Industrial and Systems Engineering Density Matrix Quantum Circuit Simulation via the BSP Machine on Modern GPU Clusters ANG LI1,OMER SUBASI1,XIU YANG2, AND SRIRAM KRISHNAMOORTHY3 1Pacific Northwest National Laboratory (PNNL), Richland, WA, 99354, USA 2Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA 3Washington State University, Pullman, WA, 99164, USA ISE Technical Report 20T-029 Density Matrix Quantum Circuit Simulation via the BSP Machine on Modern GPU Clusters † ‡ Ang Li∗, Omer Subasi∗, Xiu Yang∗ and Sriram Krishnamoorthy∗ ∗Pacific Northwest National Laboratory (PNNL), Richland, WA, 99354, USA †Lehigh University, Bethlehem, PA, 18015, USA ‡Washington State University, Pullman, WA, 99164, USA Email:
[email protected],
[email protected],
[email protected],
[email protected] ________ L Abstract—As quantum computers evolve, simulations of quan- j0 = 0 H H tum programs on classical computers will be essential in vali- | i | i • • • _____ ___ ______L __ dating quantum algorithms, understanding the effect of system j1 = 0 H S H noise, and designing applications for future quantum computers. | i | i • • _ ____ ___ ______L __ In this paper, we first propose a new multi-GPU programming j2 = 0 H T S H methodology called MG-BSP which constructs a virtual BSP | i | i • _ ____ ___ machine on top of modern multi-GPU platforms, and apply s this methodology to build a multi-GPU density matrix quantum 0 | i U 4 U 2 U simulator called DM-Sim. We propose a new formulation that s1 can significantly reduce communication overhead, and show | i that this formula transformation can conserve the semantics Fig.