1 SUPPLEMENTARY RESULTS Hypomethylated Promoters Are

Total Page:16

File Type:pdf, Size:1020Kb

1 SUPPLEMENTARY RESULTS Hypomethylated Promoters Are SUPPLEMENTARY RESULTS Hypomethylated promoters are neither mutated nor deleted in HCC samples To rule out the possibility that the demethylation observed in gene promoters in our pyrosequencing assays (conversion of a C to T following bisulfite conversion) indicates a mutation of C to T rather than demethylation, we sequenced the unconverted DNA of AKR1B10, CENPH, MMP2, MMP9, MMP12, NUPR1, PAGE4, PLAU, and S100A5 promoter regions using the pyrosequencing SNP assay (Supplementary Fig. S2). We show that in all cases the fraction of cytosines in the unconverted sequence is similar in normal liver and in HCC. Therefore, the increase in the fraction of cytosines that were converted to thymidine in the tumor samples occurred only after bisulfite treatment and it was not due to mutations of Cs to Ts. Loss of signal for methylated DNA in hypomethylated promoters in HCC did not result from loss of DNA by deletions since our method internally controls for loss of DNA. Our MeDIP arrays are hybridized with both DNA immunoprecipitated with anti-5-methylcytosine antibody as well as total DNA. Thus, our assays measure both DNA methylation and DNA integrity. The DNA methylation signal reflects the ratio of signal for methylated DNA immunoprecipitation with the anti-5-methylcytosine antibody over total DNA in the sample at the indicated genome position. Loss of DNA by deletion would have increased the ratio of methylated DNA to total DNA to infinity and would have presented itself as hypermethylation rather than hypomethylation. Careful examination of the promoters that were demethylated in HCC provides evidence for the absence of deletions/amplifications in the genes that are hypomethylated in HCC patients. We quantile-normalized the background channel across all inputs and computed a per-probe differential statistic between cancer and normal using a t-test. The wilcoxon rank-sum test was used to identify enrichment of unusually high or low probe 1 differential statistics inside each demethylated promoter. The p-values from the rank-sum test were adjusted for multiple testing using the false discovery rate. Among 3,708 hypomethylated promoters, only 19 promoters corresponding to 12 genes (Supplementary Table S4) had a false discovery rate less than 0.05 indicating that the region may have been deleted/amplified. They have been excluded from the list of genes hypomethylated in HCC. Pathways controlled by epigenetically induced genes Functional analysis reveals that the epigenetically induced genes are enriched in pathways known to drive cellular transformation, cancer growth, angiogenesis and cancer metastasis (Supplementary Fig. S3A). Example pathways include the prometastatic TGF-beta signaling (1), the potent angiogenic and prometastatic VEGF signaling (2-3), the JAK-STAT signal transduction pathway that mediates cytokine triggered signals such as IL6 which plays an important role in cancer growth and metastasis (4), and participates in cross talk with the mitogenic and oncogenic RAS-MAPK and TGF-beta signal transduction pathways (5), the WNT signaling cascade that plays an important role in several cancers including colorectal, breast and prostate cancer and is upregulated in cancer metastasis (6-8), and finally the HEDGEHOG signaling cascade that was reported to be aberrantly reactivated in liver cancer and its blocking resulted in a decrease in cancer cell viability (9). Activation of both Jak-STAT and Ras/MAPK were previously shown to be enhanced in HCC samples, and their inhibition led to a strong apoptotic response (10). Enrichment of epigenetically induced genes in the gycolysis/gluconeogenesis pathway is consistent with the remarkable propensity of highly malignant, poorly differentiated tumors, including hepatomas, to utilize glucose at a much higher rate than normal cells (11). 