Chapter I Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Chapter I Introduction LI, TIANGANG, Ph.D., May, 2006 BIOMEDICAL SCIENCES PREGNANE X RECEPTOR REGULATION OF BILE ACID METABOLISM AND CHOLESTEROL HOMEOSTASIS (189 PP.) Director of Dissertation: John Y. L. Chiang, Ph.D The nuclear receptor pregnane X receptor (PXR) is activated by bile acids, steroids and drugs and regulates a network of genes in lipid and drug mechanisms. The goal of this study is to investigate the role of PXR in the coordinate regulation of bile acid synthetic and detoxification genes and its implications in cholestatic liver diseases and treatments. Cholesterol 7α hydroxylase (CYP7A1) catalyzes the rate-limiting step in the classic bile acids synthetic pathway and plays a key role in controlling bile acids homeostasis. Quantitative real-time PCR (Q-PCR) showed human PXR agonist rifampicin inhibited CYP7A1 mRNA expression in primary human hepatocytes. Mammalian two-hybrid assays, co-immunoprecipitation (co-IP) assays and chromatin immunoprecipitation (ChIP) assay revealed that ligand-activated PXR strongly interacted with HNF4α, the key activator of human CYP7A1, and blocked HNF4α interaction with co-activator PGC-1α, thus resulted in inhibition of CYP7A1. CYP3A4 is the most abundant cytochrome P450 monooxygenase expressed in human liver and intestine. Bile acids and drugs-activated PXR induces CYP3A4, which converts toxic bile acids to non-toxic metabolites for excretion. Studies using Q-PCR, reporter assays, GST pull-down assays and ChIP assays revealed that PXR strongly induced CYP3A4 gene transcription by interacting with HNF4α, SRC-1 and PGC-1α. SHP, a negative nuclear receptor, reduced PXR recruitment of HNF4α and SRC-1 to the CYP3A4 chromatin and inhibited CYP3A4. Interestingly, PXR concomitantly inhibited SHP gene transcription and maximized the PXR induction of CYP3A4. Taken together, PXR inhibits CYP7A1 to reduce bile acid synthesis and induces CYP3A4 to detoxify bile acid. Thus, PXR may play a protective role against cholestasis. Drugs targeted to PXR may be developed for treating cholestatic liver diseases induced by bile acids and drugs. Mitochondrial sterol 27-hydroxylase (CYP27A1) catalyzes the side-chain cleavage reaction in bile acid synthetic pathways and 27-hydroxylation of cholesterol mainly in the peripheral tissues. Q-PCR revealed that rifampicin induced CYP27A1 mRNA expression in the intestine-derived Caco2 cells, but not in primary human hepatocytes and HepG2 cells. Rifampicin stimulated CYP27A1 gene transcription in cholesterol laden Caco2 cells and increased intracellular 27HOC, which stimulates cholesterol efflux by induction of cholesterol efflux transporters ABCA1 and ABCG1. Mutagenesis analysis, electrophoretic mobility shift assay and ChIP assays identified a functional PXR binding site in the human CYP27A1 gene. These data suggest that 27-hydroxycholesterol is an endogenous LXRα ligand and the PXR/CYP27A1/LXRα signaling pathway regulate cholesterol efflux in intestine cells. Results revealed an intestine-specific regulation of human CYP27A1 gene by PXR and suggested a novel role for PXR in cholesterol metabolism and detoxification in the intestine. PREGNANE X RECEPTOR REGULATION OF BILE ACID METABOLISM AND CHOLESTEROL HOMEOSTASIS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Tiangang Li May, 2006 Dissertation written by Tiangang Li B.S., Jilin University, 1999 Ph.D., Kent State University, 2006 Approved by Director, Doctoral Dissertation Committee , John Y. L. Chiang, Professor Members, Doctoral Dissertation Committee ________________________________, Amy Milsted, Professor ________________________________, Dean E. Dluzen, Professor ________________________________, James P. Hardwick, Associate Professor ________________________________, John R. D. Stalvey, Professor ________________________________, Philip W. Westerman, Professor Accepted by ________________________________, Director, School of Biomedical Sciences ________________________________, Dean, College of Arts and Sciences TABLE OF CONTENTS LIST OF FIGURES..........................................................................................................v ACKNOWLEDGEMENTS ...........................................................................................vii CHAPTER I. INTRODUCTION .................................................................................... 1 A. BILE ACID BIOSYNTHESIS ............................................................................................ 1 1. Chemistry................................................................................................................ 1 2. Physiological function ............................................................................................ 