Page 1 of 32 Diabetes Functional redundancy of CXCR3/CXCL10 signaling in the recruitment of diabetogenic CTL to pancreatic islets in a virally induced autoimmune diabetes model Ken T. Coppieters*,§, Natalie Amirian*, Philippe P. Pagni*, Carmen Baca Jones*, Anna Wiberg*, Stanley Lasch#, Edith Hintermann#, Urs Christen# and Matthias G. von Herrath*,§ *Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla CA 92037, U.S.A. §Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, U.S.A. #Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital, Frankfurt am Main, Germany Short title: CXCR3/CXCL10 signaling in type 1 diabetes Correspondence: Matthias von Herrath, Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla CA 92037, U.S.A.,
[email protected], Phone: (858) 752-6817; Fax: (858) 752-6993 1 Diabetes Publish Ahead of Print, published online February 22, 2013 Diabetes Page 2 of 32 Abstract Cytotoxic T lymphocytes (CTL) constitute a major effector population in pancreatic islets from patients suffering from type 1 diabetes (T1D) and thus represent attractive targets for intervention. Some studies have suggested that blocking the interaction between the chemokine CXCL10 and its receptor CXCR3 on activated CTL potently inhibits their recruitment and prevents beta cell death. Since recent studies on human pancreata from T1D patients have indicated that both ligand and receptor are abundantly present, we reevaluated whether their interaction constitutes a pivotal node within the chemokine network associated with T1D. Our present data in a viral mouse model challenge the notion that specific blockade of the CXCL10/CXCR3 chemokine axis halts T1D onset and progression.