Coordinated Control of Terminal Differentiation and Restriction of Cellular Plasticity Tulsi Patel, Oliver Hobert*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development. -
Ptf1a/Rbpj Complex Inhibits Ganglion Cell Fate and Drives the Specification of All Horizontal Cell Subtypes in the Chick Retina
Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. Elise Lelièvre, Monkol Lek, Henrik Boije, L. Houille-Vernes, Valérie Brajeul, A. Slembrouck, Jérôme Roger, José-Alain Sahel, Jean-Marc Matter, Florian Sennlaub, et al. To cite this version: Elise Lelièvre, Monkol Lek, Henrik Boije, L. Houille-Vernes, Valérie Brajeul, et al.. Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina.: Ptf1a in chick retinal development. Developmental Biology, Elsevier, 2011, 358 (2), pp.296-308. 10.1016/j.ydbio.2011.07.033. inserm-00614775 HAL Id: inserm-00614775 https://www.hal.inserm.fr/inserm-00614775 Submitted on 16 Aug 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. 1,2,3,4,5 6 6 2,4,5 2,4,5 E.C. Lelièvre , M. Lek , H. Boije , L. Houille-Verne s , V. Brajeul , A. Slembrouck2,4,5, J.E. Roger4, J. Sahel2,4,5, J.M. -
Fosmid Library End Sequencing Reveals a Rarely Known Genome Structure of Marine Shrimp Penaeus Monodon
eScholarship Title Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon Permalink https://escholarship.org/uc/item/126680ch Journal BMC Genomics, 12(1) ISSN 1471-2164 Authors Huang, Shiao-Wei Lin, You-Yu You, En-Min et al. Publication Date 2011-05-17 DOI http://dx.doi.org/10.1186/1471-2164-12-242 Supplemental Material https://escholarship.org/uc/item/126680ch#supplemental Peer reviewed eScholarship.org Powered by the California Digital Library University of California Huang et al. BMC Genomics 2011, 12:242 http://www.biomedcentral.com/1471-2164/12/242 RESEARCHARTICLE Open Access Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon Shiao-Wei Huang1, You-Yu Lin1, En-Min You1, Tze-Tze Liu2, Hung-Yu Shu2, Keh-Ming Wu3, Shih-Feng Tsai3, Chu-Fang Lo1, Guang-Hsiung Kou1, Gwo-Chin Ma4, Ming Chen1,4,5, Dongying Wu6,7, Takashi Aoki8, Ikuo Hirono8 and Hon-Tsen Yu1* Abstract Background: The black tiger shrimp (Penaeus monodon) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the P. monodon genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the P. monodon genome were obtained for repetitive and protein-coding sequence analyses. -
Numerous Uncharacterized and Highly Divergent Microbes Which Colonize Humans Are Revealed by Circulating Cell-Free DNA
Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA Mark Kowarskya, Joan Camunas-Solerb, Michael Kerteszb,1, Iwijn De Vlaminckb, Winston Kohb, Wenying Panb, Lance Martinb, Norma F. Neffb,c, Jennifer Okamotob,c, Ronald J. Wongd, Sandhya Kharbandae, Yasser El-Sayedf, Yair Blumenfeldf, David K. Stevensond, Gary M. Shawd, Nathan D. Wolfeg,h, and Stephen R. Quakeb,c,i,2 aDepartment of Physics, Stanford University, Stanford, CA 94305; bDepartment of Bioengineering, Stanford University, Stanford, CA 94305; cChan Zuckerberg Biohub, San Francisco, CA 94158; dDepartment of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; ePediatric Stem Cell Transplantation, Lucille Packard Children’s Hospital, Stanford University, Stanford, CA 94305; fDivision of Maternal–Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; gMetabiota, San Francisco, CA 94104; hGlobal Viral, San Francisco, CA 94104; and iDepartment of Applied Physics, Stanford University, Stanford, CA 94305 Contributed by Stephen R. Quake, July 12, 2017 (sent for review April 28, 2017; reviewed by Søren Brunak and Eran Segal) Blood circulates throughout the human body and contains mole- the body (18, 19); combining this observation with the average cules drawn from virtually every tissue, including the microbes and genome sizes of a human, bacterium, and virus (Gb, Mb, and viruses which colonize the body. Through massive shotgun sequenc- kb, respectively) suggests that approximately 1% of DNA by ing of circulating cell-free DNA from the blood, we identified mass in a human is derived from nonhost origins. Previous hundreds of new bacteria and viruses which represent previously studies by us and others have shown that indeed approximately unidentified members of the human microbiome. -
