Phorid Newsletter #8
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera, Phoridae) from Iran
Archive of SID J Insect Biodivers Syst 04(3): 147–155 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/578CCEF1-37B7-45D3-9696-82B159F75BEB New records of the scuttle flies (Diptera, Phoridae) from Iran Roya Namaki Khameneh1, Samad Khaghaninia1*, R. Henry L. Disney2 1 Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, I.R. Iran. 2 Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, U.K. ABSTRACT. The faunistic study of the family Phoridae carried out in northwestern of Iran during 2013–2017. Five species (Conicera tibialis Schmitz, Received: 1925, Dohrniphora cornuta (Bigot, 1857), Gymnophora arcuata (Meigen, 1830), 06 August, 2018 Metopina oligoneura (Mik, 1867) and Triphleba intermedia (Malloch, 1908)) are newly recorded from Iran. The genera Conicera Meigen, 1830, Dohrniphora Accepted: 14 November, 2018 Dahl, 1898, Gymnophora Macquart, 1835 and Triphleba Rondani, 1856 are reported for the first time from the country. Diagnostic characters of the Published: studied species along with their photographs are provided. 20 November, 2018 Subject Editor: Key words: Phoridae, Conicera, Dohrniphora, Gymnophora, Triphleba, Iran, New Farzaneh Kazerani records Citation: Namaki khameneh, R., Khaghaninia, S. & Disney, R.H.L. (2018) New records of the scuttle flies (Diptera, Phoridae) from Iran. Journal of Insect Biodiversity and Systematics, 4 (3), 147–155. Introduction Phoridae with about 4,000 identified insect eggs, larvae, and pupae. The adults species in more than 260 genera, is usually feed on nectar, honeydew and the considered as one of the largest families of exudates of fresh carrion and dung, Diptera (Ament & Brown, 2016). -
The Genus Phora (Diptera, Phoridae) from Nepal, Taiwan and Neighbouring Countries
Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist., Ser. A,4:9-38, March 31, 2006 The genus Phora (Diptera, Phoridae) from Nepal, Taiwan and Neighbouring Countries Tadao Gotoh Tohoku Research Center, Forestry andForest Products Research Institute, 92-25Shimokuriyagawa, Nabeyashiki, Morioka, 020-0123Japan (Received October 25, 2004; accepted August 30, 2005) ABSTRACT—A taxonomic study on the genus Phora from Nepal, Taiwan and neighbouring countries is reported. The following 15 species are described as new to science: Phora fulvipennis, P. nepalensis, P. acuminata, P. glebiata, R paricauda, P. salpana and P tenuifprceps from Nepal; P. fensestrata, P. shirozui, P. subconvaUium, P. taiwanaand P. tattakana from Taiwan; P. acerosa from Nepal and Taiwan; P. digitiformis from Nepal and Myanmar; and Phora orientis from Korea and China. The Chinese R capillosa Schmitz is redescribed and illustrated for male genitalia. A key to the males of the species in the present study is provided. INTRODUCTION based on the examination of a paratype as a voucher for identification of the species. A key to the males of the The genus Phora Latreille is a large taxonomic group species discussed in the present study is also provided. in the subfamily Phorinae, comprised of 57 living species The male genitalia are described using the same methods in the world. Most of them inhabit temperate to sub- and the same terminology as in Goto (1984). alpine zones mainly in the Northern Hemisphere. The The type specimens of new species, unless otherwise Palaearctic and Nearctic fauna of Phora have been stated, are deposited in the Entomological Collection of extensively studied by phorid taxonomists (Schmitz, 1953, the Kyushu University Museum in Fukuoka. -
Curriculum Vitae
CURRICULUM VITAE M. Lee Goff Home Address: 45-187 Namoku St. Kaneohe, Hawaii 96744 Telephone (808) 235-0926 Cell (808) 497-9110 email: [email protected] Date of Birth: 19 Jan. 1944 Place of Birth: Glendale California Military Status: U.S. Army, 2 years active duty 1966-68 Education: University of Hawaii at Manoa; B.S. in Zoology 1966 California State University, Long Beach; M.S. in Biology 1974 University of Hawaii at Manoa; Ph.D. in Entomology 1977 Professional Experience: 1964 - 1966. Department of Entomology, B.P. Bishop Museum, Honolulu. Research Assistant (Diptera Section). 1968 - 1971. Department of Entomology, B.P. Bishop Museum, Honolulu. Research Assistant (Acarology Section). 1971 -1971. International Biological Program, Hawaii Volcanoes National Park. Site Manager for IBP field station. 1971 - 1974. Department of Biology, California State University, Long Beach. Teaching Assistant and Research Assistant. 1974 - 1974. Kaiser Hospital, Harbor City,California. Clinical Laboratory Assistant (Parasitology and Regional Endocrinology Laboratory). 1974 - 1977. Department of Entomology, University of Hawaii at Manoa, Honolulu. Teaching Assistant. 