Physical-Chemical Properties of Exotic and Native Brazilian Fruits

Total Page:16

File Type:pdf, Size:1020Kb

Physical-Chemical Properties of Exotic and Native Brazilian Fruits Acta Agronómica (2019) 68 (3) p 175-181 ISSN 0120-2812 | e-ISSN 2323-0118 doi: https://doi.org/10.15446/acag.v68n3.55934 Physical-chemical properties of exotic and native Brazilian fruits Propiedades físicoquímicas de frutas exóticas nativas de Brasil Veridiana Zocoler de Mendonça* and Rogério Lopes Vieites Faculdade de Ciências Agronômicas/UNESP, Botucatu, Brasil; Departamento de Horticultura, Faculdade de Ciências Agronômicas/UNESP, Botucatu. *Author for correspondance: [email protected] Rec: 2016-02-28 Acept: 2019-04-09 Abstract Many fruit species are still not well-studied, despite being rich in bioactive substances that have functional properties. The objective of this article was to evaluate the antioxidant potential and characterize the physical-chemical characteristics of unconventional brazilian fruits (cabeludinha - Myrciaria glazioviana, sapoti - Manilkara zapota, pitomba - Talisia esculenta, yellow gumixama - Eugenia brasiliensis var. Leucocarpus and seriguela - Spondias purpurea). Total soluble solids, pH, titratable acidity, sugars, pigments, phenolic compounds and antioxidant capacity were measured. Mature fruits were used in the analyses. Pitomba had high levels of soluble solids, 24.6 °Brix, while sapoti had 0.05 g malic acid 100 g-1 pulp. Yellow grumixama and seriguela had the highest concentrations of anthocyanins and carotenoids. Cabeludinha had a high concentration of phenolic compounds, 451.60 mg gallic acid 100 g-1 pulp. With the exception of sapoti, all fruits had a high antioxidant capacity (> 95%). Key words: Eugenia brasiliensis, Manilkara zapota, Myrciaria glazioviana, Spondias purpurea, Talisia esculenta. Resumen El objetivo de este trabajo fue evaluar el potencial antioxidante y caracterizar las propiedades fisicoquímicas de frutas exóticas en Brasil (cabeludinha - Myrciaria glazioviana, sapoti - Manilkara zapota, pitomba - Talisia esculenta, gumixama amarilla - Eugenia brasiliensis var. Leucocarpus y seriguela - Spondias purpurea). Para el efecto se realizaron análisis de sólidos solubles, pH, acidez titulable, azúcares, pigmentos, compuestos fenólicos y actividad antioxidante. Los frutos fueron cosechados en estado de madurez fisiológica y para los análisis se utilizaron las partes comestibles de la fruta. Los frutos presentaron elevado contenido de sólidos solubles y baja acidez titulable, sobresalieron la pitomba con 24.6 °Brix y sapoti con 0.05 g de ácido málico 100 g-1 pulpa. Grumixama amarilla y seriguela resentaron mayor contenido de antocianinas y carotenoides. Cabeludinha presentó elevado contenido de compuestos fenólicos, en promedio de 451.60 mg ácido gálico por 100 g de pulpa. Con excepción de sapoti, todas las frutas mostraron elevada actividad antioxidante (> 95%). Palabras clave: Eugenia brasiliensis, Manilkara zapota, Myrciaria glazioviana, Spondias purpurea, Talisia esculenta. 175 Acta Agronómica. 68 (3) 2019, p 175-181 Introduction highlighting the need for scientific research on the subject. The consumption of fruits is increasing in recent years due to their functional properties. Given the importance of research on natural They contain bioactive substances that have antioxidants and the scarcity of data related antioxidant activities and beneficial effects, of Brazilian native fruits (Alves et al., 2017). despite being present at low concentrations The objective of this work was to characterize (Kaur and Kapoor, 2002, Mélo et al., 2008, the physical-chemical properties and evaluate Carvalho et al., 2016). antioxidant potential in vitro of cabeludinha (Myrciaria glazioviana):yellow grumixama The native Brazilian Mata Atlântica (Eugenia brasiliensis var. Leucocarpus) pitomba fruits cabeludinha (Myrciaria glazioviana), (Talisia esculenta,:sapoti (Manilkara zapota) and yellow grumixama (Eugenia brasiliensis seriguela (Spondias purpurea). var. Leucocarpus) and pitomba (Talisia esculenta) are poorly-studied species (Rocha et al., 2011) and their consumption is mostly restricted to their Material and methods points of origin. At the same time, exotic species Mature fruits were collected at the Fazenda in Central America, sapoti (Manilkara zapota) and Experimental da Faculdade de Ciências seriguela (Spondias purpurea) are