Network Anomaly Detection Using Artificial Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Network Anomaly Detection Using Artificial Neural Networks ______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION Network Anomaly Detection 8sing Artificial Neural Networks Sergey Andropov, Alexei Guirik Mikhail Budko, Marina Budko ITMO University ITMO University Saint-Petersburg, Russia Saint-Petersburg, Russia [email protected], [email protected] [email protected], [email protected] Line 4 - Author1, [email protected] Abstract—This paper presents a method of identifying and • semantic gap between results and their operational classifying network anomalies using an artificial neural network interpretation; for analyzing data gathered via Netflow protocol. Potential anomalies and their properties are described. We propose using a • high variance in network’s behavior; multilayer perceptron, trained with the backpropagation algorithm. We experiment both with datasets acquired from a • difficulties in evaluating and verifying results. real ISP monitoring system and with datasets modified to Dealing with these problems is necessary to construct an simulate the presence of anomalies; some Netflow records are effective anomaly detection system. One part of the solution is modified to contain known patterns of several network attacks. setting a narrower focus for the analysis program, such as We evaluate the viability of the approach by practical limiting the scope of the network that is being monitored. experimentation with various anomalies and iteration sizes. Any network will change over time, as the new hardware I. INTRODUCTION gets installed, the new programs with different behavior Information security of modern computer networks is a patterns emerge, etc. Usage of a neural network allows the growing source of concerns. The need for tools capable of system to adapt to the gradual changes as it can adjust its detecting the ever-increasing number of network attacks, weights to accommodate for the shifts in the behavior. viruses and other incidents continues to grow. There are Another problem of automated anomaly detection is the methods of anomaly detection based on known signatures and difficulty of obtaining proper training data and filtering the metrics; while giving acceptable results and having a low false network noise. Usage of Netflow protocol allows countering alarm rates, they are normally unable to detect a previously some of these difficulties, as it provides vital information unknown attack or vectors of a virus spreading, which means without overloading the system with too much data and thus such programs have to rely on databases being updated on a has relatively small storage requirements [10]. regular basis. The rest of the article is structured as follows: section II Anomaly can be defined as a deviation from the normal contains the overall design of the detection method; section III behavior. An anomaly can be defined as "an event (or object) describes network anomalies and their typical properties; that differs from some standard or reference event, in excess of sections IV and V contain Netflow packet structure and the some threshold, in accordance with some similarity or distance aggregation criteria; section VI shows the design and the metric on the event" [1]. Major sources of network anomalies training process of the neural network; sections VII presents are network attacks, hardware or software malfunctions and malware. Anomalies should be considered dangerous, as the dataset acquisition methods and evaluation of the detection breaking or disabling one component of the network can lead algorithm; finally, conclusions are drawn in section VIII. to the entire network being compromised. Detecting – and II. DESIGN classifying – an anomaly is an important step in preventing, or at least reducing, the potential damage caused by its The detection system has the following capacities: occurrence. 1) Offline traffic analysis. With this type of analysis a This article presents a method of detecting and classifying model of normal behavior for the network can be created. It an anomaly using an artificial neural network that analyses also provides information about different anomalies. data received with the Netflow protocol. Implementation of offline analysis requires a dataset of normal network behavior for a certain period. The topic of using machine learning for intrusion and anomaly detection is a well researched one [2], [3]. As stated 2) Online traffic analysis. This is the primary mode for in [2], using neural networks and other means of adaptable the system. Data from the Netflow protocol is received, systems for network monitoring presents a set of challenges, processed and stored by the system; different aspects of it are such as: analyzed by an artificial neural network in real time. If an anomaly is detected, a warning will be issued along with a • high cost of errors; report containing information about the incident. • difficulties of obtaining labeled data for specific kinds Data aggregation allows the system to see patterns in the of anomalies/attacks; otherwise highly variable traffic properties. Netflow protocol ISSN 2305-7254 ______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION is used to receive information from the network devices, which is then filtered and aggregated based on a number of criteria such as number of packets per hour, average packet size, port usage. This data serves as an input to a neural network, which