15 Disorders of Carbohydrate and Glycogen Metabolism Jan Peter Rake, Gepke Visser, G

Total Page:16

File Type:pdf, Size:1020Kb

15 Disorders of Carbohydrate and Glycogen Metabolism Jan Peter Rake, Gepke Visser, G 15 Disorders of Carbohydrate and Glycogen Metabolism Jan Peter Rake, Gepke Visser, G. Peter A. Smit 15.1 Introduction The disorders described in this chapter have symptoms varying from mild to severe and life-threatening. The symptoms comprise failure to thrive, hep- atomegaly, jaundice and liver failure, hypoglycemia, metabolic acidosis, and (cardio-) myopathy, including muscle pain and exercise intolerance. Four groups of disorders can be distinguished: A. Disorders of galactose metabolism comprise galactokinase deficiency, gal- actose-1-P-uridyl transferase deficiency (classical galactosemia), and UDP- galactose-4-epimerase deficiency. The primary source of dietary galactose is lactose, the sugar in milk. It is present in human and cow’s milk and in most infant formulae. Individuals with one of these enzyme defects are unable to transform galactose into glucose and they accumulate metabolites of galactose after ingesting lactose and/or galactose. Galactitol accumulation accounts for cataract formation. Galactose-1-phosphate is considered to be responsible for the other clinical manifestations, especially liver and kidney failure. Cataracts are the only manifestations of galactose kinase deficiency. The clinical manifestations of classic galactosemia are vomiting, failure to thrive, liver failure with jaundice, kidney failure, cataract, and sepsis, occurring when galactose is introduced in the diet. The severe form of UDP galacose-4-epimerase deficiency resembles classic galactosemia. The main goal of treatment for galactokinase deficiency (more liberal) and classic galactosemia (strict) is the elimination of galactose from the diet. In severe forms of UDP galactose-4-epimerase deficiency, a narrow balance in dietary galactose requirements for biosynthesis (galactosylated compounds) and excess causing accumulation of galactose-1-phosphate should be aimed for. B. Disorders of fructose metabolism comprise hereditary fructose intolerance, d-glyceric acidemia together with defects in gluconeogenesis. The dietary sources of fructose are fruits, table sugar (sucrose), and sucrose-containing infant formulae. Affected infants with hereditary fructose intolerance (ac- cumulation of fructose-1-phosphate inhibits both hepatic glycogenolysis and gluconeogenesis and results also in depletion of adenosine triphos- phate) present with hypoglycemia, vomiting, other gastrointestinal com- 162 Disorders of Carbohydrate and Glycogen Metabolism plaints, hepatomegaly, and failure to thrive after ingestion of fructose. Older individuals avoid sweet foods. The main goal of treatment is the elimina- tion of fructose from the diet. Fructose-1,6-diphosphatase deficiency and pyruvate carboxylase deficiency are disorders of gluconeogenesis. Fructose- 1,6-diphosphatase deficiency, especially in younger children, presents with moderate hepatomegaly, fasting hypoglycemia, and lactic acidosis. Treat- ment is aimed at the maintenance of normoglycemia, and fructose ingestion is reduced especially in young children. Pyruvate carboxylase deficiency presentsinthefirstmonthsoflifewithmildlacticacidemiaanddelayed psychomotor development. A subgroup of patients with pyruvate carboxy- lase deficiency present shortly after birth with severe lactic acidemia and die before the age of 3 months. d-Glyceric acidemia, also to be regarded as a defect of serine metabolism, has a relatively large number of healthy unaffected individuals. Affected individuals show a variety of symptoms, mainly neurological. Essential fructosuria, a rare "non-disease" necessitat- ing no specific dietary treatment, and phosphoenolpyruvate carboxykinase deficiency, a very rare disorder of gluconeogenesis with severe psychomotor impairment, are not discussed in this