cultivated in Agronômicas/UNESP in Botucatu, São Paulo (22° northern and northeastern parts of Brazil, but 53’ 09” latitude south, 48° 26’ 42” longitude west seldom elsewhere. However, such species may and 804 m altitude) and immediately subjected to have antioxidant potential. laboratory tests. For cabeludinha (M. glazioviana) According Lorenzi et al. (2006) and Martins pitomba (T. esculenta) and sapoti (M. zapota) et al. (2002) cabeludinha (Myrciaria glazioviana pulp was used for analysis and the fruits were – Myrtaceae Family) has a globose shape, the manually peeled with knife help. For yellow peel is thick, hairy and yellow. It contains one grumixama (E. brasiliensis var. Leucocarpus) or two seeds that correspond to almost 50% of and seriguela (S. purpurea) pulp and peel was the fruit mass, the pulp is translucent-juicy and analyzed. Each sample was homogenized by acidulated. Yellow grumixama tree (Eugenia mixer for a total of 200 g. brasiliensis var. Leucocarpus - Myrtaceae Family) has globular fruit, smooth and bright yellow Physical-chemical analyses peel, juicy and sweet pulp and contain one to three seeds. Pitomba fruits (Talisia esculenta The metodology of Instituto Adolfo Lutz (2008) – Sapindaceae Family) are subglobous, hard was used: the levels of soluble solids (SS) were and rough with yellow or ferruginous color, determined at 25 °C using an ABBE refractometer contains one or two seeds covered by fine and (model Atago-N1) and expressed as ºBrix; the translucent aril, acidulated taste. Sapoti fruit pH of the sliced and homogenized samples was (Manilkara zapota – Sapotaceae Family) is determined using a digital DMPH-2 pH meter; rounded or ellipsoid, has sweet pulp, with four the titratable acidity (AT) of 5 g of homogenized to ten seeds. Seriguela tree (Spondias purpura samples, diluted to 100 mL with distilled water, – Anacardeacea Family) has fruits with oblonga- was determined using a 0.01 N solution of sodium ellipsoid shape, smooth, brilliant and red purple hydroxide, the results were expressed as g (citric color peel, with sweet acidulated pulp. or malic) acid per 100 g of sample. The fruits are main dietary sources of Reducing and total sugars polyphenols with antioxidant activities and have variable composition of its phytochemical To determine total and reducing sugars, the method constituents (Mélo et al., 2008). Information on of Nelson (1944) modified by Somogyi (1945) was the physical-chemical characteristics and the used. A Micronal B382 spectrophotometer was functional value of native fruits are basic tools to used to read the absorbance at 535 nm and the encourage the consumption and the formulation results were expressed as a percentage. of new products, since the knowledge of these characteristics will enable a better indication of Pigments their consumption and use in the food industry The determination of the level of pigments (Rocha et al., 2013). Besides, the information was done by the method of Sims and Gamon about the phytochemical contents contributes (2002) using a UV/VIS spectrophotometer and to add commercial and industrial value to the measuring absorbances at 663 nm (chlorophyll fruits (Alves et al., 2017). However, few data A), 647 nm (chlorophyll B), 537 nm (anthocyanin) are available in the literature regarding the and 470 nm (carotenoids). The absorbance physicochemical composition of these fruits, values were converted to μg g-1 pulp. 176 Physical-chemical properties of exotic and native Brazilian fruits Determination of solvents for phenolic Table 1. Soluble solids, pH and titratable acidity of unconventional Brazilian compounds and antioxidant capacity fruits. Faculdade de Ciências Agronômicas/UNESP in Botucatu, São Paulo Three solvent mixtures were tested: 80% etanol + Physical-Chemical* 20% distilled water, 80% metanol + 20% distilled Fruit Soluble solids Titratable acidity* pH water and 80% acetone + 20% distilled water. (°Brix) (g acid 100 g-1 pulp) The concentration of phenolic compounds was done colorimetrically using the Folin-Ciocalteau Cabeludinha 15.90±0.32 3.66±0.09 0.22±0.01 reagent as described by Singleton et al. (1999). Sapoti 16.68±0.10 5.08±0.19 0.05±0.01 This method involves the reduction of the Pitomba 24.60±0.63 3.40±0.09 1.05±0.12 reagent by phenolic compounds and concomitant formation of a complex that absorbs light at 760 Yellow grumixama 15.63±1.70 3.06±0.13 1.33±0.09 