consists of three layers: input layer, hidden layer and output layer. The outputs of the neural network show if an anomaly is present. For every known anomaly the system is designed to detect, there is a neuron that shows the probability of that anomaly occurring. There is an additional neuron for an “unknown” anomaly, as well as one for a “normal” behavior. We discuss further details on the internal design of the neural network in section VI. III. NETWORK ANOMALIES Network anomaly is a situation when the network behaves differently from its established pattern. There are numerous reasons for anomalies to appear: Fig. 2. An example of network anomaly: abnormally high number of • hardware malfunctions discarded packets • unauthorized actions of the staff • intentional security breaches involving the staff • network attacks • virus infection process • "flash-crowd" behavior Anomalies will have different features depending on their source. For example, hardware malfunctions are likely to have distinct drops in incoming/outgoing traffic, as presented in Fig. 1. Fig. 3. An example of network anomaly: GRE active The topic of network attacks has been researched extensively [4], [5]. We will give short descriptions along with identifiable properties of each anomaly we plan to detect. • DoS and DDoS attacks Denial of service attack aims to make an online service unavailable. It is usually carried out by overwhelming the target with superfluous requests, using multiple sources in case of a Distributed DoS. This type of attack is regarded as one of Fig. 1. An example of network anomaly: uplink hardware failure the most common. (D)DoS attacks often use minimal packet sizes, set an incorrect protocol number and use the same Another examples are the rising number of discarded source/destination addresses. Targeted service experiences a packets, as shown in Fig. 2, and the result of GRE protocol noticeable increase of traffic flow and specific port number being active in Fig. 3. usage. There are multiple subtypes of this attack: UDP Flood, ICMP Ping Flood, SYN Flood, NTP Amplification etc. While unauthorized actions and intentional security breaches might be detectable through traffic analysis, in this • Network scans work we primarily focus on monitoring anomalies caused by network attacks, failures of hardware and changes in network Scanning attacks are performed by making multiple behavior. attempts to connect with different hosts in order to find ports ---------------------------------------------------------------------------- 27 ---------------------------------------------------------------------------- ______________________________________________________PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION and addresses that are open for connections. This procedure network monitoring" [6]. It became a de-facto standard and is can be performed by network administrators to check security used widely on Cisco devices. There are similar protocols, levels, as well as by potential adversaries to find most notably sFlow and IPFIX, however comparison between vulnerabilities. Network scans can be spotted by observing an them beyond the scope of this article. increase in connections from a certain host, or from multiple hosts to one. Traffic generated by this type of attack is Netflow uses UDP/SCTP protocols to transfer data from comparatively small. routers to special collectors. According to protocol description, all packets with the same source/destination IP address, • Flash-crowd source/destination ports, protocol interface and class of service are grouped into a flow and then packets and bytes are tallied This anomaly can be mistaken for a DDoS attack. It [6]. Then these flows are bundled together and transported to happens when public’s interest towards a particular resource is the Netflow collector server. significantly increased; an example of this is a release of long- awaited program that a group of people rushes to download or Most common version of Netflow is 5 [6]. The following access. One of the ways to
Recommended publications
  • A Review on Outlier/Anomaly Detection in Time Series Data
    A review on outlier/anomaly detection in time series data ANE BLÁZQUEZ-GARCÍA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), Spain USUE MORI, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain Recent advances in technology have brought major breakthroughs in data collection, enabling a large amount of data to be gathered over time and thus generating time series. Mining this data has become an important task for researchers and practitioners in the past few years, including the detection of outliers or anomalies that may represent errors or events of interest. This review aims to provide a structured and comprehensive state-of-the-art on outlier detection techniques in the context of time series. To this end, a taxonomy is presented based on the main aspects that characterize an outlier detection technique. Additional Key Words and Phrases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software 1 INTRODUCTION Recent advances in technology allow us to collect a large amount of data over time in diverse research areas. Observations that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series data mining aims to extract all meaningful knowledge from this data, and several mining tasks (e.g., classification, clustering, forecasting, and outlier detection) have been considered in the literature [Esling and Agon 2012; Fu 2011; Ratanamahatana et al.