2 In general, the epigenetically induced genes are enriched in biological processes that are known to be critical for tumor progression, survival and motility, differentiation, transcription regulation and signal transduction (Table 2). Many of the epigenetically induced genes in these critical processes are known to play a role in cancer while at least 20 of these genes, to our knowledge, play unknown roles (Table 2A and B). These 20 genes are enriched in biological processes such as histone binding, positively regulating MAPK pathway, methyltransferase activity and involvement in base-excision repair, suggesting that these new candidates play a role in liver cancer and are regulated by epigenetic mechanisms. The roles of several of these genes, CCDC138, KCTD2, PAQR4 and RNMT, are poorly established. Other genes such as CSPP1, FAM83D, EXOSC4 and NEIL3 have previously been linked to breast, colorectal cancer, renal carcinoma and glioblastoma through mutation and expression analyses (12-13). Overall our analyses support the hypothesis that hypermethylation and hypomethylation target distinct cell functions involved in resetting the cellular gene expression program from that of a normal untransformed state to that of a highly transformed and invasive cancer. Promoter hypermethylation inhibits genes that block cellular growth and metastasis whereas hypomethylation drives promitogenic, metabolic and prometastatic processes. 5-aza-2’-deoxycytidine (5-azaCdR) induces “HCC demethylated genes” in human untransformed hepatocyte cell culture (NorHep) In order to determine causal relationship between promoter hypomethylation and activation of genes epigenetically induced in HCC we determined whether the DNA methylation inhibitor 5- aza-2’-deoxycytidine (5-azaCdR) would induce these genes in a primary hepatocyte (NorHep) cell culture. To experimentally test causality between DNA methylation and expression we had 3 to resort to cell culture experiments. Since we used HepG2 hepatocellular carcinoma cell line as a model of transformed liver cells and NorHep cells as a model of normal liver cells we focused on genes that were hypomethylated (expressed) in HepG2 cells and hypermethylated (silent) in NorHep cells. We then tested whether these genes would be induced in NorHep cells following treatment with the DNA demethylating agent 5-azaCdR. Most of the studied genes were also hypomethylated in HCC patients. We examined by QPCR the expression of 84 genes following 5-azaCdR treatment of NorHep including 65 with high CpG-dense promoters (HCP). As shown in Fig. 2E, the most profound increase in gene expression among all promoters hypomethylated in HCC patients is observed for genes with HCP promoters where average expression differences are > 0. We therefore focused on this gene set for this analysis. Moreover, 38 out of these 84 genes belonged to the genes epigenetically induced in HCC patients that showed the most profound hypomethylation and/or induction and included genes known to be involved in cancer (e.g., CENPH, CKS2, IPO7, MAP3K4, MAPRE1, PPARG, PRPF6, RELB, SERF2) as well as new cancer gene candidates (e.g., CSPP1, RASAL2, SENP6, RNMT, TMX2, NEIL3, NENF) as shown in Table 2. Since the experiment was performed in a primary hepatocyte (NorHep) cell culture we also tested a group of 46 genes in addition to 12 genes from the 38 genes described above that are hypomethylated in HepG2 cells compared to NorHep cells and represent families important in cancer such as members of WNT signaling pathway (WNT16), semaphorins (SEMA4C), S100 calcium binding proteins (S100A5), ubiquitin-conjugating enzymes (UBE2E1/2), ephrin receptors (EPHA3/B1), transcription factors (E2F2), growth factors (EGF, FGF). 24 out of these 46 genes are also significantly hypomethylated in HCC patients. 4 71 out of the 84 examined genes were induced upon treatment with 5-azaCdR at 1.0 µM concentration for either 5 or 20 days (Supplementary Table S6). The highest increase was observed for FGF20, BMP4, CABYR, CCL20, WNT16, MMP2, PLAU, and S100A5 (4-50 fold, Supplementary Fig. S4B and Supplementary Table S6). As expected 5-azaCdR in NorHep cells led to global hypomethylation (Supplementary Fig. S4A) and a decrease in promoter methylation of MMP2, NUPR1, PLAU, and S100A5 genes (Supplementary Fig. S4C). Using microarray data, we also compared fold change in expression with the extent of hypomethylation for 230 genes epigenetically induced in HCC patients. For each gene, we compared differential gene expression to differential promoter methylation between cancer and normal tissue across all patients. If promoter hypomethylation does have impact on the increase in gene expression, then we expect the gene expression differences to be negatively correlated with the promoter methylation differences. For both differential expression and differential methylation, we used the log-fold change of the microarray probe that the most significantly differentiated between cancer and normal for the given gene. We then calculated Pearson's correlation coefficient between our measures of differential expression and differential methylation. As expected, we found that the resulting correlation coefficients from the 230 genes were on average less than zero (Wilcoxon rank-sum test, P ≤ 0.005) (see Supplementary Fig. S4D for a scatter plot). Details on genes demethylated in liver, ovarian and breast cancers Several of the genes that are demethylated in liver, ovarian and breast cancers have been implicated in cancer progression and metastasis. Examples include regulators of tight junction and cell-cell adhesion (CLAUDIN 4, CLDN4) (14), modulators of transmembrane signaling 5 systems (GUANINE NUCLEOTIDE-BINDING PROTEIN G(S)
