Anesthetic Implications of Myasthenia Gravis

Total Page:16

File Type:pdf, Size:1020Kb

Anesthetic Implications of Myasthenia Gravis Anesthetic Implications of Myasthenia Gravis MARK ABEL, M.D.1, AND JAMES B. EISENKRAFT, M.D.2 Abstract Myasthenia gravis is a disease of great significance to the anesthesiologist, because it affects the neuro- muscular junction. Many patients with this condition are treated by surgical thymectomy, using tech- niques developed by Mount Sinai physicians, including Dr. Paul Kirschner, Dr. Alan E. Kark, and the late Dr. Angelos E. Papatestas. The authors review the anesthetic considerations in the management of patients with myasthenia gravis who are undergoing thymectomy and other surgical procedures. Key Words: Myasthenia gravis, anesthesia, thymectomy. Epidemiology and Pathophysiology velop respiratory failure. Thymoma is present in 10 –15% of patients with MG (5). In a now MYA S T H E N I A G R AV I S (MG) is an autoimmune classic paper, Osserman and Genkins, both disease characterized by weakness and fatiga- physicians at The Mount Sinai Hospital, pub- bility of skeletal muscles, with improvement lished a clinical classification of myasthenia following rest. It may be localized to specific gravis that is still in widespread use (6). muscle groups or it may be generalized. The in- The diagnosis of MG can be confirmed by cidence is 50–142 cases per million population several tests. The anticholinesterase test is pos- (1). MG is caused by a decrease in the numbers itive if strength improves with inhibition of of postsynaptic acetylcholine receptors at the cholinesterase. When cholinesterase is inhib- neuromuscular junction (2), which decreases ited, more acetylcholine is available to interact the capacity of the neuromuscular end-plate to with the decreased number of postsynaptic re- transmit the nerve signal. Initially, in response ceptors, increasing the likelihood of adequate to a stimulus resulting in depolarization, acetyl- end-plate depolarization. Edrophonium (Te n- choline is released presynaptically. In MG, the s i l o n®) is usually administered intravenously in number of activated postsynaptic receptors may small (2– 8 mg) doses for this test. This test be insufficient to trigger a muscle action poten- was introduced and popularized by Dr. Osser- tial (3). Further, with repeated stimulation, the man (7). Electromyography is also used in the decline in release of acetylcholine correlates diagnosis of myasthenia. Repetitive stimula- with the characteristic fatigability (4). tion of a peripheral motor nerve leads to de- creasing responses by the innervated muscle in P resentation and Diagnosis a patient with MG. The presence of anti-acetyl- choline antibodies in the serum, as detected by The characteristic presentation of MG is r a d i o i m m u n o a s s a y, is diagnostic of MG. Such fatigability of voluntary muscles. Most com- antibodies may not be detectable, however, in m o n l y, the eyelids and extraocular muscles are all patients with mild symptoms at presentation. involved. Bulbar involvement may be mani- fested as difficulty in chewing and swallowing. Tre a t m e n t Eighty-five percent of myasthenic patients go on to develop generalized weakness; some de- Treatment of MG may be medical or surg i- cal, utilizing one of three approaches: anti- cholinesterases (medical), immune suppression (medical), or thymectomy (surg i c a l ) . 1Assistant Professor of Anesthesiology and 2Professor of An e s t h e - Improving neuromuscular transmission by si o l o g y , Mount Sinai School of Medicine, New York, NY. means of anticholinesterase agents is the most Address correspondence to Mark Abel, M.D., Department of An e s t h e s i o l o g y , Box 1010, Mount Sinai School of Medicine, One common approach. Pyridostigmine (Mestinon) East 100th Street, New York, NY 10 0 2 9 - 6 5 7 4 . in a dose of up to 120 mg p.o. every 3 hours is 32 THE MOUNTSINAI JOURNALOF MEDICINE January/March 2002 used because it is tolerated well orally, with few If a thymoma presents an anterior mediasti- muscarinic side effects, and has a relatively nal mass, intrathoracic airway or vascular ob- long duration of action. Pyridostigmine 30 mg struction may occur upon the induction of anes- orally is equivalent to 1 mg intravenously or in- thesia. Flow-volume loops may be indicated t r a m u s c u l a r l y. p r e o p e r a t i v e l y. Maximal inspiratory and expi- Immune suppression is directed at prevent- ratory flow-volume loops obtained with the pa- ing or attenuating the destruction of acetyl- tient in the supine and upright positions will choline receptors at the motor end plate (8). measure the extent of the respiratory impair- Corticosteroids, which cause immune suppres- ment as well as whether the impairment is fixed sion, will improve the condition of most myas- or dynamic. thenics (9). Those who