ASBE Defeats Statistical Analysis and Other Cryptanalysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Serpent: a Proposal for the Advanced Encryption Standard
Serpent: A Proposal for the Advanced Encryption Standard Ross Anderson1 Eli Biham2 Lars Knudsen3 1 Cambridge University, England; email [email protected] 2 Technion, Haifa, Israel; email [email protected] 3 University of Bergen, Norway; email [email protected] Abstract. We propose a new block cipher as a candidate for the Ad- vanced Encryption Standard. Its design is highly conservative, yet still allows a very efficient implementation. It uses S-boxes similar to those of DES in a new structure that simultaneously allows a more rapid avalanche, a more efficient bitslice implementation, and an easy anal- ysis that enables us to demonstrate its security against all known types of attack. With a 128-bit block size and a 256-bit key, it is as fast as DES on the market leading Intel Pentium/MMX platforms (and at least as fast on many others); yet we believe it to be more secure than three-key triple-DES. 1 Introduction For many applications, the Data Encryption Standard algorithm is nearing the end of its useful life. Its 56-bit key is too small, as shown by a recent distributed key search exercise [28]. Although triple-DES can solve the key length problem, the DES algorithm was also designed primarily for hardware encryption, yet the great majority of applications that use it today implement it in software, where it is relatively inefficient. For these reasons, the US National Institute of Standards and Technology has issued a call for a successor algorithm, to be called the Advanced Encryption Standard or AES. -
Rotational Cryptanalysis of ARX
Rotational Cryptanalysis of ARX Dmitry Khovratovich and Ivica Nikoli´c University of Luxembourg [email protected], [email protected] Abstract. In this paper we analyze the security of systems based on modular additions, rotations, and XORs (ARX systems). We provide both theoretical support for their security and practical cryptanalysis of real ARX primitives. We use a technique called rotational cryptanalysis, that is universal for the ARX systems and is quite efficient. We illustrate the method with the best known attack on reduced versions of the block cipher Threefish (the core of Skein). Additionally, we prove that ARX with constants are functionally complete, i.e. any function can be realized with these operations. Keywords: ARX, cryptanalysis, rotational cryptanalysis. 1 Introduction A huge number of symmetric primitives using modular additions, bitwise XORs, and intraword rotations have appeared in the last 20 years. The most famous are the hash functions from MD-family (MD4, MD5) and their descendants SHA-x. While modular addition is often approximated with XOR, for random inputs these operations are quite different. Addition provides diffusion and nonlinearity, while XOR does not. Although the diffusion is relatively slow, it is compensated by a low price of addition in both software and hardware, so primitives with relatively high number of additions (tens per byte) are still fast. The intraword rotation removes disbalance between left and right bits (introduced by the ad- dition) and speeds up the diffusion. Many recently design primitives use only XOR, addition, and rotation so they are grouped into a single family ARX (Addition-Rotation-XOR). -
Security Evaluation of the K2 Stream Cipher
Security Evaluation of the K2 Stream Cipher Editors: Andrey Bogdanov, Bart Preneel, and Vincent Rijmen Contributors: Andrey Bodganov, Nicky Mouha, Gautham Sekar, Elmar Tischhauser, Deniz Toz, Kerem Varıcı, Vesselin Velichkov, and Meiqin Wang Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD-COSIC Interdisciplinary Institute for BroadBand Technology (IBBT) Kasteelpark Arenberg 10, bus 2446 B-3001 Leuven-Heverlee, Belgium Version 1.1 | 7 March 2011 i Security Evaluation of K2 7 March 2011 Contents 1 Executive Summary 1 2 Linear Attacks 3 2.1 Overview . 3 2.2 Linear Relations for FSR-A and FSR-B . 3 2.3 Linear Approximation of the NLF . 5 2.4 Complexity Estimation . 5 3 Algebraic Attacks 6 4 Correlation Attacks 10 4.1 Introduction . 10 4.2 Combination Generators and Linear Complexity . 10 4.3 Description of the Correlation Attack . 11 4.4 Application of the Correlation Attack to KCipher-2 . 13 4.5 Fast Correlation Attacks . 14 5 Differential Attacks 14 5.1 Properties of Components . 14 5.1.1 Substitution . 15 5.1.2 Linear Permutation . 15 5.2 Key Ideas of the Attacks . 18 5.3 Related-Key Attacks . 19 5.4 Related-IV Attacks . 20 5.5 Related Key/IV Attacks . 21 5.6 Conclusion and Remarks . 21 6 Guess-and-Determine Attacks 25 6.1 Word-Oriented Guess-and-Determine . 25 6.2 Byte-Oriented Guess-and-Determine . 27 7 Period Considerations 28 8 Statistical Properties 29 9 Distinguishing Attacks 31 9.1 Preliminaries . 31 9.2 Mod n Cryptanalysis of Weakened KCipher-2 . 32 9.2.1 Other Reduced Versions of KCipher-2 . -