5 3. Bile acid biosynthesis pathways ............................................................................. 5 3.1. The classic or neutral pathway......................................................................... 8 3.2. Acidic or alternative pathway .......................................................................... 8 4. Bile acid transport................................................................................................... 9 4.1. Enterohepatic circulation ................................................................................. 9 4.2. Hepatic bile acid transport ............................................................................. 12 4.2.1. hepatic bile acid uptake........................................................................... 12 4.2.2. canalicular bile acid excretion ................................................................ 13 4.3. Intestinal bile acid transport........................................................................... 14 4.3.1. apical bile acid uptake into the enterocytes ............................................ 14 4.3.2. basolateral efflux of bile acids from enterocytes .................................... 15 5. Cholestasis ............................................................................................................ 16 B. CHOLESTEROL HOMEOSTASIS .................................................................................... 18 C. REGULATION OF BILE ACID BIOSYNTHESIS AND CHOLESTEROL HOMEOSTASIS........... 22 1. Nuclear hormone receptor..................................................................................... 22 2. Regulation of bile acid synthesis .......................................................................... 28 2.1. Feedforward regulation of CYP7A1............................................................... 29 2.2. Feedback inhibition of CYP7A1..................................................................... 32 2.2.1. FXR/SHP dependent pathway ................................................................ 32 2.2.2. FXR/SHP independent pathways............................................................ 35 3. PXR and bile acid metabolism.............................................................................. 37 3.1. The nuclear receptor PXR.............................................................................. 37 3.2. PXR and xenobiotic metabolism ................................................................... 38 3.3. PXR and bile acid metabolism....................................................................... 42 4. LXR and cholesterol homeostasis......................................................................... 43 D. HYPOTHESIS.............................................................................................................. 45 CHAPTER II. EXPERIMENTAL PROCEDURES.................................................... 49 A. CELL CULTURE .......................................................................................................... 49 B. LUCIFERASE REPORTER ASSAY .................................................................................. 49 1. Calcium-phosphate-DNA co-precipitation transfection method .......................... 50 2. Lipofectamin2000 transfection method ................................................................ 51 3. Luciferase and β-gal assays .................................................................................. 52 C. MAMMALIAN HYBRID ASSAYS................................................................................... 52 D. SITE-DIRECTED MUTAGENESIS................................................................................... 55 E. QUANTITATIVE REAL-TIME PCR................................................................................ 56 1. RNA isolation ....................................................................................................... 56 2. Reverse transcription PCR.................................................................................... 57 3. Real time PCR....................................................................................................... 57 F. ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA)................................................. 58 G. CHROMATIN IMMUNOPRECIPITATION (CHIP) ASSAY ................................................. 60 H. WESTERN IMMUNOBLOTTING ANALYSIS ................................................................... 63 I. CO-IMMUNOPRECIPITATION ASSAY............................................................................. 64 J. GST PULL-DOWN ASSAY............................................................................................. 65 1. GST fusion protein expression.............................................................................