chapter. C. Disorders of glycogen metabolism affecting mainly the liver comprise glyco- gen storage diseases (GSDs) 1, 3, 4, 6, 9, 0, and the Fanconi-Bickel form. GSDs 1, 3, 6, and 9 present similarly during infancy, with symptoms of hy- poglycemia, marked hepatomegaly, and retarded growth. In all these types, mental development is normal as long as hypoglycemic brain damage is prevented. GSD 1 is the most severe type of these four conditions because, besides impaired glycogen breakdown, also gluconeogenesis is blocked. Af- terashortperiodoffasting,anoverwhelminghypoglycemiaandseverelactic acidosis may develop. Two forms of GSD 1 can be distinguished: GSD 1a and GSD 1b. Patients with GSD 1b may also present with infections and symp- toms of inflammatory bowel disease related to neutropenia and neutrophil dysfunction. The majority of patients with GSD 3 have a hepatic-myogenic form: a generalized myopathy may include cardiomyopathy. GSD 6 and GSD 9 are the mildest forms: only a mild tendency to fasting hypoglycemia is observed, liver size normalises at adult age, and patients reach normal adult height. A rare hepatic-myogenic form of GSD 9 exists. The main goal of treatment for all these GSDs is to maint normoglycemia by dietary treat- ment. GSD 4 manifests in the majority of patients in infancy or childhood as hepatic failure with cirrhosis, leading to end-stage liver disease necessi- tating liver transplantation. In the other patients with GSD 4, all kinds of combinations of hepatic and (cardio-)myogenic forms occur. GSD 0 is in fact not a GSD but a glycogen-synthesis deficiency. It is seen in infancy or early childhood with fasting hypoglycemia and ketosis and postprandial with hy- perglycemia and hyperlactacidemia. The Fanconi-Bickel form of GSD has hepatomegaly, hypoglycemia, rickets, and tubulopathy. This type of GSD is discussed separately in Chap. 16. Introduction 163 D. Disorders of glycogen metabolism affecting mainly affecting muscle com- priseGSDs2,5,and7.TheinfantiletypeofGSD2(infactalysosomalstorage disease) results in cardiac failure, failure to thrive, and death during infancy. Adolescent and adult-onset forms of GSD 2 primarily involve skeletal mus- cle. GSD 5 (glycogenolytic defect) and 7 (glycolytic defect) involve skeletal muscle and are usually not diagnosed until adolescence or adulthood, when patients present with muscle weakness, exercise intolerance, and myoglobin- uria. Patients with GSD 5 may benefit from carbohydrate intake aiming at normoglycemia. In patients with GSD 7, the focus of dietary treatment is aimed at fat enrichment of the diet, since these patients may worsen after high doses of carbohydrates. Some subtypes of the GSDs mainly affecting the liver (GSD 3, GSD 4, and GSD 9) may also affect (heart) muscle. Manage- ment of these GSDs including the (cardio-)myogenic symptoms is discussed in the paragraph about liver-related GSDs. Other (very rare) GSDs affecting muscle-related glycogenolytic or glycolytic defects (phosphoglucomutase deficiency, phosphoglycerate kinase deficiency, phosphoglycerate mutase deficiency, lactate dehydrogenase deficiency, and aldolase A deficiency) are not discussed in this chapter. 164 Disorders of Carbohydrate and Glycogen Metabolism 15.2 Nomenclature No. Disorder Definition/comment Gene OMIM symbol No. 15.1 Galactokinase deficiency Galactose (P,U) ↑, galactitol (U)↑ Cataract GALK 230200 15.2 Galactosemia Galactose-1-phosphate (P, RBC) ↑, galactose GALT 230400 (B,U) ↑ Vomiting, hepatomegaly, jaundice, renal failure, cataracts 15.3 UDPGal-4-epimerase defi- Galactose-1-phosphate (P, RBC) ↑ galactose (P) GALE 230350 ciency ↑ See galactosemia 15.4 Hereditary fructose intoler- Fructose ↑ (P), reducing substance (U) Vomiting, ALDOP 229600 ance liver/renal dysfunction, failure to thrive 15.5 Fructose-1,6-diphosphatase Glucose ↓(P), lactate ↑ (P) ketones ↑ (P) FDP 1 229700 deficiency 2-ketoglutaric acid (U) Seizures, acidosis, hepatomegaly 15.7 