do not respond or who The preoperative management of the myas- cannot tolerate the side effects may respond to thenic patient will be influenced by the surg i c a l azathioprine 2.5– 3.5 mg/kg. Cyclosporine has procedure and the preferences of the surg e o n been used in patients with MG (10) and com- and the anesthesiologist. Some choose to omit pares favorably with azathioprine (11 ) . anticholinesterase on the morning of surg e r y, to For patients with severe bulbar symptoms decrease the need for muscle relaxants (21), or respiratory compromise (myasthenic crisis), whereas others continue its use for psychologi- plasmapheresis is used (12). Significant im- cal support of the patient. If the patient is provement occurs over days, with decreased de- poorly controlled, a course of plasmapheresis pendence on ventilatory support (13). The pre- may be of benefit in the preoperative period sumed mechanism is the removal of antibodies, (22). The steroid-dependent patient will require allowing receptors to proliferate. Immune perioperative coverage. globulin given intravenously has been used to Anxiolytic, sedative, and opioid premedica- treat myasthenic crises when plasmapheresis tions are rarely given to patients who may have cannot be used. Its use has been associated little respiratory reserve. If the patient has pri- with good short-term improvement (14). marily ocular symptoms, a small dose of benzo- Thymectomy is used to treat MG, but the diazepine is acceptable. mechanism of its action remains speculative. Antibody titers decrease with clinical improve- Response to Anesthetic Drugs ment (15). Suggested mechanisms include re- moval of antigenic stimulus by the removal of Nondepolarizing Neuro m u s c u l a r B l o c k e rs myoid cells or alterations in immune regulation by removal of the thymus. For an up-to-date Neuromuscular blocking drugs act by inter- history of surgery of the thymus gland, as well rupting neuromuscular transmission at the level as speculation on the future, the recent review of the nicotinic acetylcholine receptors at the by Kirschner (16) is recommended reading. motor end plate. Their mode of action can be classified as antagonist (nondepolarizing) or Anesthesia Considerations — Pre o p e r a t i v e agonist (depolarizing), both producing block- Evaluation and Pre p a r a t i o n ade (23). The myasthenic patient is typically sensitive to nondepolarizing neuromuscular Preoperative evaluation of the MG patient blockers. The use of a small dose for priming includes review of the severity of the patient’s or defasciculation is not appropriate, because it disease and the treatment regimen. Specific at- may result in loss of airway protection or in res- tention should be paid to voluntary and respira- piratory distress. Sensitivity to nondepolariz- tory muscle strength. The patient’s ability to ing agents has been described in patients with protect and maintain a patent airway postopera- minimal disease (i.e., ocular symptoms only) tively may be compromised if any bulbar in- (24), in those in apparent remission (25), or volvement exists preoperatively. The ability to those with subclinical undiagnosed myasthenia cough and clear secretions may be compromised ( 2 6 ) . as well. Respiratory muscle strength can be Long-acting muscle relaxants such as d- quantified by pulmonary function tests (nega- tubocurarine, pancuronium, pipecuronium, and tive inspiratory pressure and forced vital capac- doxacurium, are best avoided in these patients. ity). These tests may be necessary as a refer- Intermediate and short-acting nondepolarizing ence to determine the optimal conditions for ex- agents can be used with careful monitoring of tubation postoperatively as well as the need for neuromuscular transmission, preferably with postoperative mechanical ventilation (17, 18). electromyogram (EMG) or mechanomyogram Vol. 69 Nos. 1 & 2 ANESTHESIAAND MYASTHENIAGRAVIS—ABEL 33 (MMG), which measure the evoked electrical or cular block by agonist action. The ED9 5 of suc- mechanical responses following electrical stim- cinylcholine in MG patients is 2.6 times that in ulation of a peripheral motor nerve. Stimuli can non-myasthenic patients (0.8 mg/kg vs. 0.3 be delivered singly (0.1 Hz or one every 10 sec- mg/kg) (34). The dose of succinylcholine used onds; 1 Hz or one per second), or in trains-of- for rapid airway control in normal patients, 1.5 four (TOF) stimuli (2 Hz) at 10-second inter- mg/kg, is approximately five times the ED9 5 i n vals. In the absence of a neuromuscular block, MG. A dose of 1.5 –2.0 mg/kg should be ade- a control response is obtained. This control quate for most myasthenics, for rapid sequence “twitch” is designated Tc. In the absence of a intubation (34). A case report of a myasthenic neuromuscular block, all responses should be of patient in complete remission showed a normal equal magnitude.
