………………………………………2 - 4 1.3. Measuring Marine Biodiversity………………………………………………….4 - 5 1.4. Spatial Patterns in Marine Biodiversity………………………………………….5 - 6 1.5. Threats to Marine Biodiversity…………………………………………………6 - 10 1.5.1. Fisheries………………………………………………………………………7 - 10 1.6. Survey and Monitoring of Marine Biodiversity ……………………………....10 - 16 1.6.1. Fisheries - Dependent Data………………………………………………….10 - 11 1.6.1.1 Fisheries Indicator Species…………………………………………………11 - 12 1.6.2. Fisheries - Independent Data………………………………………………...12 - 16 1.6.2.1 Research Trawls ………………………………………………………………..12 1.6.2.2 Acoustic Surveys ……………………………………………………………….13 1.6.2.3. Egg Surveys……………………………………………………………………..13 1.6.2.4 Underwater Visual Census (UVC) Surveys………………………………..13 - 15 1.6.2.5 Surveys Using Underwater Camera Systems ……………………………..15 - 16 1.7. Baited Underwater Camera …………………………………………………...16 - 25 1.7.1. Baited Underwater Cameras in the Deep Water Environment ……………..17 - 19 1.7.2. Baited Underwater Camera in the Shallow Water Environment……………19 - 22 1.7.2.1. Baited Underwater Camera in the Tropical Shallow Water Environment...19 - 21 1.7.2.2. Baited Underwater Cameras in Temperate Coastal Waters…………….……...21 1.7.2.3 Baited Underwater Cameras in Shallow Polar Waters…………………….21 - 22 1.7.3. Baited Underwater Camera Data Analysis Methods………………………..22 - 25 1.7.3.1 Abundance and Diversity…………………………………………………..22 - 25 1.8. Conclusion………………………………………….……………………………....25 1.9. Thesis Aims and Objectives …………………………………………………..25 - 27 1.10. Thesis Content Flowchart………………………………………………………....28 2. Development of a low-cost baited underwater camera survey method for UK coastal marine systems and its application to a “no take zone” and two open areas in the Firth of Clyde, Scotland………………………………...………………….29 - 68 2.1. Abstract……………………………………………………………………………..29 2.2. Introduction……………………………………………………………………30 - 34 2.3. Aims and Objectives…………………………………………………………..34 - 36 2.3.1. Objective 1…………………………………………………………………..33 - 35 2.3.2. Objective 2……………………………………………………………………….35 2.4. Material and Methods…………………………………………………………35 - 45 4 2.4.1. Objective 1…………………………………………………………………..35 - 40 2.4.1.1. Baited Underwater Camera Equipment………………………………………..35 2.4.1.2. Deployment Equipment…………………………………………………...35 - 37 2.4.1.3. Methodological Tests…………………………………..………………………38 2.4.1.4. Lighting Effects………...………………………………………………………38 2.4.1.5. Test Deployment Details…………………………………..…………………...38 2.4.1.6. Image and Data Analysis…………………………………………………........39 2.4.2. Objective 2…………………………………………………………………..41 - 45 2.4.2.1. Deployment Equipment and Procedure………………………………..………41 2.4.2.2. Deployment Sites………………………...………………………………..41 - 42 2.4.2.3. Image and Data Analysis………………………………..………………...43 - 45 2.5. Results………………………………………………………………………....45 - 61 2.5.1. Objective 1 ………………………………………………………………….45 - 49 2.5.1.1. Camera Settings………………………………………………………………...45 2.5.1.2. Lighting Effects ……………………...………………………………………...45 2.5.1.3. Species Attracted and Duration of BUC Deployments…………………...46 - 49 2.5.2. Objective 2…………………………………………………………………...50- 55 2.5.2.1. Species Richness………………………………..………………………....50 - 51 2.5.2.2. MaxN……………………………………………………..…………….….51 - 52 2.5.2.3. tarrival ………………………………………………………...…………………..52 2.5.2.4. tmaxN……………………………………………..