Recommended publications
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Pgx - Cytochrome P450 2C19 (CYP2C19)
    PGx - Cytochrome P450 2C19 (CYP2C19) This assay is used to identify patients who may be at risk for altered metabolism of drugs that are modified by CYP2C19. Cytochrome P450 (CYP) isozyme 2C19 is responsible for phase I metabloism of about 40% of drugs including: clopidogrel, phenytoin, diazepam, R-warfarin, tamoxifen, some antidepressants, proton pump inhibitors, and antimalarials. Testing Method and Background This test utilizes the eSensor® 2C19 Genotyping Test is an in vitro diagnostic for the detection and genotyping a panel of variants involved with enzyme metabolism using isolated genomic DNA. The eSensor® technology uses a solid-phase electrochemical method for determining the genotyping status. The eSensor® 2C19 Genotyping Test is for research use only (RUO). CYP2C19 drug metabolism varies among individuals depending on specific genotype. The CYP2 family has many single- nucleotide polymorphisms (SNPs). CYP2C19 gene is located on chromosome 10q23.33 and is highly polymorphic, which can lead to large individual variation in CYP2C19 enzyme activity and related drug response phenotypes and/or undesired adverse drug events. Specifically, the CYP2C19 gene has more than 34 variant alleles identified, which in turn affects the pharmacokinetics of many drugs. Highlights of PGx - Cytochrome P450 2C19 (CYP2C19) Targeted Region CYP2C19: Detects 11 variants/polymorphisms 681G>A (*2) 636G>A (*3) 1A>G (*4) 1297C>T (*5) 395G>A (*6) 19294T>A (*7) 358T>C (*8) 431G>A (*9) 680C>T (*10) 1228C>T (*13) -806C>T (*17) Ordering Information Get started
    [Show full text]
  • Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/01/17/dmd.117.078428.DC1 1521-009X/46/4/367–379$35.00 https://doi.org/10.1124/dmd.117.078428 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:367–379, April 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin D3-3-O-Sulfate, a Major Circulating Vitamin D Metabolite in Humans s Timothy Wong, Zhican Wang, Brian D. Chapron, Mizuki Suzuki, Katrina G. Claw, Chunying Gao, Robert S. Foti, Bhagwat Prasad, Alenka Chapron, Justina Calamia, Amarjit Chaudhry, Erin G. Schuetz, Ronald L. Horst, Qingcheng Mao, Ian H. de Boer, Timothy A. Thornton, and Kenneth E. Thummel Departments of Pharmaceutics (T.W., Z.W., B.D.C., M.S., K.G.C., C.G., B.P., Al.C., J.C., Q.M., K.E.T.), Medicine and Kidney Research Institute (I.H.d.B.), and Biostatistics (T.A.T.), University of Washington, Seattle, Washington; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (Z.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (R.S.F.); St. Jude Children’s Research Hospital, Memphis, Tennessee Downloaded from (Am.C., E.G.S.); and Heartland Assays LLC, Ames, Iowa (R.L.H.) Received September 1, 2017; accepted January 10, 2018 ABSTRACT dmd.aspetjournals.org Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in with the rates of dehydroepiandrosterone sulfonation. Further analysis regulating the biologic effects of vitamin D in the body.
    [Show full text]
  • Inhibition of Cytochrome P450 2C8-Mediated Drug Metabolism by the Flavonoid Diosmetin
    Drug Metab. Pharmacokinet. 26 (6): 559­568 (2011). Copyright © 2011 by the Japanese Society for the Study of Xenobiotics (JSSX) Regular Article Inhibition of Cytochrome P450 2C8-mediated Drug Metabolism by the Flavonoid Diosmetin Luigi QUINTIERI1,PietroPALATINI1,StefanoMORO2 and Maura FLOREANI1,* 1Department of Pharmacology and Anaesthesiology, University of Padova, Italy 2Molecular Modeling Section (MMS), Department of Pharmaceutical Sciences, University of Padova, Italy Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk Summary: The aim of this study was to assess the effects of diosmetin and hesperetin, two flavonoids present in various medicinal products, on CYP2C8 activity of human liver microsomes using paclitaxel oxidation to 6¡-hydroxy-paclitaxel as a probe reaction. Diosmetin and hesperetin inhibited 6¡-hydroxy- paclitaxel production in a concentration-dependent manner, diosmetin being about 16-fold more potent than hesperetin (mean IC50 values 4.25 « 0.02 and 68.5 « 3.3 µM for diosmetin and hesperetin, respectively). Due to the low inhibitory potency of hesperetin, we characterized the mechanism of diosmetin-induced inhibition only. This flavonoid proved to be a reversible, dead-end, full inhibitor of CYP2C8, its mean inhibition constant (Ki)being3.13« 0.11 µM. Kinetic analysis showed that diosmetin caused mixed-type inhibition, since it significantly decreased the Vmax (maximum velocity) and increased the Km value (substrate concentration yielding 50% of Vmax) of the reaction. The results of kinetic analyses were consistent with those of molecular docking simulation, which showed that the putative binding site of diosmetin coincided with the CYP2C8 substrate binding site. The demonstration that diosmetin inhibits CYP2C8 at concentrations similar to those observed after in vivo administration (in the low micromolar range) is of potential clinical relevance, since it may cause pharmacokinetic interactions with co- administered drugs metabolized by this CYP.