Recommended publications
  • Severe Organophosphate Poisoning with Delayed Cholinergic Crisis, Intermediate Syndrome and Organophosphate Induced Delayed Polyneuropathy on Succession
    Organophosphate Poisoning… Aklilu A 203 CASE REPORT SEVERE ORGANOPHOSPHATE POISONING WITH DELAYED CHOLINERGIC CRISIS, INTERMEDIATE SYNDROME AND ORGANOPHOSPHATE INDUCED DELAYED POLYNEUROPATHY ON SUCCESSION Aklilu Azazh ABSTRACT Organophosphate compounds are the organic derivatives of Phosphorous containing acids and their effect on neuromuscular junction and Autonomic Synapses is clinically important. After exposure these agents cause acute and sub acute manifestations depending on the type and severity of the agents like Acute Cholinergic Manifestations, Intermediate Syndrome with Nicotinic features and Delayed Central Nervous System Complications. The patient reported here had severe Organophosphate Poisoning with various rare complications on a succession. This is the first report of Organophosphates Poisoning complicated by Intermediate Syndrome and Organophosphate Induced Delayed Polyneuropathy in Ethiopia and it is reported to increase awareness of health care workers on these rare complications of a common problem. INTRODUCTION phosphorylated by the Phosphate end of Organophosphates; then the net result is Organophosphate compounds are the organic accumulation of excessive Acetyl Chlorine with derivatives of Phosphorous containing acids and resultant effect on Muscarinic, Nicotinic and their effect on Neuromuscular Junction and central nervous system (Figure 2). Autonomic synapses is clinically important. In the Neuromuscular Junction Acetylcholine is released Following classical OP poisoning, three well when a nerve impulse reaches
    [Show full text]
  • Muscle Relaxants Physiologic and Pharmacologic Aspects
    K. Fukushima • R. Ochiai (Eds.) Muscle Relaxants Physiologic and Pharmacologic Aspects With 125 Figures Springer Contents Preface V List of Contributors XVII 1. History of Muscle Relaxants Some Early Approaches to Relaxation in the United Kingdom J.P. Payne 3 The Final Steps Leading to the Anesthetic Use of Muscle Relaxants F.F. Foldes 8 History of Muscle Relaxants in Japan K. Iwatsuki 13 2. The Neuromuscular Junctions - Update Mechanisms of Action of Reversal Agents W.C. Bowman 19 Nicotinic Receptors F.G. Standaert 31 The Neuromuscular Junction—Basic Receptor Pharmacology J.A. Jeevendra Martyn 37 Muscle Contraction and Calcium Ion M. Endo 48 3. Current Basic Experimental Works Related to Neuromuscular Blockade in Present and Future Prejunctional Actions of Neuromuscular Blocking Drugs I.G. Marshall, C. Prior, J. Dempster, and L. Tian 51 VII VIII Approaches to Short-Acting Neuromuscular Blocking Agents J.B. Stenlake 62 Effects Other than Relaxation of Non-Depolarizing Muscle Relaxants E.S. Vizi 67 Regulation of Innervation-Related Properties of Cultured Skeletal Muscle Cells by Transmitter and Co-Transmitters R.H. Henning 82 4. Current Clinical Experimental Works Related to Neuromuscular Blockade in Present and Future Where Should Experimental Works Be Conducted? R.D. Miller 93 Muscle Relaxants in the Intensive Care Unit ! J.E. Caldwell 95 New Relaxants in the Operating Room R.K. Mirakhur 105 Kinetic-Dynamic Modelling of Neuromuscular Blockade C. Shanks Ill 5. Basic Aspects of Neuromuscular Junction Physiology of the Neuromuscular Junction W.C. Bowman 117 Properties of <x7-Containing Acetylcholine Receptors and Their Expression in Both Neurons and Muscle D.K.