d-Glyceric acidemia May vary from mental/motor retardation to no 220120 symptoms 15.8 GSD 1a Glucose ↓ (P), lactate ↑ (P U), ketones ↓ (P), G6PC 232200 uric acid ↑ (P), cholesterol ↑ (P), triglycerides ↑ (P) Hepatorenomegaly, seizures, acidosis, short stature 15.8a GSD 1b As in GSD Ia and: neutropenia (B) neutrophil G6PT 232220 dysfunction; infections, inflammatory bowel disease 15.9 GSD 2 (Pompe) Infancy: severe cardiomyopathy, hypotonia GAA 232300 Juvenile/adult: myopathy 15.10 GSD 3 (Forbe, Cori) Glucose ↓ (P) ketones ↑↑(P, U), uric acid ↑ (P), AGL 232400 cholesterol ↑ (P), CK ↑ (P) 3A Hepatomegaly myopathy 3B Hepatomegaly 15.11 GSD 4 (Andersen) Hepatosplenomegaly, cirrhosis GBE 1 232500 15.12 GSD 5 (Mc Ardle) Muscle pain, exercise intolerance, CK ↑ (P) PGYm 232600 15.13 GSD 6 (Hers) Glucose ↓ (P) ketones ↑↑ (P, U), uric acid ↑ (P), PGYL 232700 cholesterol ↑ (P), triglycerides ↑ (P) Hepatomegaly 15.14 GSD 7 (Tauri) Muscle pain, exercise intolerance, CK ↑ (P) PFK-m 232800 15.15 GSD 9 (GSD 8 by McKusick) Glucose ↓ (P) ketones ↑↑ (P, U), uric acid ↑ (P), PHKA/B/G 306000 cholesterol ↑ (P), triglycerides ↑ (P) Hepatomegaly 15.16 GSD 0 Glucose ↓ (P) ketones ↑↑ (P, U), lactate ↑ (P, U) GYS 2 240600 No hepatomegaly 15.17 GSD Fanconi-Bickel type Glucose ↑ (P,U) galactose ↑ (P,U) GLUT 2 227810 Hepatorenomegaly, tubulopathy Disorders of Galactose Metabolism 165 15.3 Disorders of Galactose Metabolism I Emergency Treatment No. Symbol Therapy 15.2 GALT Immediate complete restriction of galactose intake, supportive care 15.3 GALE Immediate complete restriction of galactose intake, supportive care If GALT (disorder 15.2) or GALE (disorder 15.3) is suspected in a (newborn) child, dietary treatment consisting of a lactose-/galactose-free feeding regimen should be initiated without delay, even before the diagnosis has been confirmed enzymatically or by DNA analysis. Supportive
Recommended publications
  • Hereditary Galactokinase Deficiency J
    Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis.
    [Show full text]
  • Targeted Therapies for Metabolic Myopathies Related to Glycogen Storage and Lipid Metabolism: a Systematic Review and Steps Towards a ‘Treatabolome’
    Journal of Neuromuscular Diseases 8 (2021) 401–417 401 DOI 10.3233/JND-200621 IOS Press Systematic Review Targeted Therapies for Metabolic Myopathies Related to Glycogen Storage and Lipid Metabolism: a Systematic Review and Steps Towards a ‘Treatabolome’ A. Mantaa,b, S. Spendiffb, H. Lochmuller¨ b,c,d,e,f and R. Thompsonb,∗ aFaculty of Medicine, University of Ottawa, Ottawa, ON, Canada bChildren’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada cDepartment of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany dCentro Nacional de An´alisis Gen´omico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain eDivision of Neurology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Canada f Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada Abstract. Background: Metabolic myopathies are a heterogenous group of muscle diseases typically characterized by exercise intoler- ance, myalgia and progressive muscle weakness. Effective treatments for some of these diseases are available, but while our understanding of the pathogenesis of metabolic myopathies related to glycogen storage, lipid metabolism and ␤-oxidation is well established, evidence linking treatments with the precise causative genetic defect is lacking. Objective: The objective of this study was to collate all published evidence on pharmacological therapies for the aforemen- tioned metabolic myopathies and link this to the genetic mutation in a format amenable to databasing for further computational use in line with the principles of the “treatabolome” project. Methods: A systematic literature review was conducted to retrieve all levels of evidence examining the therapeutic efficacy of pharmacological treatments on metabolic myopathies related to glycogen storage and lipid metabolism.