1977 - 1983. Department of Entomology, B.P. Bishop Museum, Honolulu. Acarologist. 1983 - 2001. Department of Entomology, University of Hawaii at Manoa, Honolulu. Professor of Entomology. 1977 - present. Curatorial responsibility for National Chigger Collection of U.S. National Museum of Natural History/Smithsonian Institution. 1986 -1992. Editorial Board, Bulletin of the Society of Vector Ecologists. 1986 - present. Department of the Medical Examiner, City & County of Honolulu. Consultant in forensic entomology. 1986 - 1993. State of Hawaii, Natural Area Reserves System Commission. Commissioner and Chair of Commission. 1989 – 2006 Editorial Board, International Journal of Acarology. 1992 - present. -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
1 a Checklist of Arthropods Associated with Rat Carrion in a Montane Locality
1 A checklist of arthropods associated with rat carrion in a montane locality of northern Venezuela. Yelitza Velásquez Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas. Apartado Postal 21827, Caracas 1020-A, Venezuela Tel.: +58-212-504.1052; fax: +58-212-504.1088; e-mail: [email protected] Abstract This is the first report of arthropods associated with carrion in Venezuela, using laboratory bred rats (Rattus norvegicus). Rat carcasses were exposed to colonization by arthropods in neighboring montane savanna and cloud forest habitats in the state of Miranda. The taxonomic composition of the arthropods varied between both ecosystems. Scarabaeidae, Silphidae, Micropezidae, Phoridae, Vespidae and one species of ant, were collected only in the cloud forest. Dermestes maculatus, Chrysomya albiceps, Termitidae and most species of ants, were found only in the savanna. Fourteen species were considered to be of primary forensic importance: Dermestes maculatus, Oxelytrum discicolle, Calliphora sp., Cochliomyia macellaria, Compsomyiops sp., Chrysomya albiceps, Phaenicia cuprina, P. sericata, P. eximia, Fannia sp., Puliciphora sp., Megaselia scalaris, Ravina sp. and Sarcophaga sp. Key words: Coleoptera, Diptera, Forensic entomology, Venezuela. Introduction There is relatively little information available regarding insects associated with animal carrion and human corpses in South America [1]. In Brazil, Moura et al. [2] made a preliminary analysis of the insects of medico-legal importance in Curitiba, in the state of 2 Paraná; Carvalho et al. [3] identified arthropods associated with pig carrion and human corpses in Campinas, in the state of São Paulo. Recently, forensic entomology was applied to estimate the postmortem interval (PMI) in homicide investigations by the Rio de Janeiro Police Department, Brasil [4]. -
FLY Infographicv2
FIGHT THE FLY Did you know there are 200 known species of flies in North America? These flies are not only a nuisance but can also spread diseases. They tarnish your hard-earned reputation by damaging your customer loyalty and bottom line. Use the information below to understand the threats of flies, identify the pests and learn how to help prevent them. The Threats of Flies Food Contaminators: Disease Spreaders: Fast Breeders: Flies oen find their food in Flies can transmit pathogens Some species of female decaying organic matter such that cause E. coli, Salmonella flies lay up to 1,000 eggs as animal feces. They are poor and shingles. They are also in their lives, and fly fliers, and can leave fecal known to carry diseases that larvae develop into adults particles on clean food and can cause food poisoning or in about 7-10 days. preparation surfaces when respiratory infections. they land. Did You Know? A fly can carry potentially = twice as many pathogens as a cockroach. Common Flies in Commercial Establishments House Fly Drain Fly Fruit Fly Musca domestica Family Psychodidae Drosophila spp. Blow Fly Phorid Fly Fungus Gnat Family Calliphoridae Family Phoridae Lycoriella spp. Did You Know? In a recent survey, 75% of respondents listed flies as one of three most commonly 75% encountered pests.* Prevention Measures InspectionInspection : Exclusion Sanitation CWorkheck withfor s iag pestns of fly Seal cracks, gaps Use cleaning solutions acmanagementtivity around food and holes in doors, that decompose professional to identify windows and walls organic materials from preparation areas, conducive conditions with caulk or weather drains and high-use andsto rfindage theare asources, load ofin g stripping. -
Universidade Federal De São Carlos Centro De Ciências Biológicas E Da Saúde Programa De Pós Graduação Em Genética Evolutiva E Biologia Molecular
UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PROGRAMA DE PÓS GRADUAÇÃO EM GENÉTICA EVOLUTIVA E BIOLOGIA MOLECULAR O desvio reprodutivo se correlaciona positivamente com o parentesco genético e o sistema de acasalamento? Euglossa cordata (Hymenoptera, Apidae, Euglossini) como Estudo de Caso. Gabriele Antico Freiria São Carlos – SP 2015 i Gabriele Antico Freiria O desvio reprodutivo se correlaciona positivamente com o parentesco genético e o sistema de acasalamento? Euglossa cordata (Hymenoptera, Apidae, Euglossini) como Estudo de Caso. Tese de Doutorado apresentada ao Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular do Centro de Ciências Biológicas e da Saúde da Universidade Federal de São Carlos, como parte dos requisitos para a obtenção do título de Doutor em Ciências, Área de Concentração: Genética e Evolução. Orientador: Prof. Dr. Marco Antonio Del Lama Coorientador: Prof. Dr. Carlos Alberto Garófalo São Carlos – SP 2015 Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária/UFSCar Freiria, Gabriele Antico. F866dr O desvio reprodutivo se correlaciona positivamente com o parentesco genético e o sistema de acasalamento? Euglossa cordata (Hymenoptera, Apidae, Euglossini) como estudo de caso / Gabriele Antico Freiria. -- São Carlos : UFSCar, 2015. 110 f. Tese (Doutorado) -- Universidade Federal de São Carlos, 2015. 1. Abelha. 2. Reprodução. 3. Euglossini. 4. Euglossa cordata. 5. Microssatélites. 6. Parentesco. I. Título. CDD: 595.799 (20a) ii Em memória da minha avó, Rita Baioco Antico. Por ter me mostrado com a sua história, sempre em minha memória, o peso e a importância de algumas oportunidades. iii “O mundo não é, ele está sendo.” (Paulo Freire) iv AGRADECIMENTOS Ao meu orientador, Prof. -
25Th U.S. Department of Agriculture Interagency Research Forum On
US Department of Agriculture Forest FHTET- 2014-01 Service December 2014 On the cover Vincent D’Amico for providing the cover artwork, “…and uphill both ways” CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Product Disclaimer Reference herein to any specific commercial products, processes, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recom- mendation, or favoring by the United States government. The views and opinions of wuthors expressed herein do not necessarily reflect those of the United States government, and shall not be used for advertising or product endorsement purposes. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. -
An Abstract of the Thesis Of
AN ABSTRACT OF THE THESIS OF Sarah A. Maxfield-Taylor for the degree of Master of Science in Entomology presented on March 26, 2014. Title: Natural Enemies of Native Bumble Bees (Hymenoptera: Apidae) in Western Oregon Abstract approved: _____________________________________________ Sujaya U. Rao Bumble bees (Hymenoptera: Apidae) are important native pollinators in wild and agricultural systems, and are one of the few groups of native bees commercially bred for use in the pollination of a range of crops. In recent years, declines in bumble bees have been reported globally. One factor implicated in these declines, believed to affect bumble bee colonies in the wild and during rearing, is natural enemies. A diversity of fungi, protozoa, nematodes, and parasitoids has been reported to affect bumble bees, to varying extents, in different parts of the world. In contrast to reports of decline elsewhere, bumble bees have been thriving in Oregon on the West Coast of the U.S.A.. In particular, the agriculturally rich Willamette Valley in the western part of the state appears to be fostering several species. Little is known, however, about the natural enemies of bumble bees in this region. The objectives of this thesis were to: (1) identify pathogens and parasites in (a) bumble bees from the wild, and (b) bumble bees reared in captivity and (2) examine the effects of disease on bee hosts. Bumble bee queens and workers were collected from diverse locations in the Willamette Valley, in spring and summer. Bombus mixtus, Bombus nevadensis, and Bombus vosnesenskii collected from the wild were dissected and examined for pathogens and parasites, and these organisms were identified using morphological and molecular characteristics. -
(Diptera, Phoridae) Visiting Flowers of Cryptogorynae Crispatula (Araceae), Including New Species, in China