……………………………...52 2.5.2.5. Assemblage………………………………………………………………..56 - 61 2.6. Discussion …………………………………………………………………….62 - 66 2.6.1. Objective 1…………………………………………………………………..62 - 63 2.6.2. Objective 2…………………………………………………………………..64 - 66 2.7. Conclusion………………………………………………………………………….66 2.8. Acknowledgements………………………………………………………………...67 Chapter 3. Comparisons between baited underwater camera and visual census surveys of shallow coral reef fish communities in the northern Gulf of Aqaba……………………………………………………………………………....68 - 108 3.1. Abstract……………………………………………………………………………..68 3.2. Introduction……………………………………………………………………69 - 72 3.3. Aims and Objectives………………………………………………………………..72 3.3.1. Objective 1…………………………………………………………………..72 – 73 3.3.2. Objective 2………………………………………………………………………..73 3.4. Materials and Methods………………………………………………………...73 - 80 3.4.1. Study Area……………………………………………………………………73 - 74 5 3.4.2 Baited Underwater Camera System………………………………………….74 - 75 3.4.2.1. Deployment Methods……………………………………………………...75 - 76 3.4.3. Underwater Visual Census………………………………………………….76 - 78 3.3.4. Image and Data Analysis……………………………………………………78 - 80 3.5. Results…………………………………………………………………………80 - 94 3.6. Discussion……………………………………………………………………..94 - 99 3.6.1. Differences in Sample Area…………………………………………………96 - 97 3.6.2. UVC Abundance Estimation ………………………………………….…....97 - 98 3.6.3. Previous Comparisons……………………………………………………….98 - 99 3.6. Conclusion………………………………………………………………………….99 3.7. Acknowledgements………………………………………………………………...99 4. Chapter 4. The impact of iceberg scouring on scavenger diversity, abundance and behaviour in the West Antarctic Peninsula………………………………………100
Recommended publications
  • Mikaël BILI Préparée À L’UMR 1349 « IGEPP » Institut De Génétique, Environnement Et Protection Des Plantes UFR Sciences De La Vie Et De L’Environnement
    ANNÉE 2014 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Biologie Ecole doctorale Vie – Agro – Santé présentée par Mikaël BILI Préparée à l’UMR 1349 « IGEPP » Institut de Génétique, Environnement et Protection des Plantes UFR Sciences de la Vie et de l’Environnement Eléments de Thèse soutenue à Rennes le18 décembre 2014 différenciation de la devant le jury composé de : Didier BOUCHON niche écologique chez Professeur, Université de Poitiers/rapporteur deux coléoptères Emmanuel DESOUHANT Professeur,Université de Lyon 1 / rapporteur parasitoïdes en Geneviève PREVOST Professeur,Université Picardie Jules Verne / compétition : examinateur Cécile LE LANN Maître de Conférences,Université de Rennes 1/ comportement et examinateur communautés Denis POINSOT Maître de Conférences,Université de Rennes 1/ directeur de thèse bactériennes. Anne Marie CORTESERO Professeur, Université de Rennes 1 / co-directrice de thèse Remerciements Après trois années en thèse, comme tout doctorant, il y a un grand nombre de personnes que j'aimerais remercier tant au sein de l'UMR IGEPP que parmi les gens qui m'épaulent (i. e. "me supportent") depuis plus longtemps. Mais tout d’abord je tiens à remercier sincèrement Didier Bouchon, Emmanuel Desouhant, Geneviève Prevost et Cécile Le Lann pour avoir accepté sans hésiter de prendre le temps et de se déplacer à Rennes (avec plus ou moins de difficultés) afin de juger ce travail. Votre intérêt et vos questions m’ont permis de savourer pleinement la défense de cette thèse. Je n'oublierai pas mes encadrants, Denis Poinsot et Anne Marie Cortesero.