    [Show full text]
  • Transcriptomic Characterization of Fibrolamellar Hepatocellular
    Transcriptomic characterization of fibrolamellar PNAS PLUS hepatocellular carcinoma Elana P. Simona, Catherine A. Freijeb, Benjamin A. Farbera,c, Gadi Lalazara, David G. Darcya,c, Joshua N. Honeymana,c, Rachel Chiaroni-Clarkea, Brian D. Dilld, Henrik Molinad, Umesh K. Bhanote, Michael P. La Quagliac, Brad R. Rosenbergb,f, and Sanford M. Simona,1 aLaboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065; bPresidential Fellows Laboratory, The Rockefeller University, New York, NY 10065; cDivision of Pediatric Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; ePathology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and fJohn C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065 Edited by Susan S. Taylor, University of California, San Diego, La Jolla, CA, and approved September 22, 2015 (received for review December 29, 2014) Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a exon of DNAJB1 and all but the first exon of PRKACA. This deletion of ∼400 kb in chromosome 19, resulting in a fusion of the produced a chimeric RNA transcript and a translated chimeric genes for the heat shock protein, DNAJ (Hsp40) homolog, subfam- protein that retains the full catalytic activity of wild-type PKA. ily B, member 1, DNAJB1, and the catalytic subunit of protein ki- This chimeric protein was found in 15 of 15 FLHCC patients nase A, PRKACA. The resulting chimeric transcript produces a (21) in the absence of any other recurrent mutations in the DNA fusion protein that retains kinase activity.
    [Show full text]
  • Regulation of Vitamin D Metabolizing Enzymes in Murine Renal and Extrarenal Tissues by Dietary Phosphate, FGF23, and 1,25(OH)2D3
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3 Kägi, Larissa ; Bettoni, Carla ; Pastor-Arroyo, Eva M ; Schnitzbauer, Udo ; Hernando, Nati ; Wagner, Carsten A Abstract: BACKGROUND: The 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) together with parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) regulates calcium (Ca2+) and phosphate (Pi) homeostasis, 1,25(OH)2D3 synthesis is mediated by hydroxylases of the cytochrome P450 (Cyp) family. Vitamin D is first modified in the liver by the 25-hydroxylases CYP2R1 and CYP27A1 and further acti- vated in the kidney by the 1-hydroxylase CYP27B1, while the renal 24-hydroxylase CYP24A1 catalyzes the first step of its inactivation. While the kidney is the main organ responsible for circulating levelsofac- tive 1,25(OH)2D3, other organs also express some of these enzymes. Their regulation, however, has been studied less. METHODS AND RESULTS: Here we investigated the effect of several Pi-regulating factors including dietary Pi, PTH and FGF23 on the expression of the vitamin D hydroxylases and the vitamin D receptor VDR in renal and extrarenal tissues of mice. We found that with the exception of Cyp24a1, all the other analyzed mRNAs show a wide tissue distribution. High dietary Pi mainly upregulated the hep- atic expression of Cyp27a1 and Cyp2r1 without changing plasma 1,25(OH)2D3. FGF23 failed to regulate the expression of any of the studied hydroxylases at the used dosage and treatment length.