    [Show full text]
  • Biochemistry Entry of Fructose and Galactose
    Paper : 04 Metabolism of carbohydrates Module : 06 Entry of Fructose and Galactose Dr. Vijaya Khader Dr. MC Varadaraj Principal Investigator Dr.S.K.Khare,Professor IIT Delhi. Paper Coordinator Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. S. P. Singh, Professor Content Reviewer UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. Charmy Kothari, Assistant Professor Content Writer Department of Biotechnology Christ College, Affiliated to Saurashtra University, Rajkot-5, Gujarat-INDIA 1 Metabolism of Carbohydrates Biochemistry Entry of Fructose and Galactose Description of Module Subject Name Biochemistry Paper Name 04 Metabolism of Carbohydrates Module Name/Title 06 Entry of Fructose and Galactose 2 Metabolism of Carbohydrates Biochemistry Entry of Fructose and Galactose METABOLISM OF FRUCTOSE Objectives 1. To study the major pathway of fructose metabolism 2. To study specialized pathways of fructose metabolism 3. To study metabolism of galactose 4. To study disorders of galactose metabolism 3 Metabolism of Carbohydrates Biochemistry Entry of Fructose and Galactose Introduction Sucrose disaccharide contains glucose and fructose as monomers. Sucrose can be utilized as a major source of energy. Sucrose includes sugar beets, sugar cane, sorghum, maple sugar pineapple, ripe fruits and honey Corn syrup is recognized as high fructose corn syrup which gives the impression that it is very rich in fructose content but the difference between the fructose content in sucrose and high fructose corn syrup is only 5-10%. HFCS is rich in fructose because the sucrose extracted from the corn syrup is treated with the enzyme that converts some glucose in fructose which makes it more sweet.
    [Show full text]
  • Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome
    Pediatr. Res. 17: 157-161 (1983) Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome M. BRIVET,"" N. MOATTI, A. CORRIAT, A. LEMONNIER, AND M. ODIEVRE Laboratoire Central de Biochimie du Centre Hospitalier de Bichre, 94270 Kremlin-Bicetre, France [M. B., A. C.]; Faculte des Sciences Pharmaceutiques et Biologiques de I'Universite Paris-Sud, 92290 Chatenay-Malabry, France [N. M., A. L.]; and Faculte de Midecine de I'Universiti Paris-Sud et Unite de Recherches d'Hepatologie Infantile, INSERM U 56, 94270 Kremlin-Bicetre. France [M. 0.1 Summary The patient's diet was supplemented with 25-OH-cholecalci- ferol, phosphorus, calcium, and bicarbonate. With this treatment, Carbohydrate metabolism was studied in a child with atypical the serum phosphate concentration increased, but remained be- glycogen storage disease and Fanconi syndrome. Massive gluco- tween 0.8 and 1.0 mmole/liter, whereas the plasma carbon dioxide suria, partial resistance to glucagon and abnormal responses to level returned to normal (18-22 mmole/liter). Rickets was only carbohydrate loads, mainly in the form of major impairment of partially controlled. galactose utilization were found, as reported in previous cases. Increased blood lactate to pyruvate ratios, observed in a few cases of idiopathic Fanconi syndrome, were not present. [l-14ClGalac- METHODS tose oxidation was normal in erythrocytes, but reduced in fresh All studies of the patient and of the subjects who served as minced liver tissue, despite normal activities of hepatic galactoki- controls were undertaken after obtaining parental or personal nase, uridyltransferase, and UDP-glucose 4epirnerase in hornog- consent. enates of frozen liver.