A Field Guide to Eukaryotic Transposable Elements
GE54CH23_Feschotte ARjats.cls September 12, 2020 7:34 Annual Review of Genetics A Field Guide to Eukaryotic Transposable Elements Jonathan N. Wells and Cédric Feschotte Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; email: [email protected], [email protected] Annu. Rev. Genet. 2020. 54:23.1–23.23 Keywords The Annual Review of Genetics is online at transposons, retrotransposons, transposition mechanisms, transposable genet.annualreviews.org element origins, genome evolution https://doi.org/10.1146/annurev-genet-040620- 022145 Abstract Annu. Rev. Genet. 2020.54. Downloaded from www.annualreviews.org Access provided by Cornell University on 09/26/20. For personal use only. Copyright © 2020 by Annual Reviews. Transposable elements (TEs) are mobile DNA sequences that propagate All rights reserved within genomes. Through diverse invasion strategies, TEs have come to oc- cupy a substantial fraction of nearly all eukaryotic genomes, and they rep- resent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic be- havior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species. 23.1 Review in Advance first posted on , September 21, 2020. -
Modulation of the Activity of a Key Metabolic Regulator Small Heterodimer Partner by Post-Translational Modifications
MODULATION OF THE ACTIVITY OF A KEY METABOLIC REGULATOR SMALL HETERODIMER PARTNER BY POST-TRANSLATIONAL MODIFICATIONS BY DEEPTHI KANAMALURU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Doctoral Committee: Associate Professor Jongsook Kim Kemper, Chair Professor David J. Shapiro Professor Milan K. Bagchi Assistant Professor Lin-Feng Chen Abstract Small Heterodimer Partner (SHP, NR0B2), a member of the nuclear receptor superfamily, is an orphan receptor that lacks a DNA binding domain but contains a putative ligand binding domain. SHP forms non-functional heterodimers with DNA binding transcriptional factors and, thereby, functions as a transcriptional corepressor in diverse biological processes, including cellular metabolism, cell proliferation, apoptosis, and sexual maturation. Of these reported functions of SHP, maintaining cholesterol and bile acid levels by negative feedback regulation of hepatic conversion of cholesterol to bile acids is well established. Cholesterol is essential in many biological activities in mammalian cells. Conversion of hepatic cholesterol into bile acids is a major pathway to eliminate cholesterol from the body. However, excess amounts of cholesterol and bile acids are pathogenic. Therefore, the levels of cholesterol and bile acids need to be tightly regulated. Cholesterol 7α-hydroxylase (CYP7A1), a liver specific P450 enzyme, is the first and rate-limiting enzyme in this process. Increased levels of bile acids repress transcription of CYP7A1 in a feedback manner. In response to elevated bile acid levels, the nuclear bile acid receptor Farnesoid X Receptor (FXR) increases the transcription of SHP. -
Dynamic Transcriptomic Profiles of Zebrafish Gills in Response to Zinc
Zheng et al. BMC Genomics 2010, 11:548 http://www.biomedcentral.com/1471-2164/11/548 RESEARCH ARTICLE Open Access Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion Dongling Zheng1,4, Peter Kille2, Graham P Feeney2, Phil Cunningham1, Richard D Handy3, Christer Hogstrand1* Abstract Background: Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Results: Zebrafish were treated with either zinc-depleted (water = 2.61 μgL-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μgL-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate). Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that ‘Developmental Process’ was the most significantly overrepresented Biological Process GO term (P = 0.0006), involving 26% of all regulated genes. -
Discovering Mechanisms That Regulate Beta-Cell Neogenesis