Recommended publications
  • (APOCI, -C2, and -E and LDLR) and the Genes C3, PEPD, and GPI (Whole-Arm Translocation/Somatic Cell Hybrids/Genomic Clones/Gene Family/Atherosclerosis) A
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 3929-3933, June 1986 Genetics Regional mapping of human chromosome 19: Organization of genes for plasma lipid transport (APOCI, -C2, and -E and LDLR) and the genes C3, PEPD, and GPI (whole-arm translocation/somatic cell hybrids/genomic clones/gene family/atherosclerosis) A. J. LUSIS*t, C. HEINZMANN*, R. S. SPARKES*, J. SCOTTt, T. J. KNOTTt, R. GELLER§, M. C. SPARKES*, AND T. MOHANDAS§ *Departments of Medicine and Microbiology, University of California School of Medicine, Center for the Health Sciences, Los Angeles, CA 90024; tMolecular Medicine, Medical Research Council Clinical Research Centre, Harrow, Middlesex HA1 3UJ, United Kingdom; and §Department of Pediatrics, Harbor Medical Center, Torrance, CA 90509 Communicated by Richard E. Dickerson, February 6, 1986 ABSTRACT We report the regional mapping of human from defects in the expression of the low density lipoprotein chromosome 19 genes for three apolipoproteins and a lipopro- (LDL) receptor and is strongly correlated with atheroscle- tein receptor as well as genes for three other markers. The rosis (15). Another relatively common dyslipoproteinemia, regional mapping was made possible by the use of a reciprocal type III hyperlipoproteinemia, is associated with a structural whole-arm translocation between the long arm of chromosome variation of apolipoprotein E (apoE) (16). Also, a variety of 19 and the short arm of chromosome 1. Examination of three rare apolipoprotein deficiencies result in gross perturbations separate somatic cell hybrids containing the long arm but not of plasma lipid transport; for example, apoCII deficiency the short arm of chromosome 19 indicated that the genes for results in high fasting levels oftriacylglycerol (17).
    [Show full text]
  • Human Chromosome‐Specific Aneuploidy Is Influenced by DNA
    Article Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features Marie Dumont1,†, Riccardo Gamba1,†, Pierre Gestraud1,2,3, Sjoerd Klaasen4, Joseph T Worrall5, Sippe G De Vries6, Vincent Boudreau7, Catalina Salinas-Luypaert1, Paul S Maddox7, Susanne MA Lens6, Geert JPL Kops4 , Sarah E McClelland5, Karen H Miga8 & Daniele Fachinetti1,* Abstract Introduction Intrinsic genomic features of individual chromosomes can contri- Defects during cell division can lead to loss or gain of chromosomes bute to chromosome-specific aneuploidy. Centromeres are key in the daughter cells, a phenomenon called aneuploidy. This alters elements for the maintenance of chromosome segregation fidelity gene copy number and cell homeostasis, leading to genomic instabil- via a specialized chromatin marked by CENP-A wrapped by repeti- ity and pathological conditions including genetic diseases and various tive DNA. These long stretches of repetitive DNA vary in length types of cancers (Gordon et al, 2012; Santaguida & Amon, 2015). among human chromosomes. Using CENP-A genetic inactivation in While it is known that selection is a key process in maintaining aneu- human cells, we directly interrogate if differences in the centro- ploidy in cancer, a preceding mis-segregation event is required. It was mere length reflect the heterogeneity of centromeric DNA-depen- shown that chromosome-specific aneuploidy occurs under conditions dent features and whether this, in turn, affects the genesis of that compromise genome stability, such as treatments with micro- chromosome-specific aneuploidy. Using three distinct approaches, tubule poisons (Caria et al, 1996; Worrall et al, 2018), heterochro- we show that mis-segregation rates vary among different chromo- matin hypomethylation (Fauth & Scherthan, 1998), or following somes under conditions that compromise centromere function.