    [Show full text]
  • Beyond the Cholinergic Crisis Galle Medical Association Oration 2015
    Reviews Beyond the cholinergic crisis Galle Medical Association Oration 2015 Jayasinghe S S Department of Pharmacology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka. South Asian Clinical Toxicology Research Collaboration, Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka. Correspondence: Dr. Sudheera S Jayasinghe e-mail: [email protected] ABSTRACT Introduction: Organophosphates (OP) are the most frequently involved pesticides in acute poisoning. In Sri Lanka it has been ranked as the sixth or seventh leading cause of hospital deaths for many years. Neurotoxic effects of acute OP have been hitherto under-explored. The aims of the studies were to assess the effects of acute OP poisoning on somatic, autonomic nerves, neuro- muscular junction (NMJ), brain stem and cognitive function. Methods: Patients following self-ingestion of OP were recruited to cohort studies to evaluated the function of somatic, autonomic nerves, NMJ, brain stem and cognition. Motor and sensory nerve function was tested with nerve conduction studies. Cardiovascular reflexes based autonomic function tests and sympathetic skin response (SSR) was used to evaluate autonomic function. NMJ function was assessed with slow repetitive supramaximal stimulation of the median nerve of the dominant upper limb. Brain stem function and cognitive function were assessed with Brain Stem Evoked Response Audiometry (BERA) and Mini Mental State Examination (MMSE) respectively. The data of the patients were compared with age, gender and occupation matched controls. Results: There were 60-70 patients and equal number of controls in each study. Motor nerve conduction velocity, amplitude and area of compound muscle action potential on distal stimulation, sensory nerve conduction velocity and F-wave occurrence were significantly reduced.
    [Show full text]
  • S1 Table. List of Medications Analyzed in Present Study Drug
    S1 Table. List of medications analyzed in present study Drug class Drugs Propofol, ketamine, etomidate, Barbiturate (1) (thiopental) Benzodiazepines (28) (midazolam, lorazepam, clonazepam, diazepam, chlordiazepoxide, oxazepam, potassium Sedatives clorazepate, bromazepam, clobazam, alprazolam, pinazepam, (32 drugs) nordazepam, fludiazepam, ethyl loflazepate, etizolam, clotiazepam, tofisopam, flurazepam, flunitrazepam, estazolam, triazolam, lormetazepam, temazepam, brotizolam, quazepam, loprazolam, zopiclone, zolpidem) Fentanyl, alfentanil, sufentanil, remifentanil, morphine, Opioid analgesics hydromorphone, nicomorphine, oxycodone, tramadol, (10 drugs) pethidine Acetaminophen, Non-steroidal anti-inflammatory drugs (36) (celecoxib, polmacoxib, etoricoxib, nimesulide, aceclofenac, acemetacin, amfenac, cinnoxicam, dexibuprofen, diclofenac, emorfazone, Non-opioid analgesics etodolac, fenoprofen, flufenamic acid, flurbiprofen, ibuprofen, (44 drugs) ketoprofen, ketorolac, lornoxicam, loxoprofen, mefenamiate, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, pranoprofen, proglumetacin, sulindac, talniflumate, tenoxicam, tiaprofenic acid, zaltoprofen, morniflumate, pelubiprofen, indomethacin), Anticonvulsants (7) (gabapentin, pregabalin, lamotrigine, levetiracetam, carbamazepine, valproic acid, lacosamide) Vecuronium, rocuronium bromide, cisatracurium, atracurium, Neuromuscular hexafluronium, pipecuronium bromide, doxacurium chloride, blocking agents fazadinium bromide, mivacurium chloride, (12 drugs) pancuronium, gallamine, succinylcholine
    [Show full text]
  • COMPARISON of ROCURONIUM BROMIDE and SUCCINYLCHOLINE CHLORIDE for USE DURING RAPID SEQUENCE INTUBATION in ADULTS Ch