DISCOVERING MECHANISMS THAT REGULATE BETA-CELL NEOGENESIS AND PROLIFERATION by Hannah Elizabeth Edelman A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland November 2018 ABSTRACT In both Type I and Type II diabetes, a loss of functioning beta cells results in an inability to produce insulin effectively to regulate blood glucose. Current treatments have a variety of problems including insulin-dependence, donor scarcity, comorbidities, and cost. We are interested in inducing the body to produce its own beta cells endogenously by either neogenesis from progenitors or proliferation of existing beta cells. From previous work, we know that the transcription factor Sox9b plays an important role in the identity of endocrine progenitor cells in the zebrafish pancreas, known as centroacinar cells (CACs), that contribute to regeneration of beta cells. Since humans also have CACs but do not regenerate efficiently, we wanted to understand the downstream targets of Sox9b/SOX9 and their role in the biology of CACs. Using RNA-seq and ChIP-seq in PANC-1 cells we were able to find direct targets of SOX9, including the interesting candidate EPCAM, to follow up on. For assessing beta-cell proliferation, we knew from a previous screen that selective serotonin reuptake inhibitors (SSRIs) can induce beta-cell proliferation in the larval zebrafish. We hypothesized that innervation of the principal islet was responsible for this serotonergic signaling to the pancreas. Using imaging of a variety of transgenic lines, we established that innervation of the islet occurs by 4 days post fertilization and that the sox10 mutant zebrafish has a reduced amount of this innervation. -
A Zebrafish Reporter Line Reveals Immune and Neuronal Expression of Endogenous Retrovirus
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.21.427598; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A zebrafish reporter line reveals immune and neuronal expression of endogenous retrovirus. Noémie Hamilton1,2*, Amy Clarke1, Hannah Isles1, Euan Carson1, Jean-Pierre Levraud3, Stephen A Renshaw1 1. The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK 2. The Institute of Neuroscience, University of Sheffield, Sheffield, UK 3. Macrophages et Développement de l’Immunité, Institut Pasteur, CNRS UMR3738, 25 rue du docteur Roux, 75015 Paris *Corresponding author: [email protected] Abstract Endogenous retroviruses (ERVs) are fossils left in our genome from retrovirus infections of the past. Their sequences are part of every vertebrate genome and their random integrations are thought to have contributed to evolution. Although ERVs are mainly kept silenced by the host genome, they are found activated in multiple disease states such as auto-inflammatory disorders and neurological diseases. What makes defining their role in health and diseases challenging is the numerous copies in mammalian genomes and the lack of tools to study them. In this study, we identified 8 copies of the zebrafish endogenous retrovirus (zferv). We created and characterised the first in vivo ERV reporter line in any species. Using a combination of live imaging, flow cytometry and single cell RNA sequencing, we mapped zferv expression to early T cells and neurons. -
Forkhead Transcription Factors and Ageing
Oncogene (2008) 27, 2351–2363 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc REVIEW Forkhead transcription factors and ageing L Partridge1 and JC Bru¨ ning2 1Institute of Healthy Ageing, GEE, London, UK; 2Department of Mouse Genetics and Metabolism, Institute for Genetics University of Cologne, Cologne, Germany Mutations in single genes and environmental interventions Forkhead transcription factors are turning out to play can extend healthy lifespan in laboratory model organi- a key role in invertebrate models ofextension ofhealthy sms. Some of the mechanisms involved show evolutionary lifespan by single-gene mutations, and evidence is conservation, opening the way to using simpler inverte- mounting for their importance in mammals. Forkheads brates to understand human ageing. Forkhead transcrip- can also play a role in extension oflifespanby dietary tion factors have been found to play a key role in lifespan restriction, an environmental intervention that also extension by alterations in the insulin/IGF pathway and extends lifespan in diverse organisms (Kennedy et al., by dietary restriction. Interventions that extend lifespan 2007). Here, we discuss these findings and their have also been found to delay or ameliorate the impact of implications. The forkhead family of transcription ageing-related pathology and disease, including cancer. factors is characterized by a type of DNA-binding Understanding the mode of action of forkheads in this domain known as the forkhead box (FOX) (Weigel and context will illuminate the mechanisms by which ageing Jackle, 1990). They are also called winged helix acts as a risk factor for ageing-related disease, and could transcription factors because of the crystal structure lead to the development of a broad-spectrum, preventative ofthe FOX, ofwhich the forkheadscontain a medicine for the diseases of ageing. -