    [Show full text]
  • Searching the Genomes of Inbred Mouse Strains for Incompatibilities That Reproductively Isolate Their Wild Relatives
    Journal of Heredity 2007:98(2):115–122 ª The American Genetic Association. 2007. All rights reserved. doi:10.1093/jhered/esl064 For permissions, please email: [email protected]. Advance Access publication January 5, 2007 Searching the Genomes of Inbred Mouse Strains for Incompatibilities That Reproductively Isolate Their Wild Relatives BRET A. PAYSEUR AND MICHAEL PLACE From the Laboratory of Genetics, University of Wisconsin, Madison, WI 53706. Address correspondence to the author at the address above, or e-mail: [email protected]. Abstract Identification of the genes that underlie reproductive isolation provides important insights into the process of speciation. According to the Dobzhansky–Muller model, these genes suffer disrupted interactions in hybrids due to independent di- vergence in separate populations. In hybrid populations, natural selection acts to remove the deleterious heterospecific com- binations that cause these functional disruptions. When selection is strong, this process can maintain multilocus associations, primarily between conspecific alleles, providing a signature that can be used to locate incompatibilities. We applied this logic to populations of house mice that were formed by hybridization involving two species that show partial reproductive isolation, Mus domesticus and Mus musculus. Using molecular markers likely to be informative about species ancestry, we scanned the genomes of 1) classical inbred strains and 2) recombinant inbred lines for pairs of loci that showed extreme linkage disequi- libria. By using the same set of markers, we identified a list of locus pairs that displayed similar patterns in both scans. These genomic regions may contain genes that contribute to reproductive isolation between M. domesticus and M.
    [Show full text]
  • Alzheimer's Disease Genetics Fact Sheet
    Alzheimer’s Disease Genetics FACT SHEET cientists don’t yet fully In other diseases, a genetic variant understand what causes may occur. This change in a gene can SAlzheimer’s disease. How- sometimes cause a disease directly. ever, the more they learn about More often, it acts to increase or this devastating disease, the more decrease a person’s risk of develop- they realize that genes* play an ing a disease or condition. When a important role in its development. genetic variant increases disease risk Research conducted and funded but does not directly cause a disease, by the National Institute on Aging it is called a genetic risk factor. (NIA) at the National Institutes of Health and others is advancing Alzheimer’s Disease Genetics the field of Alzheimer’s disease genetics. Alzheimer’s disease is an irreversible, progressive brain disease. It is charac- terized by the development of amyloid The Genetics of Disease plaques and neurofibrillary tangles, the loss of connections between nerve Some diseases are caused by a cells, or neurons, in the brain, and genetic mutation, or permanent the death of these nerve cells. There change in one or more specific are two types of Alzheimer’s—early- genes. If a person inherits from onset and late-onset. Both types have a parent a genetic mutation that a genetic component. causes a certain disease, then he or she will usually get the disease. Early-Onset Alzheimer’s Disease Sickle cell anemia, cystic fibrosis, and early-onset familial Alzheimer’s Early-onset Alzheimer’s disease disease are examples of inherited occurs in people age 30 to 60.