    [Show full text]
  • Improvement of the Nutritional Management of Glycogen Storage Disease Type I
    1 Improvement of the nutritional management of glycogen storage disease type I Kaustuv Bhattacharya Presented for the degree of MD (res) at University College London 2 “The roots below the earth claim no rewards for making the branches fruitful” Sir Rabrindranath Tagore Stray Birds (1917) Acknowledgements Whilst this thesis is my own work, it is the product of several helpful discussions with many people around the world. It was conducted under the supervision of Philip Lee who, since completion of the data collection, faced bigger personal challenges than he could have imagined. I hope that this work is a fitting conclusion to one strategic direction, of some of his research, which I hope he can be proud of. I am very grateful for his help. Peter Clayton has been a source of inspiration throughout my “metabolic” career and his guidance throughout this process has been very gratefully received. I appreciate the tolerance of my other colleagues at Queen Square and Great Ormond Street Hospital that have accommodated in different ways. The dietetic experience of Maggie Lilburn has been invaluable to this work. Simon Eaton has helped tremendously with performing the assays in chapter 5. I would also like to thank, David Morley, Amy Cole, Martin Christian, and Bridget Wilcken for their constructive thoughts. None of this work would have been possible without the Murphy family’s generous support. I thank the Dromintee Trust for keeping me in worthwhile employment. I would like to thank the patients who volunteered and gave me so much of their time. The Association for Glycogen Storage Disease (UK), Glycologic Ltd and Vitaflo Ltd have also sponsored these trials and hopefully facilitated a better experience for patients.
    [Show full text]
  • Datasheet: VPA00226
    Datasheet: VPA00226 Description: RABBIT ANTI ALDOA Specificity: ALDOA Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit Ig fraction prepared by ammonium sulphate precipitation Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers Immunogen KLH conjugated synthetic peptide between 66-95 amino acids from the N-terminal region of human ALDOA External Database UniProt: Links P04075 Related reagents Entrez Gene: 226 ALDOA Related reagents Page 1 of 2 Synonyms ALDA Specificity Rabbit anti Human ALDOA antibody recognizes fructose-bisphosphate aldolase A, also known as epididymis secretory sperm binding protein Li 87p, fructose-1,6-bisphosphate triosephosphate-lyase, lung cancer antigen NY-LU-1 and muscle-type aldolase. Encoded by the ALDOA gene, fructose-bisphosphate aldolase A is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate.
    [Show full text]
  • Dismetabolic Cataracts
    ndrom Sy es tic & e G n e e n G e f T o Journal of Genetic Syndromes Cavallini et al., J Genet Syndr Gene Ther 2013, 4:7 h l e a r n a r p u DOI: 10.4172/2157-7412.1000165 y o J & Gene Therapy ISSN: 2157-7412 Case Report Open Access Dismetabolic Cataracts: Clinicopathologic Overview and Surgical Management with B-MICS Technique Cavallini GM1, Forlini M1, Masini C1, Campi L1, Chiesi C1, Rejdak R2 and Forlini C3* 1Institute of Ophthalmology, University of Modena, Modena, Italy 2Department of Ophthalmology, Medical University of Lublin, Lublin, Poland 3Department of Ophthalmology, “Santa Maria Delle Croci” Hospital, Ravenna, Italy Abstract Background: Dismetabolic cataract is a loss of lens transparency due to an insult to the nuclear or lenticular fibers, caused by a metabolic disorder. The lens opacification may occur early or later in life, and may be isolated or associated to particular syndromes. We describe some of these metabolic conditions associated with cataract formation, and in particular we report our experience with a patient affected by lathosterolosis that presented bilateral cataracts. Methods: Our patient was a 7-years-old little girl diagnosed with lathosterolosis at age 2 years, through gas cromatography/mass spectrometry method for plasma sterol profile that revealed a peak corresponding to cholest- 7-en-3β-ol (lathosterol). Results: The lens samples obtained during surgical removal with B-MICS technique were sent to the Department of Pathology and routinely processed and stained with haematoxylin-eosin and PAS; then, they were examined under a light microscope. Histological examination revealed lens fragments with the presence of fibers disposed in a honeycomb way, samples characterized by the presence of homogeneous eosinophilic lens fibers, and other fragments characterized by bulgy elements referable to cortical fibers with degenerative characteristics.