    [Show full text]
  • Frequencies of Clinically Important CYP2C19 and CYP2D6 Alleles Are Graded Across Europe
    European Journal of Human Genetics (2020) 28:88–94 https://doi.org/10.1038/s41431-019-0480-8 ARTICLE Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe 1,2 2 1 Jelena Petrović ● Vesna Pešić ● Volker M. Lauschke Received: 15 March 2019 / Revised: 3 July 2019 / Accepted: 17 July 2019 / Published online: 29 July 2019 © The Author(s) 2019. This article is published with open access Abstract CYP2C19 and CYP2D6 are important drug-metabolizing enzymes that are involved in the metabolism of around 30% of all medications. Importantly, the corresponding genes are highly polymorphic and these genetic differences contribute to interindividual and interethnic differences in drug pharmacokinetics, response, and toxicity. In this study we systematically analyzed the frequency distribution of clinically relevant CYP2C19 and CYP2D6 alleles across Europe based on data from 82,791 healthy individuals extracted from 79 original publications and, for the first time, provide allele confidence intervals for the general population. We found that frequencies of CYP2D6 gene duplications showed a clear South-East to North- West gradient ranging from <1% in Sweden and Denmark to 6% in Greece and Turkey. In contrast, an inverse distribution was observed for the loss-of-function alleles CYP2D6*4 and CYP2D6*5. Similarly, frequencies of the inactive CYP2C19*2 allele were graded from North-West to South-East Europe. In important contrast to previous work we found that the increased activity allele CYP2C19*17 was most prevalent in Central Europe (25–33%) with lower prevalence in Mediterranean-South Europeans (11–24%). In summary, we provide a detailed European map of common CYP2C19 and CYP2D6 variants and find that frequencies of the most clinically relevant alleles are geographically graded reflective of Europe’s migratory history.
    [Show full text]
  • Comprehensive Study of Nuclear Receptor DNA Binding Provides a Revised Framework for Understanding Receptor Specificity
    ARTICLE https://doi.org/10.1038/s41467-019-10264-3 OPEN Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity Ashley Penvose 1,2,4, Jessica L. Keenan 2,3,4, David Bray2,3, Vijendra Ramlall 1,2 & Trevor Siggers 1,2,3 The type II nuclear receptors (NRs) function as heterodimeric transcription factors with the retinoid X receptor (RXR) to regulate diverse biological processes in response to endogenous 1234567890():,; ligands and therapeutic drugs. DNA-binding specificity has been proposed as a primary mechanism for NR gene regulatory specificity. Here we use protein-binding microarrays (PBMs) to comprehensively analyze the DNA binding of 12 NR:RXRα dimers. We find more promiscuous NR-DNA binding than has been reported, challenging the view that NR binding specificity is defined by half-site spacing. We show that NRs bind DNA using two distinct modes, explaining widespread NR binding to half-sites in vivo. Finally, we show that the current models of NR specificity better reflect binding-site activity rather than binding-site affinity. Our rich dataset and revised NR binding models provide a framework for under- standing NR regulatory specificity and will facilitate more accurate analyses of genomic datasets. 1 Department of Biology, Boston University, Boston, MA 02215, USA. 2 Biological Design Center, Boston University, Boston, MA 02215, USA. 3 Bioinformatics Program, Boston University, Boston, MA 02215, USA. 4These authors contributed equally: Ashley Penvose, Jessica L. Keenan. Correspondence
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Selective Inhibition of CYP27A1 and of Chenodeoxycholic Acid Synthesis in Cholestatic Hamster Liver
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1588 (2002) 139–148 www.bba-direct.com Selective inhibition of CYP27A1 and of chenodeoxycholic acid synthesis in cholestatic hamster liver Yasushi Matsuzaki a,*, Bernard Bouscarel b, Tadashi Ikegami a, Akira Honda a,c, Mikio Doy c, Susan Ceryak b, Sugano Fukushima a, Shigemasa Yoshida a, Junichi Shoda a, Naomi Tanaka a aDepartment of Gastroenterology and Hepatology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, 305-8575 Ibaraki, Japan bDepartment of Medicine, The George Washington University, Washington, DC, USA cIbaraki Prefectural Institute of Public Health, Mito, Ibaraki, Japan Received 18 April 2002; received in revised form 20 June 2002; accepted 20 June 2002 Abstract The aim of this study was to explore the regulation of serum cholic acid (CA)/chenodeoxycholic acid (CDCA) ratio in cholestatic hamster induced by ligation of the common bile duct for 48 h. The serum concentration of total bile acids and CA/CDCA ratio were significantly elevated, and the serum proportion of unconjugated bile acids to total bile acids was reduced in the cholestatic hamster similar to that in patients with obstructive jaundice. The hepatic CA/CDCA ratio increased from 3.6 to 11.0 ( P < 0.05) along with a 2.9-fold elevation in CA concentration ( P < 0.05) while the CDCA level remained unchanged. The hepatic mRNA and protein level as well as microsomal activity of the cholesterol 7a-hydroxylase, 7a-hydroxy-4-cholesten-3-one 12a-hydroxylase and 5h-cholestane-3a,7a,12a-triol 25-hydroxylase were not significantly affected in cholestatic hamsters.