    [Show full text]
  • Image Anomaly Detection Using Normal Data Only by Latent Space Resampling
    applied sciences Article Image Anomaly Detection Using Normal Data Only by Latent Space Resampling Lu Wang 1 , Dongkai Zhang 1 , Jiahao Guo 1 and Yuexing Han 1,2,* 1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; [email protected] (L.W.); [email protected] (D.Z.); [email protected] (J.G.) 2 Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China * Correspondence: [email protected] Received: 29 September 2020; Accepted: 30 November 2020; Published: 3 December 2020 Abstract: Detecting image anomalies automatically in industrial scenarios can improve economic efficiency, but the scarcity of anomalous samples increases the challenge of the task. Recently, autoencoder has been widely used in image anomaly detection without using anomalous images during training. However, it is hard to determine the proper dimensionality of the latent space, and it often leads to unwanted reconstructions of the anomalous parts. To solve this problem, we propose a novel method based on the autoencoder. In this method, the latent space of the autoencoder is estimated using a discrete probability model. With the estimated probability model, the anomalous components in the latent space can be well excluded and undesirable reconstruction of the anomalous parts can be avoided. Specifically, we first adopt VQ-VAE as the reconstruction model to get a discrete latent space of normal samples. Then, PixelSail, a deep autoregressive model, is used to estimate the probability model of the discrete latent space. In the detection stage, the autoregressive model will determine the parts that deviate from the normal distribution in the input latent space.
    [Show full text]
  • Unsupervised Network Anomaly Detection Johan Mazel
    Unsupervised network anomaly detection Johan Mazel To cite this version: Johan Mazel. Unsupervised network anomaly detection. Networking and Internet Architecture [cs.NI]. INSA de Toulouse, 2011. English. tel-00667654 HAL Id: tel-00667654 https://tel.archives-ouvertes.fr/tel-00667654 Submitted on 8 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse) $PUVUFMMFJOUFSOBUJPOBMFBWFD 1SÏTFOUÏFFUTPVUFOVFQBS Mazel Johan -F lundi 19 décembre 2011 5J tre : Unsupervised network anomaly detection ED MITT : Domaine STIC : Réseaux, Télécoms, Systèmes et Architecture 6OJUÏEFSFDIFSDIF LAAS-CNRS %JSFDUFVS T EFʾÒTF Owezarski Philippe Labit Yann 3BQQPSUFVST Festor Olivier Leduc Guy Fukuda Kensuke "VUSF T NFNCSF T EVKVSZ Chassot Christophe Vaton Sandrine Acknowledgements I would like to first thank my PhD advisors for their help, support and for letting me lead my research toward my own direction. Their inputs and comments along the stages of this thesis have been highly valuable. I want to especially thank them for having been able to dive into my work without drowning, and then, provide me useful remarks.
    [Show full text]
  • Machine Learning and Extremes for Anomaly Detection — Apprentissage Automatique Et Extrêmes Pour La Détection D’Anomalies
    École Doctorale ED130 “Informatique, télécommunications et électronique de Paris” Machine Learning and Extremes for Anomaly Detection — Apprentissage Automatique et Extrêmes pour la Détection d’Anomalies Thèse pour obtenir le grade de docteur délivré par TELECOM PARISTECH Spécialité “Signal et Images” présentée et soutenue publiquement par Nicolas GOIX le 28 Novembre 2016 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France Jury : Gérard Biau Professeur, Université Pierre et Marie Curie Examinateur Stéphane Boucheron Professeur, Université Paris Diderot Rapporteur Stéphan Clémençon Professeur, Télécom ParisTech Directeur Stéphane Girard Directeur de Recherche, Inria Grenoble Rhône-Alpes Rapporteur Alexandre Gramfort Maitre de Conférence, Télécom ParisTech Examinateur Anne Sabourin Maitre de Conférence, Télécom ParisTech Co-directeur Jean-Philippe Vert Directeur de Recherche, Mines ParisTech Examinateur List of Contributions Journal Sparse Representation of Multivariate Extremes with Applications to Anomaly Detection. (Un- • der review for Journal of Multivariate Analysis). Authors: Goix, Sabourin, and Clémençon. Conferences On Anomaly Ranking and Excess-Mass Curves. (AISTATS 2015). • Authors: Goix, Sabourin, and Clémençon. Learning the dependence structure of rare events: a non-asymptotic study. (COLT 2015). • Authors: Goix, Sabourin, and Clémençon. Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking. (AIS- • TATS 2016). Authors: Goix, Sabourin, and Clémençon. How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? (to be submit- • ted). Authors: Goix and Thomas. One-Class Splitting Criteria for Random Forests with Application to Anomaly Detection. (to be • submitted). Authors: Goix, Brault, Drougard and Chiapino. Workshops Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking. (NIPS • 2015 Workshop on Nonparametric Methods for Large Scale Representation Learning). Authors: Goix, Sabourin, and Clémençon.