    [Show full text]
  • General Nutrition Guidelines for Glycogen Storage Disease Type III
    General Nutrition Guidelines For Glycogen Storage Disease Type III Glycogen Storage Disease Type III (GSDIII) is a genetic metabolic disorder which causes the inability to break down glycogen to glucose. Glycogen is a stored form of sugar in the body. Glucose (sugar) is the main source of fuel for the body and brain. GSD IIIa causes the inability of the liver and muscles to breakdown glycogen to glucose. GSD IIIb causes the inability of the liver to breakdown glycogen to glucose. As a result of the inability to breakdown glycogen, patients with GSDIII are at risk for low blood sugars (hypoglycemia) during periods of fasting. Patients with GSDIIIa also do not have the ability to access glycogen in their muscles as well. The lack of glycogen access in the muscles causes muscle damage as the muscle do not have a fuel to aid them in working. The following is a recommended general nutrition guideline for those with GSDIII to help maximize blood sugar control, nutrition, energy, and hopefully minimize muscle damage for those with GSDIIIa. Protein What is protein? Protein is a macronutrient (like carbohydrate and fat) and is required for proper growth and development. In GSDIII, the most important role that protein serves is a way for the body to make glucose since those with GSDIII do not have access to stored sugars (glycogen). Protein also serves as the building blocks for our cells, is also necessary to make antibodies which help our bodies fight off illnesses, make up hormones, enzymes, and even our DNA. With GSD type III, it is very important to make sure you are getting all the protein that your body needs.
    [Show full text]
  • Maladies Convention Mal
    maladies métaboliques monogéniques héréditaires rares 1 avenant à la convention avec les centres de référence – annexe OMIM # FULL NAME A. disorders of amino acid metabolism 1 261600 classical phenylketonuria and hyperphenylala- ninemia 2 261640 phenylketonuria due to PTPS deficiency 3 261630 phenylketonuria due to DHPR deficiency 4 264070 phenylketonuria due to PCD deficiency 5 128230 DOPA-responsive dystonia (TH, SPR, GCH1) 6 248600 leucinose, maple syrup urine disease (MSUD) 7 276700 tyrosinemia type 1 8 276600 tyrosinemia type 2 9 276710 tyrosinemia type 3 10 203500 alkaptonuria 11 236200 homocystinuria, B6 responsive and non responsive 12 236250 homocystinuria due to MTHFR deficiency 13 236270-250940 homocystinuria-megaloblastic anemia Cbl E & G type 14 250850 methionine S-adenosyltransferase deficiency 15 606664 glycine N-methyltransferase deficiency 16 180960 S-adenosylhomocystine hydrolase deficiency 17 237300 hyperammonemia due to CPS deficiency 18 311250 hyperammonemia due to OTC deficiency 19 215700 citrullinemia type I 20 605814-603471 citrullinemia type II 21 207900 argininosuccinic aciduria (ASL deficiency) 22 207800 argininemia (arginase deficiency) 23 237310 hyperammonemia due to NAGS deficiency 24 238970 hyperornithinemia, hyperammonemia, homocitrulli- nuria (HHH) 25 222700 lysinuric protein intolerance 26 258870 gyrate atrophy, B6 responsive or non responsive 27 238700 hyperlysinemia (alpha-aminoadipic semialdehyde synthase deficiency) 28 238300-330-310 non ketotic hyperglycinaemia 29 234500 hartnup disorder 30 601815-172480
    [Show full text]
  • Table S1. Disease Classification and Disease-Reaction Association
    Table S1. Disease classification and disease-reaction association Disorder class Associated reactions cross Disease Ref[Goh check et al.
