Generalized Satisfiability for the Description Logic ALC Arne Meier Leibniz Universit¨atHannover, Institut f¨urTheoretische Informatik, Appelstr. 4, 30167 Hannover, Germany Thomas Schneider∗ Universit¨atBremen, Fachbereich 3, Postfach 330440, 28334 Bremen, Germany Abstract The standard reasoning problem, concept satisfiability, in the basic description logic ALC is PSpace-complete, and it is ExpTime-complete in the presence of general concept inclusions. Several fragments of ALC, notably logics in the FL, EL, and DL-Lite families, have an easier satisfiability problem; for some of these logics, satisfiability can be decided in polynomial time. We classify the complexity of the standard variants of the satisfiability problem for all possible Boolean and quantifier fragments of ALC with and without general concept inclusions. Keywords: Satisfiability, Ontologies, ALC, Complexity, Post's lattice, Description logic 1. Introduction Standard reasoning problems of description logics, such as satisfiability or subsumption, have been studied extensively. Depending on the expressivity of the logic, the complexity of reasoning for DLs between fragments of the basic DL ALC and the OWL 2 standard SROIQ is between trivial and N2ExpTime. ∗Corresponding author Email addresses:
[email protected] (Arne Meier),
[email protected] (Thomas Schneider) Preprint submitted to Theoretical Computer Science February 12, 2013 For ALC, concept satisfiability is PSpace-complete [37]. The complexity is the same for concept satisfiability with respect to theories that are acyclic terminologies [10; 16]. Such theories consist of concept inclusions (CIs) where the left-hand side is atomic, representing partial definitions of that term, and no term is allowed to be defined in the theory, directly or indirectly, in terms of itself.