    DOI: 10.18410/jebmh/2015/672 ORIGINAL ARTICLE COMPARISON OF ROCURONIUM BROMIDE AND SUCCINYLCHOLINE CHLORIDE FOR USE DURING RAPID SEQUENCE INTUBATION IN ADULTS Ch. Penchalaiah1, N. Jagadeesh Babu2, T. Kumar3 HOW TO CITE THIS ARTICLE: Ch. Penchalaiah, N. Jagadeesh Babu, T. Kumar. ”Comparison of Rocuronium Bromide and Succinylcholine Chloride for Use during Rapid Sequence Intubation in Adults”. Journal of Evidence based Medicine and Healthcare; Volume 2, Issue 32, August 10, 2015; Page: 4796-4806, DOI: 10.18410/jebmh/2015/672 ABSTRACT: BACKGROUND AND OBJECTIVE: The goal of rapid sequence intubation is to secure the patients airway smoothly and quickly, minimizing the chances of regurgitation and aspiration of gastric contents. Traditionally succinylcholine chloride has been the neuromuscular blocking drug of choice for use in rapid sequence intubation because of its rapid onset of action and profound relaxation. Succinylcholine chloride remains unsurpassed in providing ideal intubating conditions. However the use of succinylcholine chloride is associated with many side effects like muscle pain, bradycardia, hyperkalaemia and rise in intragastric and intraocular pressure. Rocuronium bromide is the only drug currently available which has the rapidity of onset of action like succinylcholine chloride. Hence the present study was undertaken to compare rocuronium bromide with succinylcholine chloride for use during rapid sequence intubation in adult patients. METHODOLOGY: The study population consisted of 90 patients aged between 18-60 years posted for various elective surgeries requiring general anaesthesia. Study population was randomly divided into 3 groups with 30 patients in each sub group. 1. Group I: Intubated with 1 mg kg-1 of succinylcholine chloride (n=30).
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Reversal of Neuromuscular Bl.Pdf
    JosephJoseph F.F. Answine,Answine, MDMD Staff Anesthesiologist Pinnacle Health Hospitals Harrisburg, PA Clinical Associate Professor of Anesthesiology Pennsylvania State University Hospital ReversalReversal ofof NeuromuscularNeuromuscular BlockadeBlockade DefiniDefinitionstions z ED95 - dose required to produce 95% suppression of the first twitch response. z 2xED95 – the ED95 multiplied by 2 / commonly used as the standard intubating dose for a NMBA. z T1 and T4 – first and fourth twitch heights (usually given as a % of the original twitch height). z Onset Time – end of injection of the NMBA to 95% T1 suppression. z Recovery Time – time from induction to 25% recovery of T1 (NMBAs are readily reversed with acetylcholinesterase inhibitors at this point). z Recovery Index – time from 25% to 75% T1. PharmacokineticsPharmacokinetics andand PharmacodynamicsPharmacodynamics z What is Pharmacokinetics? z The process by which a drug is absorbed, distributed, metabolized and eliminated by the body. z What is Pharmacodynamics? z The study of the action or effects of a drug on living organisms. Or, it is the study of the biochemical and physiological effects of drugs. For example; rocuronium reversibly binds to the post synaptic endplate, thereby, inhibiting the binding of acetylcholine. StructuralStructural ClassesClasses ofof NondepolarizingNondepolarizing RelaxantsRelaxants z Steroids: rocuronium bromide, vecuronium bromide, pancuronium bromide, pipecuronium bromide. z Benzylisoquinoliniums: atracurium besylate, mivacurium chloride, doxacurium chloride, cisatracurium besylate z Isoquinolones: curare, metocurine OnsetOnset ofof paralysisparalysis isis affectedaffected by:by: z Dose (relative to ED95) z Potency (number of molecules) z KEO (plasma equilibrium constant - chemistry/blood flow) — determined by factors that modify access to the neuromuscular junction such as cardiac output, distance of the muscle from the heart, and muscle blood flow (pharmacokinetic variables).