    [Show full text]
  • Parupeneus Forsskali (Fourmanoir & Guézé, 1976) in the Mediterranean, with Preliminary Information on Its Diet Composition in Cyprus
    BioInvasions Records (2020) Volume 9, Issue 2: 209–222 CORRECTED PROOF Research Article Progress of the dispersal of the alien goatfish Parupeneus forsskali (Fourmanoir & Guézé, 1976) in the Mediterranean, with preliminary information on its diet composition in Cyprus Athanasios Evagelopoulos1,*, Andreas Nikolaou1, Nikolas Michailidis2,3, Thodoros E. Kampouris1 and Ioannis E. Batjakas1 1Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece 2Department of Fisheries and Marine Research, 101 Vithleem Str., 1416 Strovolos, Nicosia, Cyprus 3Department of Biological Sciences, University of Cyprus, 1 Panepistimiou Str., 2109 Aglantzia, Nicosia, Cyprus Author e-mails: [email protected] (AE), [email protected] (AK), [email protected] (NM), [email protected] (TEK), [email protected] (IEB) *Corresponding author Citation: Evagelopoulos A, Nikolaou A, Michailidis N, Kampouris TE, Batjakas IE Abstract (2020) Progress of the dispersal of the alien goatfish Parupeneus forsskali Parupeneus forsskali has been the latest Indo-Pacific goatfish species to expand its (Fourmanoir & Guézé, 1976) in the range into the Mediterranean. It is the least studied alien mullid in the Eastern Mediterranean, with preliminary Mediterranean, and specific information on its diet is generally lacking in the information on its diet composition in literature. The objectives of this paper are (1) to comprehensively document the Cyprus. BioInvasions Records 9(2): 209– 222, https://doi.org/10.3391/bir.2020.9.2.06 progress of its invasion in the Mediterranean through a systematic literature review to retrieve all published records of the species in the region, and (2) to present Received: 15 October 2019 preliminary quantitative information on its diet in its non-native range.
    [Show full text]
  • 1 Behavioral Ecology and the Transition from Hunting and Gathering to Agriculture
    GRBQ084-2272G-C01[01-21]. qxd 11/30/05 7:43 PM Page 1 pinnacle Quark11:JOBS:BOOKS:REPRO: 1 Behavioral Ecology and the Transition from Hunting and Gathering to Agriculture Bruce Winterhalder and Douglas J. Kennett he volume before you is the first THE SIGNIFICANCE OF THE TRANSITION T systematic, comparative attempt to use the concepts and models of behavioral ecology There are older transformations of comparable to address the evolutionary transition from so- magnitude in hominid history; bipedalism, en- cieties relying predominantly on hunting and cephalization, early stone tool manufacture, gathering to those dependent on food produc- and the origins of language come to mind (see tion through plant cultivation, animal hus- Klein 1999). The evolution of food production bandry, and the use of domesticated species is on a par with these, and somewhat more ac- embedded in systems of agriculture. Human cessible because it occurred in near prehistory, behavioral ecology (HBE; Winterhalder and the last eight thousand to thirteen thousand Smith 2000) is not new to prehistoric analy- years; agriculture also is inescapable for its im- sis; there is a two-decade tradition of applying mense impact on the human and non-human models and concepts from HBE to research worlds (Dincauze 2000; Redman 1999). Most on prehistoric hunter-gatherer societies (Bird problems of population and environmental and O’Connell 2003). Behavioral ecology degradation are rooted in agricultural origins. models also have been applied in the study of The future of humankind depends on making adaptation among agricultural (Goland 1993b; the agricultural “revolution” sustainable by pre- Keegan 1986) and pastoral (Mace 1993a) pop- serving cultigen diversity and mitigating the ulations.