    [Show full text]
  • 16P11.2 Deletion Syndrome Guidebook
    16p11.2 Deletion Syndrome Guidebook Page 1 Version 1.0, 12/11/2015 16p11.2 Deletion Syndrome Guidebook This guidebook was developed by the Simons VIP Connect Study Team to help you learn important information about living with the 16p11.2 deletion syndrome. Inside, you will find that we review everything from basic genetics and features of 16p11.2 deletion syndrome, to a description of clinical care and management considerations. - Simons VIP Connect Page 2 Version 1.0, 12/11/2015 Table of Contents How Did We Collect All of this Information? ................................................................................................ 4 What is Simons VIP Connect? ................................................................................................................... 4 What is the Simons Variation in Individuals Project (Simons VIP)? .......................................................... 5 Simons VIP Connect Research................................................................................................................... 5 Definition of 16p11.2 Deletion ..................................................................................................................... 6 What is a Copy Number Variant (CNV)? ................................................................................................... 7 Inheritance ................................................................................................................................................ 8 How is a 16p11.2 Deletion Found? ..........................................................................................................
    [Show full text]
  • The Cytogenetics of Hematologic Neoplasms 1 5
    The Cytogenetics of Hematologic Neoplasms 1 5 Aurelia Meloni-Ehrig that errors during cell division were the basis for neoplastic Introduction growth was most likely the determining factor that inspired early researchers to take a better look at the genetics of the The knowledge that cancer is a malignant form of uncon- cell itself. Thus, the need to have cell preparations good trolled growth has existed for over a century. Several biologi- enough to be able to understand the mechanism of cell cal, chemical, and physical agents have been implicated in division became of critical importance. cancer causation. However, the mechanisms responsible for About 50 years after Boveri’s chromosome theory, the this uninhibited proliferation, following the initial insult(s), fi rst manuscripts on the chromosome makeup in normal are still object of intense investigation. human cells and in genetic disorders started to appear, fol- The fi rst documented studies of cancer were performed lowed by those describing chromosome changes in neoplas- over a century ago on domestic animals. At that time, the tic cells. A milestone of this investigation occurred in 1960 lack of both theoretical and technological knowledge with the publication of the fi rst article by Nowell and impaired the formulations of conclusions about cancer, other Hungerford on the association of chronic myelogenous leu- than the visible presence of new growth, thus the term neo- kemia with a small size chromosome, known today as the plasm (from the Greek neo = new and plasma = growth). In Philadelphia (Ph) chromosome, to honor the city where it the early 1900s, the fundamental role of chromosomes in was discovered (see also Chap.
    [Show full text]
  • Stem Cells® Original Article
    ® Stem Cells Original Article Properties of Pluripotent Human Embryonic Stem Cells BG01 and BG02 XIANMIN ZENG,a TAKUMI MIURA,b YONGQUAN LUO,b BHASKAR BHATTACHARYA,c BRIAN CONDIE,d JIA CHEN,a IRENE GINIS,b IAN LYONS,d JOSEF MEJIDO,c RAJ K. PURI,c MAHENDRA S. RAO,b WILLIAM J. FREEDa aCellular Neurobiology Research Branch, National Institute on Drug Abuse, Department of Health and Human Services (DHHS), Baltimore, Maryland, USA; bLaboratory of Neuroscience, National Institute of Aging, DHHS, Baltimore, Maryland, USA; cLaboratory of Molecular Tumor Biology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA; dBresaGen Inc., Athens, Georgia, USA Key Words. Embryonic stem cells · Differentiation · Microarray ABSTRACT Human ES (hES) cell lines have only recently been compared with pooled human RNA. Ninety-two of these generated, and differences between human and mouse genes were also highly expressed in four other hES lines ES cells have been identified. In this manuscript we (TE05, GE01, GE09, and pooled samples derived from describe the properties of two human ES cell lines, GE01, GE09, and GE07). Included in the list are genes BG01 and BG02. By immunocytochemistry and reverse involved in cell signaling and development, metabolism, transcription polymerase chain reaction, undifferenti- transcription regulation, and many hypothetical pro- ated cells expressed markers that are characteristic of teins. Two focused arrays designed to examine tran- ES cells, including SSEA-3, SSEA-4, TRA-1-60, TRA-1- scripts associated with stem cells and with the 81, and OCT-3/4. Both cell lines were readily main- transforming growth factor-β superfamily were tained in an undifferentiated state and could employed to examine differentially expressed genes.