    [Show full text]
  • Quality of Laryngoscopic View and Rapidity of Development Of
    alenc uiv e & eq B io io B a f v o a Mitra et al., J Bioequiv Availab 2016, 8:3 i l l a a b n DOI: 10.4172/jbb.1000282 r i l i u t y o Journal of Bioequivalence & Bioavailability J ISSN: 0975-0851 Research Article OpenOpen Access Access Quality of Laryngoscopic View and Rapidity of Development of Intubating Conditions after Atracurium, Vecuronium and Rocuronium: A Randomized Controlled Study Manasij Mitra1, Abhishek Nag2, Tanmoy Ganguly3, Sandeep Kumar Kar3* and Santi Lahiri1 1Department of Anaesthesiology, MGM Medical College, Kishanganj, India 2Subham Hospital and Diagnostic Centre, Coochbehar, India 3Department of Cardiac Anesthesiology, Institute of Postgraduate Medical Education and Research, Kolkata, India Abstract Introduction: The choice of muscle relaxant for endotracheal intubation may be straightforward in selective cases, but in most patients, who are otherwise uncomplicated, poses a dilemma among anesthesiologists and intensivists. The authors examined the most commonly used muscle relaxants (Vecuronium, atracurium and rocuronium) in equipotent doses and compared the most vital parameters, i.e., rapidity of development of clinically acceptable intubating condition and quality of laryngoscopic view. Method: 150 adult patients of 18 to 50 y of age were recruited randomly into 3 equal groups having 50 patients (n=50) in each and equipotent dose of vecuronium, atracurium and rocuronium was administered. Endotracheal intubations were attempted every 30 seconds till excellent or good intubating conditions were achieved upto a maximum of 240 s. The available data were analyzed statistically. Results: The three study groups were comparable in terms of the demographic characteristics. The quality of intubating condition was rated significantly better with Rocuronium than with Vecuronium and Atracurium.
    [Show full text]
  • ENLON-PLUS (Edrophonium Chloride, USP and Atropine Sulfate, USP) Injection
    NDA 19-677/S-005 NDA 19-678/S-005 Page 3 ENLON-PLUS (edrophonium chloride, USP and atropine sulfate, USP) Injection Rx only DESCRIPTION ENLON-PLUS (edrophonium chloride, USP and atropine sulfate, USP) Injection, for intravenous use, is a sterile, nonpyrogenic, nondepolarizing neuromuscular relaxant antagonist. ENLON-PLUS is a combination drug containing a rapid acting acetylcholinesterase inhibitor, edrophonium chloride, and an anticholinergic, atropine sulfate. Chemically, edrophonium chloride is ethyl (m-hydroxyphenyl) dimethylammonium chloride; its structural formula is: Molecular Formula: C10H16ClNO Molecular Weight: 201.70 Chemically, atropine sulfate is: endo-(±)-alpha-(hydroxymethyl)-8-methyl-8-azabicyclo [3.2.1]oct-3-yl benzeneacetate sulfate (2:1) monohydrate. Its structural formula is: Molecular Formula: (C17H23NO3)2·H2SO4·H2O NDA 19-677/S-005 NDA 19-678/S-005 Page 4 Molecular Weight: 694.84 ENLON-PLUS contains in each mL of sterile solution: 5 mL Ampuls: 10 mg edrophonium chloride and 0.14 mg atropine sulfate compounded with 2.0 mg sodium sulfite as a preservative and buffered with sodium citrate and citric acid. The pH range is 4.0- 5.0. 15 mL Multidose Vials: 10 mg edrophonium chloride and 0.14 mg atropine sulfate compounded with 2.0 mg sodium sulfite and 4.5 mg phenol as a preservative and buffered with sodium citrate and citric acid. The pH range is 4.0-5.0. CLINICAL PHARMACOLOGY Pharmacodynamics ENLON-PLUS (edrophonium chloride, USP and atropine sulfate, USP) Injection is a combination of an anticholinesterase agent, which antagonizes the action of nondepolarizing neuromuscular blocking drugs, and a parasympatholytic (anticholinergic) drug, which prevents the muscarinic effects caused by inhibition of acetylcholine breakdown by the anticholinesterase.