    [Show full text]
  • ABSTRACT FAVREAU, JORIE M. the Effects Of
    ABSTRACT FAVREAU, JORIE M. The effects of food abundance, foraging rules and cognitive abilities on local animal movements. (Under the direction of Roger A. Powell.) Movement is nearly universal in the animal kingdom. Movements of animals influence not only themselves but also plant communities through processes such as seed dispersal, pollination, and herbivory. Understanding movement ecology is important for conserving biodiversity and predicting the spread of diseases and invasive species. Three factors influence nearly all movement. First, most animals move to find food. Thus, foraging dictates, in part, when and where to move. Second, animals must move by some rule even if the rule is “move at random.” Third, animals’ cognitive capabilities affect movement; even bees incorporate past experience into foraging. Although other factors such as competition and predation may affect movement, these three factors are the most basic to all movement. I simulated animal movement on landscapes with variable patch richness (amounts of food per food patch), patch density (number of patches), and variable spatial distributions of food patches. From the results of my simulations, I formulated hypotheses about the effects of food abundance on animal movement in nature. I also resolved the apparent paradox of real animals’ movements sometimes correlating positively and sometimes negatively with food abundance. I simulated variable foraging rules belonging to 3 different classes of rules (when to move, where to move, and the scale at which to assess the landscape). Simulating foraging rules demonstrated that variations in richness and density tend to have the same effects on movements, regardless of foraging rules. Still, foraging rules affect the absolute distance and frequency of movements.
    [Show full text]
  • In Pursuit of Mobile Prey: Martu Hunting Strategies and Archaeofaunal Interpretation
    AQ74(1) Bird 1/2/09 10:54 AM Page 3 IN PURSUIT OF MOBILE PREY: MARTU HUNTING STRATEGIES AND ARCHAEOFAUNAL INTERPRETATION Douglas W. Bird, Rebecca Bliege Bird, and Brian F. Codding By integrating foraging models developed in behavioral ecology with measures of variability in faunal remains, zooar- chaeological studies have made important contributions toward understanding prehistoric resource use and the dynamic interactions between humans and their prey. However, where archaeological studies are unable to quantify the costs and benefits associated with prey acquisition, they often rely on proxy measures such as prey body size, assuming it to be posi- tively correlated with return rate. To examine this hypothesis, we analyze the results of 1,347 adult foraging bouts and 649 focal follows of contemporary Martu foragers in Australia’s Western Desert. The data show that prey mobility is highly cor- related with prey body size and is inversely related to pursuit success—meaning that prey body size is often an inappropri- ate proxy measure of prey rank. This has broad implications for future studies that rely on taxonomic measures of prey abundance to examine prehistoric human ecology, including but not limited to economic intensification, socioeconomic complexity, resource sustainability, and overexploitation. Mediante la integración de modelos de forrajeo de la ecología del comportamiento con las medidas de variabilidad en restos de fauna, estudios zooarqueológicos se han realizado importantes contribuciones para entender la prehistoria del uso de los recursos y las interacciones dinámicas entre los seres humanos y sus presas. Sin embargo, cuando los estudios arqueológicos no están en condiciones de cuantificar los costes y beneficios asociados con la adquisición de presas, a menudo dependen de parámetros de sustitución como presas tamaño corporal, suponiendo que se observa una correlación positiva con la tasa de retorno.
    [Show full text]
  • Alien Marine Fishes in Cyprus: Update and New Records
    Aquatic Invasions (2015) Volume 10, Issue 4: 425–438 doi: http://dx.doi.org/10.3391/ai.2015.10.4.06 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Alien marine fishes in Cyprus: update and new records Samuel P. Iglésias* and Lou Frotté Muséum national d'Histoire naturelle, UMR BOREA 7208, Station de Biologie Marine de Concarneau, Place de la Croix, 29900 Concarneau, France E-mail: [email protected] (SPI), [email protected] (LF) *Corresponding author Received: 13 April 2015 / Accepted: 12 August 2015 / Published online: 18 September 2015 Handling editor: Ernesto Azzurro Abstract The Mediterranean Sea, due to its connection to the Red Sea via the Suez Canal, its heavy maritime traffic, and the effects of climate change is a hotspot of invasion by alien species. A survey carried out around Cyprus during September 2014 documented the occurrence of 25 alien fishes. Seven Lessepsian migrants ( Hippocampus fuscus Rüppell, 1838, Nemipterus randalli Russell, 1986, Ostorhinchus fasciatus (Shaw, 1790), Parupeneus forsskali (Fourmanoir & Guézé, 1976), Pomadasys stridens (Forsskål, 1775), Sphyraena obtusata Cuvier, 1829 and Spratelloides delicatulus (Bennett, 1832)) were recorded for the first time, increasing to 35 the number of alien fishes recorded around the island. Four of these first records can be considered as 'established', whereas the 2013 first record of Pterois volitans/miles is confirmed by new findings placing the species as newly 'established' in Cyprus. All the recorded alien fishes of Cyprus are Lessepsian migrants, 80% of which can be considered established and four of them are invasive. The rapid increase of alien fish species over time in Cyprus supports the accelerating tropicalisation process observed elsewhere in the Mediterranean over the last decades.