nm. Gallic acid was used as the standard. Results Seriguela 15.07±0.64 3.12±0.04 0.74±0.08 were expressed as mg gallic acid equivalents 100 g-1 fresh sample (GAE). *Cabeludinha, yellow grumixama and seriguela: titratable acidity expres- sed as g citric acid 100 g-1 pulp. Sapoti and pitomba: acidity expressed as g The in vitro antioxidant capacity was malic acid 100 g-1 pulp. Average ± standard deviation. determined using the DPPH (2,2-diphenyl-1- picrylhydrazyl) as described by Mensor et al. Lira Jr. et al. (2010) when evaluating seriguela (2001). The antioxidants in samples react with clones from the germoplasm bank of Itambé- DPPH which is a stable free radical. It is converted PE/Brazil, found SS values from 16.47 to 23.87 to 2,2-diphenyl-1-picrylhydrazine. The degree of °Brix and titratable acidity from 0.73 to 1.15%. decolorization indicates the antioxidant potential Ramírez-Hernández et al. (2008) found that
Recommended publications
  • Nature Policy Plan
    Ministry of Public Housing, Spatial Planning, Environment And Infrastructure Ministerie van Volkshuisvesting, Ruimtelijke Ordening, Milieu en Infrastructuur Nature Policy Plan 2021 – 2025 Established/Approved: Date: By: i Nature Policy Plan Sint Maarten 2021 – 2025 “We the people of Sint Maarten: RESOLVED to provide for the continuing preservation of nature and the environment”. Constitution of Sint Maarten ii Nature Policy Plan Sint Maarten 2021 – 2025 Nature Policy Plan Sint Maarten 2021 – 2025 Ministry of Public Housing, Spatial Planning, Environment and Infrastructure (Ministry of VROMI) Address: Government of Sint Maarten Ministry of VROMI Soualiga Road #1 Pond Island, Great Bay Sint Maarten Contact: [email protected] [email protected] iii Nature Policy Plan Sint Maarten 2021 – 2025 Lignum Vitae (Guaiacum officinale) iv Photo by: Mark Yokoyama Nature Policy Plan Sint Maarten 2021 – 2025 Acknowledgments In writing the Nature Policy Plan Sint Maarten 2021 – 2025, the Ministry of VROMI consulted several government ministries, and external stakeholders including private sector entities and NGO’s. Some were engaged in the preparation of the policy from the onset; others were part of a review of the policy and stakeholder meetings. The Ministry of VROMI acknowledges and appreciates the time and effort of the stakeholders who contributed to the formulation of this Nature Policy Plan, which provides insights into the current state of affairs of nature on Sint Maarten and the proposed way forward on nature conservation
    [Show full text]
  • Supercritical Fluid Extraction with a Modifier of Antioxidant Compounds from Jabuticaba (Myrciaria Cauliflora) By- Products: Economic Viability
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Procedia Food Science 1 (2011) 1672 – 1678 11th International Congress on Engineering and Food (ICEF11) Supercritical fluid extraction with a modifier of antioxidant compounds from jabuticaba (Myrciaria cauliflora) by- products: economic viability Rodrigo N. Cavalcanti, Priscilla C. Veggi, Maria Angela A. Meireles*a aLASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas) – R. Monteiro Lobato, 80; 13083-862, Campinas, SP, Brazil ([email protected]) Abstract Jabuticaba (Myrciaria cauliflora) is a grape-like fruit that is found extensively throughout Brazil. In spite of the very few studies done on its chemical constituents, some authors have reported the potential use of jabuticaba as a source of antioxidant compounds, which are believed to play an important role in the prevention of many oxidative and inflammatory diseases. Local populations enjoy jabuticaba as a favorite fruit, but the majority of these crops are wasted during harvesting and processing. Thus, the application of innovative technologies such as supercritical fluid extraction (SFE) for processing by-products is important to obtain high quality yields, which increases the value of the product. In addition, processing by-products currently represents an increasing niche market, which is mainly due to their ecological, economic and social implications. In order to evaluate their industrial applicability, it is essential to perform a critical analysis of the chemical composition and economic viability of the extracts obtained. The objective of this study is to evaluate the feasibility of antioxidant recovery by SFE with a co-solvent using varying conditions of pressure and temperature.