Analysis of Arx Round Functions in Secure Hash Functions
ANALYSIS OF ARX ROUND FUNCTIONS IN SECURE HASH FUNCTIONS by Kerry A. McKay B.S. in Computer Science, May 2003, Worcester Polytechnic Institute M.S. in Computer Science, May 2005, Worcester Polytechnic Institute A Dissertation submitted to the Faculty of The School of Engineering and Applied Science of The George Washington University in partial satisfaction of the requirements for the degree of Doctor of Science May 15, 2011 Dissertation directed by Poorvi L. Vora Associate Professor of Computer Science The School of Engineering and Applied Science of The George Washington University certifies that Kerry A. McKay has passed the Final Examination for the degree of Doctor of Science as of March 25, 2011. This is the final and approved form of the dissertation. ANALYSIS OF ARX ROUND FUNCTIONS IN SECURE HASH FUNCTIONS Kerry A. McKay Dissertation Research Committee: Poorvi L. Vora, Associate Professor of Computer Science, Dissertation Director Gabriel Parmer, Assistant Professor of Computer Science, Committee Member Rahul Simha, Associate Professor of Engineering and Applied Science, Committee Member Abdou Youssef, Professor of Engineering and Applied Science, Committee Member Lily Chen, Mathematician, National Institute of Standards and Technology, Committee Member ii Dedication To my family and friends, for all of their encouragement and support. iii Acknowledgements This work was supported in part by the NSF Scholarship for Service Program, grant DUE-0621334, and NSF Award 0830576. I would like to thank my collaborators Niels Ferguson and Stefan Lucks for our collaborative research on the analysis of the CubeHash submission to the SHA-3 competition. I would also like to thank the entire Skein team for their support. -
Bruce Schneier 2
Committee on Energy and Commerce U.S. House of Representatives Witness Disclosure Requirement - "Truth in Testimony" Required by House Rule XI, Clause 2(g)(5) 1. Your Name: Bruce Schneier 2. Your Title: none 3. The Entity(ies) You are Representing: none 4. Are you testifying on behalf of the Federal, or a State or local Yes No government entity? X 5. Please list any Federal grants or contracts, or contracts or payments originating with a foreign government, that you or the entity(ies) you represent have received on or after January 1, 2015. Only grants, contracts, or payments related to the subject matter of the hearing must be listed. 6. Please attach your curriculum vitae to your completed disclosure form. Signatur Date: 31 October 2017 Bruce Schneier Background Bruce Schneier is an internationally renowned security technologist, called a security guru by the Economist. He is the author of 14 books—including the New York Times best-seller Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World—as well as hundreds of articles, essays, and academic papers. His influential newsletter Crypto-Gram and blog Schneier on Security are read by over 250,000 people. Schneier is a fellow at the Berkman Klein Center for Internet and Society at Harvard University, a Lecturer in Public Policy at the Harvard Kennedy School, a board member of the Electronic Frontier Foundation and the Tor Project, and an advisory board member of EPIC and VerifiedVoting.org. He is also a special advisor to IBM Security and the Chief Technology Officer of IBM Resilient. -
Data Encryption Standard
Data Encryption Standard The Data Encryption Standard (DES /ˌdiːˌiːˈɛs, dɛz/) is a Data Encryption Standard symmetric-key algorithm for the encryption of electronic data. Although insecure, it was highly influential in the advancement of modern cryptography. Developed in the early 1970s atIBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of Standards (NBS) following the agency's invitation to propose a candidate for the protection of sensitive, unclassified electronic government data. In 1976, after consultation with theNational Security Agency (NSA), the NBS eventually selected a slightly modified version (strengthened against differential cryptanalysis, but weakened against brute-force attacks), which was published as an official Federal Information Processing Standard (FIPS) for the United States in 1977. The publication of an NSA-approved encryption standard simultaneously