    [Show full text]
  • Mediterranean Marine Science
    Mediterranean Marine Science Vol. 21, 2020 New Alien Mediterranean Biodiversity Records 2020 BARICHE MICHEL Department of Biology, American University of Beirut, PO Box 11-0236, Beirut 1107 2020 AL-MABRUK SARA Zoology Department, Faculty of Science, Omar Al-Mokhtar University, El Bayda ATEŞ MARIA AYCA Russian State University for Humanities, Moscow BÜYÜK ADNAN Tekirova Mah. 7005 sok. No 37 Kemer, Antalya CROCETTA FABIO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli DRITSAS MICHAIL 189 00 Salamina, Attica EDDE DIALA Department of Biology, American University of Beirut, PO Box 11-0236, Beirut 1107 2020 FORTIČ ANA Marine Biology Station, National Institute of Biology, Fornače 41, 6300 Piran GAVRIIL ELISSAVET Institute of Marine Biological Resources and Inland waters, Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavissos GEROVASILEIOU VASILIS Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003 Heraklion GÖKOĞLU MEHMET Akdeniz University, Faculty of Fisheries, Antalya HUSEYINOGLU FATIH Biosphere Research Center, Istanbul, Turkey University of Kyrenia, Cyprus KARACHLE PARASKEVI Institute of Marine Biological Resources and Inland waters, Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavissos KLEITOU PERIKLIS Marine and Environmental http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 07/05/2020 10:27:49 | Research (MER) Lab Ltd, 202 Amathountos Avenue, Marina Gardens, Block B, Offices 13-14, Limassol 4533 TERBIYIK KURT TUBA Department of Marine Sciences, Faculty of Fisheries, Çukurova University, 01330, Sarıçam, Adana LANGENECK JOACHIM Department of Biology, University of Pisa, via Derna 1, 56126 Pisa LARDICCI CLAUDIO Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa LIPEJ LOVRENC Marine Biology Station, National Institute of Biology, Fornače 41, 6300 Piran PAVLOUDI CHRISTINA Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • Sustainable Extractive Strategies in the Pre-European Contact Pacific: Evidence from Mollusk Resources
    Sustainable Extractive Strategies in the Pre-European Contact Pacific: Evidence from Mollusk Resources Author: Frank R. Thomas Source: Journal of Ethnobiology, 39(2) : 240-261 Published By: Society of Ethnobiology URL: https://doi.org/10.2993/0278-0771-39.2.240 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Journal-of-Ethnobiology on 23 Jun 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Museum national d'Histoire naturelle Journal of Ethnobiology 2019 39(2): 240–261 Sustainable Extractive Strategies in the Pre-European Contact Pacific: Evidence from Mollusk Resources Frank R. Thomas1 Abstract. Mollusk remains from archaeological
    [Show full text]
  • Authorship, Availability and Validity of Fish Names Described By
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).