    [Show full text]
  • Machine Learning for Anomaly Detection and Categorization In
    Machine Learning for Anomaly Detection and Categorization in Multi-cloud Environments Tara Salman Deval Bhamare Aiman Erbad Raj Jain Mohammed SamaKa Washington University in St. Louis, Qatar University, Qatar University, Washington University in St. Louis, Qatar University, St. Louis, USA Doha, Qatar Doha, Qatar St. Louis, USA Doha, Qatar [email protected] [email protected] [email protected] [email protected] [email protected] Abstract— Cloud computing has been widely adopted by is getting popular within organizations, clients, and service application service providers (ASPs) and enterprises to reduce providers [2]. Despite this fact, data security is a major concern both capital expenditures (CAPEX) and operational expenditures for the end-users in multi-cloud environments. Protecting such (OPEX). Applications and services previously running on private environments against attacks and intrusions is a major concern data centers are now being migrated to private or public clouds. in both research and industry [3]. Since most of the ASPs and enterprises have globally distributed user bases, their services need to be distributed across multiple Firewalls and other rule-based security approaches have clouds, spread across the globe which can achieve better been used extensively to provide protection against attacks in performance in terms of latency, scalability and load balancing. the data centers and contemporary networks. However, large The shift has eventually led the research community to study distributed multi-cloud environments would require a multi-cloud environments. However, the widespread acceptance significantly large number of complicated rules to be of such environments has been hampered by major security configured, which could be costly, time-consuming and error concerns.
    [Show full text]
  • CSE601 Anomaly Detection
    Anomaly Detection Jing Gao SUNY Buffalo 1 Anomaly Detection • Anomalies – the set of objects are considerably dissimilar from the remainder of the data – occur relatively infrequently – when they do occur, their consequences can be quite dramatic and quite often in a negative sense “Mining needle in a haystack. So much hay and so little time” 2 Definition of Anomalies • Anomaly is a pattern in the data that does not conform to the expected behavior • Also referred to as outliers, exceptions, peculiarities, surprise, etc. • Anomalies translate to significant (often critical) real life entities – Cyber intrusions – Credit card fraud 3 Real World Anomalies • Credit Card Fraud – An abnormally high purchase made on a credit card • Cyber Intrusions – Computer virus spread over Internet 4 Simple Example Y • N1 and N2 are N regions of normal 1 o1 behavior O3 • Points o1 and o2 are anomalies o2 • Points in region O 3 N2 are anomalies X 5 Related problems • Rare Class Mining • Chance discovery • Novelty Detection • Exception Mining • Noise Removal 6 Key Challenges • Defining a representative normal region is challenging • The boundary between normal and outlying behavior is often not precise • The exact notion of an outlier is different for different application domains • Limited availability of labeled data for training/validation • Malicious adversaries • Data might contain noise • Normal behaviour keeps evolving 7 Aspects of Anomaly Detection Problem • Nature of input data • Availability of supervision • Type of anomaly: point, contextual, structural
    [Show full text]
  • Anomaly Detection in Data Mining: a Review Jagruti D
    Volume 7, Issue 4, April 2017 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Anomaly Detection in Data Mining: A Review Jagruti D. Parmar Prof. Jalpa T. Patel M.E IT, SVMIT, Bharuch, Gujarat, CSE & IT, SVMIT Bharuch, Gujarat, India India Abstract— Anomaly detection is the new research topic to this new generation researcher in present time. Anomaly detection is a domain i.e., the key for the upcoming data mining. The term ‘data mining’ is referred for methods and algorithms that allow extracting and analyzing data so that find rules and patterns describing the characteristic properties of the information. Techniques of data mining can be applied to any type of data to learn more about hidden structures and connections. In the present world, vast amounts of data are kept and transported from one location to another. The data when transported or kept is informed exposed to attack. Though many techniques or applications are available to secure data, ambiguities exist. As a result to analyze data and to determine different type of attack data mining techniques have occurred to make it less open to attack. Anomaly detection is used the techniques of data mining to detect the surprising or unexpected behaviour hidden within data growing the chances of being intruded or attacked. This paper work focuses on Anomaly Detection in Data mining. The main goal is to detect the anomaly in time series data using machine learning techniques. Keywords— Anomaly Detection; Data Mining; Time Series Data; Machine Learning Techniques.