resulted in its quick international adoption and widespread academic scrutiny. Controversies arose out of classified The Feistel function (F function) of DES design elements, a relatively short key length of the symmetric-key General block cipher design, and the involvement of the NSA, nourishing Designers IBM suspicions about a backdoor. Today it is known that the S-boxes that had raised those suspicions were in fact designed by the NSA to First 1975 (Federal Register) actually remove a backdoor they secretly knew (differential published (standardized in January 1977) cryptanalysis). However, the NSA also ensured that the key size was Derived Lucifer drastically reduced such that they could break it by brute force from [2] attack. The intense academic scrutiny the algorithm received over Successors Triple DES, G-DES, DES-X, time led to the modern understanding of block ciphers and their LOKI89, ICE cryptanalysis. -
ASBE Defeats Statistical Analysis and Other Cryptanalysis
Introduction | Statistical Analysis ASBE Defeats Statistical Analysis and Other Cryptanalysis By: Prem Sobel, CTO MerlinCryption, LLC Introduction ASBE, Anti-Statistical Block Encryption, uses blocks [Ref 33, p.43-82] as part of the algorithm. These blocks are manipulated in ways different from all currently known and published existing encryption algorithms in a variable way which depends on the key. The ASBE algorithm is designed to be exponentially stronger than existing encryption algorithms and to defeat known Statistical Analysis and Cryptanalysis. The purpose of this white paper is to describe how ASBE succeeds in these goals. Statistical Analysis Early encryption techniques are typically variations of substitution ciphers. Statistical analysis attempts to defeat such substitution ciphers, based on statistical knowledge of the language (for example, English) [Ref-1] [Ref-2] [Ref-3] [Ref-32, p.10-13]. These techniques include substitution ciphers such as: . Letter frequency, . Letter frequency of first letter of a word, . Most likely duplicate letter pairs (such as LL EE SS OO TT FF RR NN PP CC in English), . Most likely different letter pairs (in English: TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI HI AS TO) and non-occurring letter pairs (for example, XJ QG HZ in English), . Most likely letter triples and non-occurring letter triples, . Most likely letter quadruples and non-occurring letter quadruples, and . Most frequent words. Clearly these statistics and patterns of multi-letter sequences are language-dependent. In the early days of cryptography, there were several limitations and/or assumptions made that are no longer valid today, due to the availability of digital communications. -
Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1
International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format. -
Multiplicative Differentials
Multiplicative Differentials Nikita Borisov, Monica Chew, Rob Johnson, and David Wagner University of California at Berkeley Abstract. We present a new type of differential that is particularly suited to an- alyzing ciphers that use modular multiplication as a primitive operation. These differentials are partially inspired by the differential used to break Nimbus, and we generalize that result. We use these differentials to break the MultiSwap ci- pher that is part of the Microsoft Digital Rights Management subsystem, to derive a complementation property in the xmx cipher using the recommended modulus, and to mount a weak key attack on the xmx cipher for many other moduli. We also present weak key attacks on several variants of IDEA. We conclude that cipher designers may have placed too much faith in multiplication as a mixing operator, and that it should be combined with at least two other incompatible group opera- ¡ tions. 1 Introduction Modular multiplication is a popular primitive for ciphers targeted at software because many CPUs have built-in multiply instructions. In memory-constrained environments, multiplication is an attractive alternative to S-boxes, which are often implemented us- ing large tables. Multiplication has also been quite successful at foiling traditional dif- ¢ ¥ ¦ § ferential cryptanalysis, which considers pairs of messages of the form £ ¤ £ or ¢ ¨ ¦ § £ ¤ £ . These differentials behave well in ciphers that use xors, additions, or bit permutations, but they fall apart in the face of modular multiplication. Thus, we con- ¢ sider differential pairs of the form £ ¤ © £ § , which clearly commute with multiplication. The task of the cryptanalyst applying multiplicative differentials is to find values for © that allow the differential to pass through the other operations in a cipher. -