    [Show full text]
  • Foraging Wild Resources and Sustainable Economic Development Serge Svizzero
    Foraging Wild Resources and Sustainable Economic Development Serge Svizzero To cite this version: Serge Svizzero. Foraging Wild Resources and Sustainable Economic Development. Journal of Eco- nomics and Public Finance, scholink, 2016, 2 (1), pp.132-153. hal-02146473 HAL Id: hal-02146473 https://hal.univ-reunion.fr/hal-02146473 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Economics and Public Finance ISSN 2377-1038 (Print) ISSN 2377-1046 (Online) Vol. 2, No. 1, 2016 www.scholink.org/ojs/index.php/jepf Foraging Wild Resources and Sustainable Economic Development Serge Svizzero1* 1 Université de La Réunion, Faculté de Droit et d‟Economie, France * Serge Svizzero, E-mail: [email protected] Abstract As exemplified by the MDGs’ adoption in 2000, it was recently thought that poverty alleviation, hunger reduction and environmental conservation should be tackle simultaneously. For that purpose, forests people had to intensively exploit and to commercialize the wild resources (NTFPs) they usually foraged from the nature for their self-consumption and for marginal trade. After a first wave of optimism, most studies have however concluded that such outcome was dubious, i.e., that foraging was not able to sustain economic development.
    [Show full text]
  • Comparative Anatomy and Phylogeny of the Family Mullidae (Teleostei: Perciformes)
    Title Comparative Anatomy and Phylogeny of the Family Mullidae (Teleostei: Perciformes) Author(s) KIM, Byung-Jik Citation MEMOIRS OF THE GRADUATE SCHOOL OF FISHERIES SCIENCES, HOKKAIDO UNIVERSITY, 49(1), 1-74 Issue Date 2002-05 Doc URL http://hdl.handle.net/2115/22015 Type bulletin (article) File Information 49(1)_P1-74.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Mem. Grad. Sch. Fish. Sci. Hokkaido Univ. Comparative Anatomy and Phylogeny of the Family Mullidae (Teleostei: Perciformes) Byung-Jik KIMl)2) Contents 1. Introduction········ ..... ··· ..... ··· ... ·····............................................................ 2 II. Materials and methods .................................................................................. 2 III. Systematic methodology. 4 IV. Comparative morphology ................................................................................ 4 1. Osteology .. .. 4 1-1. Neurocranium·························································.···················· 4 1-2. Circumorbital bones ........................................................................ 12 1-3. Jaws ...................................................................................... 13 1-4. Suspensorium and opercular bones ............................................................ 16 1-5. Hyoid arch ................................................................................ 20 1-6. Branchial arch ..................... .. 22 1-7. Pectoral girdle .............................................................................
    [Show full text]
  • Report of the Technical Meeting on the Lessepsian Migration and Its Impact
    EastMed TECHNICAL DOCUMENTS 04 REPORT OF THE TECHNICAL MEETING ON THE LESSEPSIAN MIGRATION AND ITS IMPACT ON EASTERN MEDITERRANEAN FISHERY NICOSIA, CYPRUS 7 - 9 DECEMBER 2010 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REPORT OF THE TECHNICAL MEETING ON THE LESSEPSIAN MIGRATION AND ITS IMPACT ON EASTERN MEDITERRANEAN FISHERY NICOSIA, CYPRUS 7 - 9 DECEMBER 2010 Hellenic Ministry of Foreign Affairs ITALIAN MINISTRY OF AGRICULTURE, FOOD AND FORESTRY POLICIES Hellenic Ministry of Rural Development and Food GCP/INT/041/EC – GRE – ITA Athens (Greece), 7-9 December 2010 i The conclusions and recommendations given in this and in other documents in the Scientific and Institutional Cooperation to Support Responsible Fisheries in the Eastern Mediterranean series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained in subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or donors concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. ii Preface The Project “Scientific and Institutional Cooperation to Support Responsible Fisheries in the Eastern Mediterranean- EastMed is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by Greece, Italy and EC. The Eastern Mediterranean countries have for long lacked a cooperation framework as created for other areas of the Mediterranean, namely the FAO sub-regional projects AdriaMed, MedSudMed, CopeMed II and ArtFiMed. This fact leaded for some countries to be sidelined, where international and regional cooperation for fishery research and management is concerned.
    [Show full text]