    [Show full text]
  • Phytochemicals Are Natural Resources of Food Supplement for Happier People
    Horticulture International Journal Review Article Open Access Phytochemicals are natural resources of food supplement for happier people Abstract Volume 3 Issue 6 - 2019 Cacao plants are used for a widespread range of diseases and used in different forms such 1 2 as the full of magnesium for a healthy heart, brain for human, highest plant-based source Fakhrul Islam Sukorno, Shariful Islam, Ak of iron and used as mood elevator like a natural mood elevator and anti-depressant. Maca Lutful Kabir,3 Celia Vargas de la Cruz,4 Sakila are widely used in increases energy level and stamina. It is effectively used in women’s Zaman,5 Gali Adamu Ishaku6 health and mood like alleviates menstrual and menopause issues. Quinoa contains all the 1Department of Pharmacy, North south University, Bangladesh nine essential amino acids, almost twice as much fiber as most other grains and perfect 2Department of Pharmacy, Southeast University, Bangladesh for people with gluten intolerance. Goldenberry helps to prevent certain chronic diseases; 3Faculty of Pharmaceutical Technology, University of Dhaka, low in calories only has about 53 calories per 100 grams and modulates immune function. Bangladesh 4 Lucuma contains beneficial nutrients that sugar lacks. It can help the digestive system Faculty of Pharmacy and Biochemistry - Centro work properly and improves the transportation of oxygen into cells. Purple Corn helps Latinoamericano de Enseñanza e Investigación en Bacteriología the regeneration of cells and connective tissues. Could reduce cancer risk as anthocyanins Alimentaria, Universidad Nacional Mayor de San Marcos, Perú 5Department of Pharmacy, Daffodil International University, could kill cancer cells. Prevents degeneration of cells and slows aging process.
    [Show full text]
  • Myrciaria Floribunda, Le Merisier-Cerise, Source Dela Guavaberry, Liqueur Traditionnelle De L’Ile De Saint-Martin Charlélie Couput
    Myrciaria floribunda, le Merisier-Cerise, source dela Guavaberry, liqueur traditionnelle de l’ile de Saint-Martin Charlélie Couput To cite this version: Charlélie Couput. Myrciaria floribunda, le Merisier-Cerise, source de la Guavaberry, liqueur tradi- tionnelle de l’ile de Saint-Martin. Sciences du Vivant [q-bio]. 2019. dumas-02297127 HAL Id: dumas-02297127 https://dumas.ccsd.cnrs.fr/dumas-02297127 Submitted on 25 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE BORDEAUX U.F.R. des Sciences Pharmaceutiques Année 2019 Thèse n°45 THESE pour le DIPLOME D'ETAT DE DOCTEUR EN PHARMACIE Présentée et soutenue publiquement le : 6 juin 2019 par Charlélie COUPUT né le 18/11/1988 à Pau (Pyrénées-Atlantiques) MYRCIARIA FLORIBUNDA, LE MERISIER-CERISE, SOURCE DE LA GUAVABERRY, LIQUEUR TRADITIONNELLE DE L’ILE DE SAINT-MARTIN MEMBRES DU JURY : M. Pierre WAFFO-TÉGUO, Professeur ........................ ....Président M. Alain BADOC, Maitre de conférences ..................... ....Directeur de thèse M. Jean MAPA, Docteur en pharmacie ......................... ....Assesseur ! !1 ! ! ! ! ! ! ! !2 REMERCIEMENTS À monsieur Alain Badoc, pour m’avoir épaulé et conseillé tout au long de mon travail. Merci pour votre patience et pour tous vos précieux conseils qui m’ont permis d’achever cette thèse.
    [Show full text]
  • Biological Inventory of St. Maarten
    BIOLOGICAL INVENTORY OF ST. MAARTEN Anna Rojer Stichting Carmabi P.O. box 2090 Curaçao, Netherlands Antilles November 1997 Biological Inventory of St. Maarten KNAP project 96-10 November 1997 CONTENTS SUMMARY................................................................................................................................1 INTRODUCTION.......................................................................................................................3 Project Background .........................................................................................................3 project Objective..............................................................................................................3 Importance for Antillean Nature......................................................................................3 METHODS..................................................................................................................................4 Literature Research..........................................................................................................4 Fieldwork.........................................................................................................................4 Inventory of the flora.......................................................................................................4 Inventory of the fauna......................................................................................................5 Reporting .........................................................................................................................5
    [Show full text]
  • Pests, Diseases, and Aridity Have Shaped the Genome of Corymbia Citriodora
    Lawrence Berkeley National Laboratory Recent Work Title Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Permalink https://escholarship.org/uc/item/5t51515k Journal Communications biology, 4(1) ISSN 2399-3642 Authors Healey, Adam L Shepherd, Mervyn King, Graham J et al. Publication Date 2021-05-10 DOI 10.1038/s42003-021-02009-0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s42003-021-02009-0 OPEN Pests, diseases, and aridity have shaped the genome of Corymbia citriodora ✉ Adam L. Healey 1,2 , Mervyn Shepherd 3, Graham J. King 3, Jakob B. Butler 4, Jules S. Freeman 4,5,6, David J. Lee 7, Brad M. Potts4,5, Orzenil B. Silva-Junior8, Abdul Baten 3,9, Jerry Jenkins 1, Shengqiang Shu 10, John T. Lovell 1, Avinash Sreedasyam1, Jane Grimwood 1, Agnelo Furtado2, Dario Grattapaglia8,11, Kerrie W. Barry10, Hope Hundley10, Blake A. Simmons 2,12, Jeremy Schmutz 1,10, René E. Vaillancourt4,5 & Robert J. Henry 2 Corymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). 1234567890():,; Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although the two diverged approximately 60 million years ago and have different genome sizes (408 vs 641 Mb), with few large intra-chromosomal rearrangements.