    [Show full text]
  • Indirect Acting Cholinergic Drugs
    Editing File Indirect acting cholinergic drugs Objectives: ✓ Classification of indirect acting cholinomimetics ✓ Mechanism of action, kinetics, dynamics and uses of anticholinesterases ✓ Adverse effects & contraindications of anticholinesterases ✓ Symptoms and treatment of organophosphates toxicity. Important Notes Extra ❖ Also called Anticholinesterases Anticholinesterases prevent hydrolysis of Ach by inhibiting acetyl cholinesterase thus, increase Ach concentrations and actions at the cholinergic receptors (both nicotinic and muscarinic). Acetylcholine binds to acetylcholinesterase at M.O. two sites, anionic site and esteric site, then A the enzyme somehow breakdown the acetylcholine into acetic acid and choline. In order to inhibit this enzyme we need to create a substance that is similar to acetylcholine either in both sites or even one site. (Similar structure) Reversible anticholinesterases Irreversible anticholinesterases Durat Short Acting Intermediate Long Acting ion of actio acting n (Alcohols) (Carbamates (Phosphates esters) e.g. esters) e.g. e.g. insecticides, gas war e.g. Physostigmine, Drug edrophonium. Ecothiophate & Isoflurophate. s Neostigmine, Classi Using those drugs leads to death ficati Pyridostigmine. on Forms weak Binds to two sites used as insecticides(malathion) or hydrogen bond of cholinesterase nerve gases (sarin) . with enzyme. Form very stable covalent bond with All polar and cholinesterase . Feat acetylcholineste ures synthetic except All phosphates are lipid soluble except rase enzyme physostigmine. Ecothiophate
    [Show full text]
  • Neonatal Medicine: Neostigmine
    ID: NMedQ20.054-V1-R25 Queensland Health Clinical Excellence Queensland NEOSTIGMINE 1 • For reversal of non-depolarising neuromuscular blocker (e.g. vecuronium) Indication 1 2 • Neonatal transient or congenital myasthenia gravis when pyridostigmine is unsuitable Presentation • Ampoule: 2.5 mg in 1 mL • 0.05 mg/kg (50 microgram/kg)3 Dosage If further dose required, give 0.025 mg/kg (25 microgram/kg)3 (reversal agent) o 3 o Maximum total dose is 2.5 mg (2500 microgram) • Draw up 2.5 mg and make up to 5 mL total volume with 0.9% sodium chloride Preparation o Concentration now equal to 0.5 mg/mL • Draw up prescribed dose • Give atropine sulfate 0.02 mg/kg prior or concomitant with neostigmine3 (in Administration INTRAVENOUS separate syringe) 1 • IV injection over 1 minute Presentation • Ampoule: 2.5 mg in 1 mL Dosage (myasthenia • 0.05–0.25 mg (not mg/kg) every 2 to 4 hours1,4 gravis) • Draw up 2.5 mg and make up to 5 mL total volume with 0.9% sodium chloride IM Preparation o Concentration now equal to 0.5 mg/mL • Give 30 minutes before feed1 • Draw up prescribed dose Administration • Intramuscular injection into thickest part of the vastus lateralis in the anterolateral thigh (maximum 0.5 mL per site)5 Presentation • Ampoule: 2.5 mg in 1 mL Dosage (myasthenia • 0.05–0.25 mg (not mg/kg) every 2 to 4 hours1 gravis) • Draw up 2.5 mg and make up to 5 mL total volume with 0.9% sodium chloride Preparation o Concentration now equal to 0.5 mg/mL 1 SUBCUT • Give 30 minutes before feed Administration • Draw up prescribed dose • Subcutaneous injection
    [Show full text]
  • The Efficacy and Safety of Mivacurium in Pediatric Patients
    Zeng et al. BMC Anesthesiology (2017) 17:58 DOI 10.1186/s12871-017-0350-2 RESEARCH ARTICLE Open Access The efficacy and safety of mivacurium in pediatric patients Ruifeng Zeng1, Xiulan Liu1,5, Jing Zhang1, Ning Yin2,6, Jian Fei2, Shan Zhong2, Zhiyong Hu3, Miaofeng Hu3, Mazhong Zhang4,BoLi4, Jun Li1, Qingquan Lian1 and Wangning ShangGuan1* Abstract Background: Mivacurium is the shortest acting nondepolarizing muscle relaxant currently available; however, the effect of different dosages and injection times of intravenous mivacurium administration in children of different ages has rarely been reported. This study was aimed to evaluate the muscle relaxant effects and safety of different mivacurium dosages administered over different injection times in pediatric patients. Methods: Six hundred forty cases of pediatric patients, aged 2 m-14 years, ASA I or II, were divided into four groups (Groups A, B, C, D) according to the age class (2–12 m, 13–35 m, 3–6yearsand7–14 years) respectively, also each group were divided into four subgroups by induction dose (0.15, 0.2 mg/kg in 2–12 m age class; 0.2, 0.25 mg/kg in other three age classes), and mivacurium injection time (20 s, 40 s), totally 16 subgroups. Neuromuscular transmission was monitored with supramaximal train-of-four stimulation of the ulnar nerve. Radial artery blood (1 ml) was sampled to quantify plasma histamine concentrations before and 1, 4, and 7 min after mivacurium injection (P0, P1, P2 and P3). Results: Five hundred sixty-two cases completed the study. There were no demographic differences within the four groups.
    [Show full text]