    [Show full text]
  • Anomaly Detection in Raw Audio Using Deep Autoregressive Networks
    ANOMALY DETECTION IN RAW AUDIO USING DEEP AUTOREGRESSIVE NETWORKS Ellen Rushe, Brian Mac Namee Insight Centre for Data Analytics, University College Dublin ABSTRACT difficulty to parallelize backpropagation though time, which Anomaly detection involves the recognition of patterns out- can slow training, especially over very long sequences. This side of what is considered normal, given a certain set of input drawback has given rise to convolutional autoregressive ar- data. This presents a unique set of challenges for machine chitectures [24]. These models are highly parallelizable in learning, particularly if we assume a semi-supervised sce- the training phase, meaning that larger receptive fields can nario in which anomalous patterns are unavailable at training be utilised and computation made more tractable due to ef- time meaning algorithms must rely on non-anomalous data fective resource utilization. In this paper we adapt WaveNet alone. Anomaly detection in time series adds an additional [24], a robust convolutional autoregressive model originally level of complexity given the contextual nature of anomalies. created for raw audio generation, for anomaly detection in For time series modelling, autoregressive deep learning archi- audio. In experiments using multiple datasets we find that we tectures such as WaveNet have proven to be powerful gener- obtain significant performance gains over deep convolutional ative models, specifically in the field of speech synthesis. In autoencoders. this paper, we propose to extend the use of this type of ar- The remainder of this paper proceeds as follows: Sec- chitecture to anomaly detection in raw audio. In experiments tion 2 surveys recent related work on the use of deep neu- using multiple audio datasets we compare the performance of ral networks for anomaly detection; Section 3 describes the this approach to a baseline autoencoder model and show su- WaveNet architecture and how it has been re-purposed for perior performance in almost all cases.
    [Show full text]
  • Detecting Anomalies in System Log Files Using Machine Learning Techniques
    Institute of Software Technology University of Stuttgart Universitätsstraße 38 D–70569 Stuttgart Bachelor’s Thesis 148 Detecting Anomalies in System Log Files using Machine Learning Techniques Tim Zwietasch Course of Study: Computer Science Examiner: Prof. Dr. Lars Grunske Supervisor: M. Sc. Teerat Pitakrat Commenced: 2014/05/28 Completed: 2014/10/02 CR-Classification: B.8.1 Abstract Log files, which are produced in almost all larger computer systems today, contain highly valuable information about the health and behavior of the system and thus they are consulted very often in order to analyze behavioral aspects of the system. Because of the very high number of log entries produced in some systems, it is however extremely difficult to find relevant information in these files. Computer-based log analysis techniques are therefore indispensable for the process of finding relevant data in log files. However, a big problem in finding important events in log files is, that one single event without any context does not always provide enough information to detect the cause of the error, nor enough information to be detected by simple algorithms like the search with regular expressions. In this work, three different data representations for textual information are developed and evaluated, which focus on the contextual relationship between the data in the input. A new position-based anomaly detection algorithm is implemented and compared to various existing algorithms based on the three new representations. The algorithms are executed on a semantically filtered set of a labeled BlueGene/L log file and evaluated by analyzing the correlation between the labels contained in the log file and the anomalous events created by the algorithms.