FRAGMENTA FAUNISTICA 63 (2): 81–118, 2020 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2020.63.2.081 Records of scuttle flies (Diptera, Phoridae) visiting flowers of Cryptogorynae crispatula (Araceae), including new species, in China R. Henry L. DISNEY Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, England; e-mail: [email protected] Abstract: The collection of the scuttle flies (Diptera, Phoridae) visiting flowers of Cryptogorynae crispatula (Araceae) caught in Yunnan, China were studied. They were identified to 24 species of which only five were known, seven species are hereby described as new to science and next 13 species cannot be named until linked to their opposite sexes. The following are described. Conicera species female YG, cannot be named until linked to its male. Dohrniphora guangchuni n. sp., Megaselia duolobata n. sp., M. excrispatula n. sp., M. interstinctus n. sp., M. leptotibiarum n. sp., M. menglaensis n. sp., M. shooklinglowae n. sp., Megaselia species Y1 female that cannot be named until linked to its male. The recognition of M. chippensis (Brues, 1911), described from a single female, is augmented. Males of 6 species (Y1-Y6) of Puliciphora Dahl, cannot be named until linked to their females and 5 species of Woodiphora Schmitz. Key words: Phoridae, China, Yunnan, new species. INTRODUCTION Low Shook Ling (Paleoecology Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla) caught the insects visiting flowers of Cryptogorynae crispatula (Araceae) in Yunnan, China and sent me the scuttle flies (Diptera, Phoridae) for identification. These represent 24 species of which 5 were known species, 6 are new species that are described below and 13 species that cannot be named until linked to their opposite sexes. -
The Effect of Macrocheles Muscaedomesticae and M. Subbadius (Acarina: Mac- Rochelidae) Phoresy on the Dispersal of Stomoxys Calcitrans (Diptera: Musci- Dae)
Systematic & Applied Acarology Special Publications (2009) 23, 1–30. ISSN 1461-0183 The effect of Macrocheles muscaedomesticae and M. subbadius (Acarina: Mac- rochelidae) phoresy on the dispersal of Stomoxys calcitrans (Diptera: Musci- dae) D. V. BERESFORD1 & J. F. SUTCLIFFE Trent University Biology Department, 1600 West Bank Drive, Peterborough ON, Canada K9J 7B8. 1Corresponding author. Phone: 705 652-7452; Email: [email protected] Abstract In south-central Ontario, the stable flies disperse from their overwintering farms and re-establish populations at neighbouring dairy and beef farms each spring. Two species of phoretic macrochelid mites commonly found on stable flies are Macrocheles muscaedomesticae and M. subbadius. We tested the hypothesis that mite phoresy affects the dispersal of their stable fly phorionts. At a beef farm we found a higher proportion of parous stable flies with mite scars than expected, based on the proportion of nulliparous females carrying mites. These results were consistent with our hypothesis, indicating that stable flies without mites may be emigrating more than flies carrying mites. We further tested our hypothesis by comparing the mite load on dispersing stable flies sampled with a vehicle-mounted truck trap to the mite load on resident stable flies sampled from three dairy farms and one beef farm (May to October, 2001). Significantly, no stable flies caught in the truck trap were carrying mites, compared to the seasonal means of 10% and 5% of female and male stable flies with mites at the four farms. This effect of mite phoresy on stable fly populations is discussed. Keywords: phoresy, dispersal, Macrocheles, mites, Stomoxys calcitrans, stable fly Introduction Dispersal is one of the most important aspects of any organism's success (Andrewartha & Birch 1954). -
INSECTS of MICRONESIA Diptera: Phoridae
INSECTS OF MICRONESIA Diptera: Phoridae By ERWIN M. BEYER BONN, STIFTSGASSE 8, WEST GERMANY INTRODUCTION G. E. Bohart was the first to report on phorids of Micronesia. In his study on the Phoridae of Guam [1947, U. S. Nat. Mus., Proc. 96 (3205): 397-416, figs. 33-48] he dealt with five genera and 11 species; one genus (Para fannia Bohart) and nine species were described as new. C. N. Colyer [1957, Hawaiian Ent. Soc., Proc. 16 (2) : 232] synonymized Parafannia Bohart with Gymnoptera Lioy. In our recent study on the Phoridae of Hawaii (Insects of Hawaii 11, 1964) D. E. Hardy and I recognize M egaselia stuntzi Bohart as a synonym of M. setaria (Malloch). In this present study, Pulici phora nigriventris Bohart is shown to be a synonym of P. pulex Dahl. Bohart's descriptions of his new species are inadequate and not always based upon the most reliable characters; the illustrations are sometimes inac curate. I am unable, therefore, to include Chonocephalus species in this study. In the Micronesian material before me, three members of this genus are rep resented; none of these can, however, be identified as any of Bohart's species. M egaselia setifemur Bohart, which also needs redescription, is not repre sented in this material. At present, seven genera, two subgenera, and 24 named species of Phori dae, including the two species of ChonocephalusJ are known to occur in Micro nesia. Ten species are new to science, one tribe (Beckerinini) and five species are recorded for the first time in Micronesia. When considering the Micronesian phorid genera, it is evident that only genera of worldwide distribution are represented.