    [Show full text]
  • Definition of the Landscape of Promoter DNA Hypomethylation in Liver Cancer
    Published OnlineFirst July 11, 2011; DOI: 10.1158/0008-5472.CAN-10-3823 Cancer Therapeutics, Targets, and Chemical Biology Research Definition of the Landscape of Promoter DNA Hypomethylation in Liver Cancer Barbara Stefanska1, Jian Huang4, Bishnu Bhattacharyya1, Matthew Suderman1,2, Michael Hallett3, Ze-Guang Han4, and Moshe Szyf1,2 Abstract We use hepatic cellular carcinoma (HCC), one of the most common human cancers, as a model to delineate the landscape of promoter hypomethylation in cancer. Using a combination of methylated DNA immunopre- cipitation and hybridization with comprehensive promoter arrays, we have identified approximately 3,700 promoters that are hypomethylated in tumor samples. The hypomethylated promoters appeared in clusters across the genome suggesting that a high-level organization underlies the epigenomic changes in cancer. In normal liver, most hypomethylated promoters showed an intermediate level of methylation and expression, however, high-CpG dense promoters showed the most profound increase in gene expression. The demethylated genes are mainly involved in cell growth, cell adhesion and communication, signal transduction, mobility, and invasion; functions that are essential for cancer progression and metastasis. The DNA methylation inhibitor, 5- aza-20-deoxycytidine, activated several of the genes that are demethylated and induced in tumors, supporting a causal role for demethylation in activation of these genes. Previous studies suggested that MBD2 was involved in demethylation of specific human breast and prostate cancer genes. Whereas MBD2 depletion in normal liver cells had little or no effect, we found that its depletion in human HCC and adenocarcinoma cells resulted in suppression of cell growth, anchorage-independent growth and invasiveness as well as an increase in promoter methylation and silencing of several of the genes that are hypomethylated in tumors.
    [Show full text]
  • How Genes Work
    Help Me Understand Genetics How Genes Work Reprinted from MedlinePlus Genetics U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services Table of Contents 1 What are proteins and what do they do? 1 2 How do genes direct the production of proteins? 5 3 Can genes be turned on and off in cells? 7 4 What is epigenetics? 8 5 How do cells divide? 10 6 How do genes control the growth and division of cells? 12 7 How do geneticists indicate the location of a gene? 16 Reprinted from MedlinePlus Genetics (https://medlineplus.gov/genetics/) i How Genes Work 1 What are proteins and what do they do? Proteins are large, complex molecules that play many critical roles in the body. They do most of the work in cells and are required for the structure, function, and regulation of thebody’s tissues and organs. Proteins are made up of hundreds or thousands of smaller units called amino acids, which are attached to one another in long chains. There are 20 different types of amino acids that can be combined to make a protein. The sequence of amino acids determineseach protein’s unique 3-dimensional structure and its specific function. Aminoacids are coded by combinations of three DNA building blocks (nucleotides), determined by the sequence of genes. Proteins can be described according to their large range of functions in the body, listed inalphabetical order: Antibody. Antibodies bind to specific foreign particles, such as viruses and bacteria, to help protect the body. Example: Immunoglobulin G (IgG) (Figure 1) Enzyme.