Generation of Retinal Neurons: Focus on the Proliferation And
"They misunderestimated me" George W Bush (2000) List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Edqvist, P.H.D., Lek, M., Boije, H., Lindbäck, S.M., Hallböök, F. (2008) Axon-bearing and axon-less horizontal cell subtypes are generated consecutively during chick retinal development from progenitors that are sensitive to follistatin. BMC Developmental Biology, 8:46-67 II Boije, H., Edqvist, P.H.D., Hallböök, F. (2009) Horizontal cell progenitors arrest in G2-phase and undergo terminal mitosis on the vitreal side of the chick retina. Developmental Biology, 330: 105-113 III Fard, S.S., Boije, H., Hallböök, F. (2011) The terminal mitosis of chicken retinal horizontal cells is preceded by a G2-phase arrest that relies on the cyclin B1-Cdk1 complex but is independent of DNA damage. (Submitted to The Journal of Neuroscience) IV Boije, H., Edqvist, P.H., Hallböök, F. (2008) Temporal and spatial expression of transcription factors FoxN4, Ptf1a, Prox1, Isl1 and Lim1 mRNA in the developing chick retina. Gene Expression Patterns, 8:117-123 V Lelièvre, E., Lek, M., Boije, H., Houille, L., Brajeul, V., Slembrouck, A., Sahel, J., Matter, J.M., Sennlaub, F., Hallböök, F., Goureau, O., Guillonneau, X. (2011) Ptf1a/Rbpj complex inhibits ganglion cell fate by downregulating Atoh7 and drives the specification of all horizontal cell subtypes in the chick retina. (Submitted to Developmental Biology) VI Boije, H., Fard, S.S., Ring, H., Hallböök, F. (2011) FoxN4 is sufficient for commitment to the retinal horizontal cell fate and is able to instigate differentiation programs in neural progenitors. -
Copycontrol™ Fosmid Autoinduction Solution
CopyControl™ Fosmid Autoinduction Solution Cat. No. AIS107F Available exclusively thru Lucigen. lucigen.com/epibio www.lucigen.com MA263E CopyControl™ Fosmid Autoinduction Solution • 12/2016 1 MA263E CopyControl™ Fosmid Autoinduction Solution 1. Introduction The CopyControl™ Fosmid Autoinduction Solution is designed to induce CopyControl Fosmid clones and clones retrofitted with the EZ-Tn5™ <oriV/KAN-2> Transposon, grown in TransforMax™ EPI300™ E. coli cells, from single-copy number to a higher-copy number of approximately 50 fosmids per cell. The Fosmid Autoinduction Solution induces expression of a mutant trfA gene contained in the TransforMax EPI300 cells. Expression of trfA gene results in initiation of replication from the oriV high copy origin of replication and subsequent amplification of the CopyControl clones to high copy number. The Fosmid Autoinduction protocol improves upon the existing induction protocol by including the autoinduction supplement in the media prior to culture inoculation, removing the need for time-consuming subculturing and the 2-hour incubation required in the standard induction protocol. The Fosmid Autoinduction Solution also contains cell growth enhancers which boost cell numbers and typically provides higher DNA yields than with the standard CopyControl induction protocol. The hands-off autoinduction protocol makes CopyControl Fosmid Autoinduction solution ideal for high-throughput purification protocols in 96-well format. The autoinduction solution is also compatible with larger scale DNA purifications and can be scaled according to the amount of media used. 2. Product Specifications Storage: Store only at –20°C in a freezer without a defrost cycle. Mix thoroughly after thawing. Size and Formulation: CopyControl Fosmid Autoinduction Solution is available in a 50-ml size concentrate of 500X in sterile water.