Biryukov, Shamir, “Wagner: Real Time Cryptanalysis of A5/1 on a PC,”
Reference Papers [S1] Biryukov, Shamir, “Wagner: Real Time Cryptanalysis of A5/1 on a PC,” FSE2000 [S2] Canteaut, Filiol, “Ciphertext Only Reconstruction of Stream Ciphers based on Combination Generator,” FSE2000 [S3] Chepyzhov, Johansson, Smeets, “A simple algorithm for fast correlation attacks on stream ciphers,” FSE2000 [S4] Ding, “The Differential Cryptanalysis and Design of Natural Stream Ciphers,” Fast Software Encryption, Cambridge Security Workshop, December 1993, LNCS 809 [S5] Ding, Xiao, Sham, “The Stability Theory of Stream Ciphers,” LNCS 561 [S6] Johansson, Jonsson, “Fast correlation attacks based on Turbo code techniques,” CRYPTO’99, August 99, 19th Annual International Cryptology Conference, LNCS 1666 [S7] Fossorier, Mihaljevic, Imai, “Critical Noise for Convergence of Iterative Probabilistic Decoding with Belief Propagation in Cryptographic Applications,” LNCS 1719. [S8] Golic, “Linear Cryptanalysis of Stream Ciphers,” Fast Software Encryption, Second International Workshop, December 1994, LNCS 1008. [S9] Johansson, Jonsson, “Improved Fast Correlation Attacks in Stream Ciphers via Convolutional codes,” EUROCRYPT’99, International Conference on the Theory and Application of Cryptographic Techniques, May 1999, LNCS 1592 [S10] Meier, Staffelbach, “Correlation Properties of Comniners with Memory in Stream Ciphers,” Journal of Cryptology 5(1992) [S11] Palit, Roy, “Cryptanalysis of LFSR-Encrypted Codes with Unknown Combining,” LNCS 1716 [S12] Ruppel, “Correlation Immunity and Summation Generator,” CRYPTO’85 Proceedings, August 85, LNCS 218. [S13] Sigenthalar, “Decrypting a class of Ciphers using Ciphertext only,” IEEE C-34. [S14] Tanaka, Ohishi, Kaneko, “An Optimized Linear Attack on Pseudorandom Generators using a Non-Linear Combiner, Information Security,” First International Workshop, ISW’97 Proceedings, September 1997, LNCS 1396 [S15] Zeng, Huang, “On the Linear Syndrome Method in Cryptanalysis,” CRYPTO’88 Proceedings, August 1988, LNCS 403. -
Analysis of Lightweight Stream Ciphers
ANALYSIS OF LIGHTWEIGHT STREAM CIPHERS THÈSE NO 4040 (2008) PRÉSENTÉE LE 18 AVRIL 2008 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE DE SÉCURITÉ ET DE CRYPTOGRAPHIE PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Simon FISCHER M.Sc. in physics, Université de Berne de nationalité suisse et originaire de Olten (SO) acceptée sur proposition du jury: Prof. M. A. Shokrollahi, président du jury Prof. S. Vaudenay, Dr W. Meier, directeurs de thèse Prof. C. Carlet, rapporteur Prof. A. Lenstra, rapporteur Dr M. Robshaw, rapporteur Suisse 2008 F¨ur Philomena Abstract Stream ciphers are fast cryptographic primitives to provide confidentiality of electronically transmitted data. They can be very suitable in environments with restricted resources, such as mobile devices or embedded systems. Practical examples are cell phones, RFID transponders, smart cards or devices in sensor networks. Besides efficiency, security is the most important property of a stream cipher. In this thesis, we address cryptanalysis of modern lightweight stream ciphers. We derive and improve cryptanalytic methods for dif- ferent building blocks and present dedicated attacks on specific proposals, including some eSTREAM candidates. As a result, we elaborate on the design criteria for the develop- ment of secure and efficient stream ciphers. The best-known building block is the linear feedback shift register (LFSR), which can be combined with a nonlinear Boolean output function. A powerful type of attacks against LFSR-based stream ciphers are the recent algebraic attacks, these exploit the specific structure by deriving low degree equations for recovering the secret key. -
Eindhoven University of Technology MASTER Renewal Periods For
Eindhoven University of Technology MASTER Renewal periods for cryptographic keys Posea, S. Award date: 2012 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Renewal Periods for Cryptographic Keys Simona Posea August 2012 Eindhoven University of Technology Department of Mathematics and Computer Science Master's Thesis Renewal Periods for Cryptographic Keys Simona Posea Supervisors: dr. ir. L.A.M. (Berry) Schoenmakers (TU/e - W&I) drs. D.M. Wieringa RE CISSP (Deloitte - S&P) H. Hambartsumyan MSc. CISA (Deloitte - S&P) Eindhoven, August 2012 Abstract Periodically changing cryptographic keys is a common practice. Standards and publications recommending how long a key may be used before it should be renewed are available for guidance.