    [Show full text]
  • Gene Mapping and Medical Genetics
    J Med Genet: first published as 10.1136/jmg.24.8.451 on 1 August 1987. Downloaded from Gene mapping and medical genetics Journal of Medical Genetics 1987, 24, 451-456 Molecular genetics of human chromosome 16 GRANT R SUTHERLAND*, STEPHEN REEDERSt, VALENTINE J HYLAND*, DAVID F CALLEN*, ANTONIO FRATINI*, AND JOHN C MULLEY* From *the Cytogenetics Unit, Adelaide Children's Hospital, North Adelaide, South Australia 5006; and tUniversity of Oxford, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU. SUMMARY The major diseases mapped to chromosome 16 are adult polycystic kidney disease and those resulting from mutations in the a globin complex. There are at least six other less important genetic diseases which map to this chromosome. The adenine phosphoribosyltransferase gene allows for selection of chromosome 16 in somatic cell hybrids and a hybrid panel is available which segments the chromosome into six regions to facilitate gene mapping. Genes which have been mapped to this chromosome or which have had their location redefined since HGM8 include APRT, TAT, MT, HBA, PKDI, CTRB, PGP, HAGH, HP, PKCB, and at least 19 cloned DNA sequences. There are RFLPs at 13 loci which have been regionally mapped and can be used for linkage studies. Chromosome 16 is not one of the more extensively have been cloned and mapped to this chromosome. mapped human autosomes. However, it has a Brief mention will be made of a hybrid cell panel http://jmg.bmj.com/ number of features which make it attractive to the which allows for an efficient regional localisation of gene mapper.
    [Show full text]
  • Variation in Chromosome 19
    J Med Genet: first published as 10.1136/jmg.16.1.79 on 1 February 1979. Downloaded from Case reports 79 This research was supported in part by the UCLA Requests for reprints to Dr S. J. Funderburk, Mental Retardation/Child Psychiatry Program, and Neuropsychiatric Institute, 760 Westwood Plaza, NIH grants MCH-927, HD-04612, HD-05615, and Los Angeles, California 90024, USA. HD-06576. STEvE J. FUNDERBURK,' ROBERT S. SPARKES,2 AND IVANA KLISAK2 Variation in chromosome 19 'Department ofPsychiatry, Mental Retardation Research Program, and 2Departments ofPsychiatry, Pediatrics, and SUMMARY Variations in centromeric staining of Medicine, UCLA School ofMedicine, chromosome 19 appear to be an uncommon Los Angeles, California, USA polymorphism inherited in a Mendelian manner and easily seen in G-banded cells. It should not References be misinterpreted as a structural cytogenetic abnormality. 1Alfi, O., Donnell, G. N., Crandall, B. F., Derencsenyi, A., and Menon, R. (1973). Deletion of the short arm of chromosome 9 (46,9p-): a new deletion syndrome. Although Craig-Holmes et al. (1973) were the first Annales de Gene'tique, 16, 11-22. to draw attention to additional centromeric banding 2Alfi, O., Sanger, R. G., Sweeny, A. E., and Donnell, G. N. (1974). 46, del (9) (22:). A new deletion syndrome. Clinical in the F group of chromosomes, it was Crossen Cytogenetics and Genetics. Birth Defects: Original Article (1975) who specifically implicated chromosome 19. Series, 10, 27-34. The National Foundation-March of However, there has been very little documentation Dimes, New York. of this variant. McKenzie and Lubs (1975) and 3Alfi, O., Donnell, G.
    [Show full text]
  • Rapid Molecular Assays to Study Human Centromere Genomics
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Method Rapid molecular assays to study human centromere genomics Rafael Contreras-Galindo,1 Sabrina Fischer,1,2 Anjan K. Saha,1,3,4 John D. Lundy,1 Patrick W. Cervantes,1 Mohamad Mourad,1 Claire Wang,1 Brian Qian,1 Manhong Dai,5 Fan Meng,5,6 Arul Chinnaiyan,7,8 Gilbert S. Omenn,1,9,10 Mark H. Kaplan,1 and David M. Markovitz1,4,11,12 1Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA; 2Laboratory of Molecular Virology, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay 11400; 3Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109, USA; 4Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; 5Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; 6Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA; 7Michigan Center for Translational Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; 8Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 9Department of Human Genetics, 10Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA; 11Program in Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA; 12Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA The centromere is the structural unit responsible for the faithful segregation of chromosomes. Although regulation of cen- tromeric function by epigenetic factors has been well-studied, the contributions of the underlying DNA sequences have been much less well defined, and existing methodologies for studying centromere genomics in biology are laborious.
    [Show full text]