    [Show full text]
  • TRANSLATIONALLY by AMPK a Dissertation
    CHOLESTEROL 7 ALPHA-HYDROXYLASE IS REGULATED POST- TRANSLATIONALLY BY AMPK A dissertation submitted to Kent State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy By Mauris E.C. Nnamani May 2009 Dissertation written by Mauris E. C. Nnamani B.S, Kent State University, 2006 Ph.D., Kent State University, 2009 Approved by Diane Stroup Advisor Gail Fraizer Members, Doctoral Dissertation Committee S. Vijayaraghavan Arne Gericke Jennifer Marcinkiewicz Accepted by Robert Dorman , Director, School of Biomedical Science John Stalvey , Dean, Collage of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………..vi ACKNOWLEDGMENTS……………………………………………………..viii CHAPTER I: INTRODUCTION……………………………………….…........1 a. Bile Acid Synthesis…………………………………………….……….2 i. Importance of Bile Acid Synthesis Pathway………………….….....2 ii. Bile Acid Transport..…………………………………...…...………...3 iii. Bile Acid Synthesis Pathway………………………………………...…4 iv. Classical Bile Acid Synthesis Pathway…..……………………..…..8 Cholesterol 7 -hydroxylase (CYP7A1)……..........………….....8 Transcriptional Regulation of Cholesterol 7 -hydroxylase by Bile Acid-activated FXR…………………………….....…10 CYP7A1 Transcriptional Repression by SHP-dependant Mechanism…………………………………………………...10 CYP7A1 Transcriptional Repression by SHP-independent Mechanism……………………………………..…………….…….11 CYP7A1 Transcriptional Repression by Activated Cellular Kinase…….…………………………...…………………….……12 v. Alternative/ Acidic Bile Acid Synthesis Pathway…………......…….12 Sterol 27-hydroxylase (CYP27A1)……………….…………….12
    [Show full text]
  • The Effect of CYP2B6, CYP2D6, and CYP3A4 Alleles on Methadone Binding: a Molecular Docking Study
    Hindawi Publishing Corporation Journal of Chemistry Volume 2013, Article ID 249642, 7 pages http://dx.doi.org/10.1155/2013/249642 Research Article The Effect of CYP2B6, CYP2D6, and CYP3A4 Alleles on Methadone Binding: A Molecular Docking Study Nik Nur Syazana Bt Nik Mohamed Kamal,1 Theam Soon Lim,1 Gee Jun Tye,1 Rusli Ismail,2 and Yee Siew Choong1 1 Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia 2 Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to Yee Siew Choong; [email protected] Received 7 May 2013; Revised 23 July 2013; Accepted 5 August 2013 Academic Editor: Hugo Verli Copyright © 2013 Nik Nur Syazana Bt Nik Mohamed Kamal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Current methadone maintenance therapy (MMT) is yet to ensure 100% successful treatment as the optimum dosage has yet to be determined. Overdose leads to death while lower dose causes the opioid withdrawal effect. Single-nucleotide polymorphisms (SNP) in cytochrome P450s (CYPs), the methadone metabolizers, have been showen to be the main factor for the interindividual variability of methadone clinical effects. In this study, we investigated the effect of SNPs in three major methadone metabolizers ∗ ∗ ∗ (CYP2B6, CYP2D6, and CYP3A4) on methadone binding affinity. Results showed that CYP2B6 11, CYP2B6 12, CYP2B6 18,and ∗ CYP3A4 12 have significantly higher binding affinity to R-methadone compared to wild type.
    [Show full text]