    [Show full text]
  • Anomaly Detection with Adversarial Dual Autoencoders
    Anomaly Detection with Adversarial Dual Autoencoders Vu Ha Son1, Ueta Daisuke2, Hashimoto Kiyoshi2, Maeno Kazuki3, Sugiri Pranata1, Sheng Mei Shen1 1Panasonic R&D Center Singapore {hason.vu,sugiri.pranata,shengmei.shen}@sg.panasonic.com 2Panasonic CNS – Innovation Center 3Panasonic CETDC {ueta.daisuke,hashimoto.kiyoshi,maeno.kazuki}@jp.panasonic.com Abstract Semi-supervised and unsupervised Generative Adversarial Networks (GAN)-based methods have been gaining popularity in anomaly detection task recently. However, GAN training is somewhat challenging and unstable. Inspired from previous work in GAN-based image generation, we introduce a GAN-based anomaly detection framework – Adversarial Dual Autoencoders (ADAE) - consists of two autoencoders as generator and discriminator to increase training stability. We also employ discriminator reconstruction error as anomaly score for better detection performance. Experiments across different datasets of varying complexity show strong evidence of a robust model that can be used in different scenarios, one of which is brain tumor detection. Keywords: Anomaly Detection, Generative Adversarial Networks, Brain Tumor Detection 1 Introduction The task of anomaly detection is informally defined as follows: given the set of normal behaviors, one must detect whether incoming input exhibits any irregularity. In anomaly detection, semi-supervised and unsupervised approaches have been dominant recently, as the weakness of supervised approaches is that they require monumental effort in labeling data. On the contrary, semi-supervised and unsupervised methods do not require many data labeling, making them desirable, especially for rare/unseen anomalous cases. Out of the common methods for semi and unsupervised anomaly detection such as variational autoencoder (VAE), autoencoder (AE) and GAN, GAN-based methods are among the most popular choices.
    [Show full text]
  • Backpropagated Gradient Representations for Anomaly Detection
    Backpropagated Gradient Representations for Anomaly Detection Gukyeong Kwon, Mohit Prabhushankar, Dogancan Temel, and Ghassan AlRegib Georgia Institute of Technology, Atlanta, GA 30332, USA gukyeong.kwon, mohit.p, cantemel, alregib @gatech.edu { } Abstract. Learning representations that clearly distinguish between normal and abnormal data is key to the success of anomaly detection. Most of existing anomaly detection algorithms use activation represen- tations from forward propagation while not exploiting gradients from backpropagation to characterize data. Gradients capture model updates required to represent data. Anomalies require more drastic model up- dates to fully represent them compared to normal data. Hence, we pro- pose the utilization of backpropagated gradients as representations to characterize model behavior on anomalies and, consequently, detect such anomalies. We show that the proposed method using gradient-based rep- resentations achieves state-of-the-art anomaly detection performance in benchmark image recognition datasets. Also, we highlight the computa- tional efficiency and the simplicity of the proposed method in comparison with other state-of-the-art methods relying on adversarial networks or autoregressive models, which require at least 27 times more model pa- rameters than the proposed method. Keywords: Gradient-based representations, anomaly detection, novelty detection, image recognition 1 Introduction Recent advancements in deep learning enable algorithms to achieve state-of- the-art performance in diverse applications such as image classification, image segmentation, and object detection. However, the performance of such learning algorithms still su↵ers when abnormal data is given to the algorithms. Abnormal data encompasses data whose classes or attributes di↵er from training samples. Recent studies have revealed the vulnerability of deep neural networks against abnormal data [32], [43].
    [Show full text]
  • Machine Learning for Automated Anomaly Detection In
    Machine Learning for Automated Anomaly Detection in Semiconductor Manufacturing by Michael Daniel DeLaus Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 ○c Massachusetts Institute of Technology 2019. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 24, 2019 Certified by. Duane S. Boning Clarence J. LeBel Professor Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Katrina LaCurts Chairman, Master of Engineering Thesis Committee 2 Machine Learning for Automated Anomaly Detection in Semiconductor Manufacturing by Michael Daniel DeLaus Submitted to the Department of Electrical Engineering and Computer Science on May 24, 2019, in partial fulfillment of the requirements for the degree of Master of Engineering Abstract In the realm of semiconductor manufacturing, detecting anomalies during manufac- turing processes is crucial. However, current methods of anomaly detection often rely on simple excursion detection methods, and manual inspection of machine sensor data to determine the cause of a problem. In order to improve semiconductor production line quality, machine learning tools can be developed for more thorough and accurate anomaly detection. Previous work on applying machine learning to anomaly detection focused on building reference cycles, and using clustering and time series forecasting to detect anomalous wafer cycles. We seek to improve upon these techniques and apply them to related domains of semiconductor manufacturing. The main focus is to develop a process for automated anomaly detection by combining the previously used methods of cluster analysis and time series forecasting and prediction.
    [Show full text]