    [Show full text]
  • Galactosaemia in an Infant: Case Report F.V
    May 1999 EAST AFRICAN MEDICAL JOURNAL 28 1 East Atiican Medical Journal Vol. 76 No 5 May 1999 GALACTOSAEMIA IN AN INFANT: CASE REPORT F.V. Murila. MBChB. MMed, Lecturer, Department of Paediatrics and Child Health College of Health Sciences, University of Nairobi, P.O. Box 19676, Nairobi GALACTOSAEMIA IN AN INFANT: CASE REPORT F.V. MURILA SUMMARY Galactosaemia is a disorder of galactose metabolism in which raised levels of galactose and galactose-1-phosphate damage various organs. It is a very rare disease (incidence 1 in 60,000) and the diagnosis is often missed, leading to poor prognosis. A case of clinical galactosaemia that was diagnosed at the age of 11 months is reported. It is important to be aware of this condition as early treatment may prevent some of the complications. INTRODUCTION Assay of the respective enzyme in the red blood cell, white blood cell and fibroblasts shows a deficiency Galactosaemia is a very rare disorder of galactose of the enzyme(4). Red blood cells (RBC) lactose-l- metabolism whose mode of inheritance is autosomal phosphate levels are high(2). recessive(1). It is characterised by a deficiency of any Treatment consists of dietary restriction of lactose. of three enzymes. These are galactokinase, galactose- Inspite of strict lactose restriction, however, neurological I-phosphate uridyl transferase (GALT) and uridyl and gonadal damage are relentlessly progressive(2,5). diphosphogalactose-4-epimerase. A deficiency of galactokinase leads to an increase in serum galactose CASE REPORT - with subsequent galactosuria The excess galactose is converted to galactitol which leads to cataract formation. J.M.was well until the age of three months when he Intelligence is spared.
    [Show full text]
  • The Stochastic Human Red Blood Cell Model and Its Applications
    RESEARCH The Stochastic Human Red Blood Cell Model and Its Applications Archita Biswas1, Pawan K Dhar1, Girja Kaushal2, Usha Kumari3, Kalaiarasan Ponnusamy* 1Synthetic Biology group, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India 2Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India 3Faculty of Medicine, AIMST University, Malaysia. *Corresponding author’s email: [email protected] ABSTRACT Red blood cells (RBCs) form the bulk of the blood volume for delivering oxygen and nutrients to various cells in the body. Several studies have focused on the RBCs to understand its metabolic activities in normal and abnormal conditions. However, an integrated view of the red blood cell, as a system of molecular fluctuations, is still lacking. The RBC metabolic wiring comprises four key pathways, i.e. Glycolysis, Pentose Phosphate, Purine salvage pathway and Glutathione pathway. Here we present an integrated metabolic pathway model of the human red blood cell by including first three pathways due to their significant presence and interaction. Furthermore, the stochastic model of RBCs metabolic pathways has been extended to include explaining abnormal conditions in the form of Pyruvate Kinase and Aldolase A deficiencies. By studying metabolite changes in-silico, four biomarkers were found to represent two genetic mutations, i.e., 2-phosphoglycerate & phosphoenol pyruvate changes for Pyruvate kinase deficiency and fructose-1-6-bisphosphate & xylulose-5-phosphate for Aldolase A deficiency. The virtual RBC model has the potential for more clinical applications and can be scaled up to include additional regulatory and metabolic content. KEYWORDS: Virtual Cell, stochastic model, RBC, ns, Pyruvate kinase, Aldolase A deficiency. Citation: Biswas A et al (2018) The Stochastic human red blood cell model and its applications.
    [Show full text]