    [Show full text]
  • Low Risk, Fruit Tree, Edible Fruit, Slow-Growing, Bird-Dispersed, Zoochorous
    Family: Sapindaceae Taxon: Talisia esculenta Synonym: Sapindus esculenta A. St.-Hil. (basionym) Common Name: pitomba Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -1 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals y=1, n=0 406 Host for recognized pests
    [Show full text]
  • Ethnopharmacology of Fruit Plants
    molecules Review Ethnopharmacology of Fruit Plants: A Literature Review on the Toxicological, Phytochemical, Cultural Aspects, and a Mechanistic Approach to the Pharmacological Effects of Four Widely Used Species Aline T. de Carvalho 1, Marina M. Paes 1 , Mila S. Cunha 1, Gustavo C. Brandão 2, Ana M. Mapeli 3 , Vanessa C. Rescia 1 , Silvia A. Oesterreich 4 and Gustavo R. Villas-Boas 1,* 1 Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras-BA CEP 47810-059, Brazil; [email protected] (A.T.d.C.); [email protected] (M.M.P.); [email protected] (M.S.C.); [email protected] (V.C.R.) 2 Physical Education Course, Center for Health Studies and Research (NEPSAU), Univel University Center, Cascavel-PR, Av. Tito Muffato, 2317, Santa Cruz, Cascavel-PR CEP 85806-080, Brazil; [email protected] 3 Research Group on Biomolecules and Catalyze, Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras-BA CEP 47810-059, Brazil; [email protected] 4 Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa. postal 364, Dourados-MS CEP 79804-970, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-(77)-3614-3152 Academic Editors: Raffaele Pezzani and Sara Vitalini Received: 22 July 2020; Accepted: 31 July 2020; Published: 26 August 2020 Abstract: Fruit plants have been widely used by the population as a source of food, income and in the treatment of various diseases due to their nutritional and pharmacological properties.
    [Show full text]
  • Jabuticaba Residues (Myrciaria Jaboticaba (Vell.) Berg) Are Rich Sources of T Valuable Compounds with Bioactive Properties Bianca R
    Food Chemistry 309 (2020) 125735 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of T valuable compounds with bioactive properties Bianca R. Albuquerquea,b, Carla Pereiraa, Ricardo C. Calhelhaa, Maria José Alvesa, ⁎ ⁎ Rui M.V. Abreua, Lillian Barrosa, , M. Beatriz P.P. Oliveirab, Isabel C.F.R. Ferreiraa, a Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal b REQUIMTE – Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal ARTICLE INFO ABSTRACT Keywords: Jabuticaba (Myrciaria jaboticaba (Vell.) Berg) is a Brazilian berry, very appreciated for in natura consumption. Anthocyanins However, its epicarp is not normally consumed due to its stiffness and astringent taste, and in manufacture of Hydrolysable tannins products from jabuticaba fruit, it is responsible for the generation of large amounts of residues. The exploration Anti-proliferative of by-products is becoming important for the obtainment of valuable bioactive compounds for food and phar- Antimicrobial maceutical industries. In this context, jabuticaba epicarp was studied regarding its chemical composition, Antioxidant activity namely in terms of phenolic compounds, tocopherols, and organic acids, and its bioactive properties, such as antioxidant, anti-proliferate, anti-inflammatory, and antimicrobial activities. A total of sixteen phenolic com- pounds, four tocopherols and six organic acids were identified in jabuticaba epicarp. Regarding bioactive properties, it showed high antioxidant activity, also presenting moderate anti-inflammatory, anti-proliferative, and antimicrobial activities. The extract did not present hepatotoxicity, confirming the possibility of its appli- cations without toxicity issues.
    [Show full text]
  • Two New Agricultural Pest Species of Conotrachelus (Coleoptera : Curculionidae : Molytinae) in South America
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Horizon / Pleins textes Soc. Am. Eiitoniol. Fr. (N.S.), 1995, 31 (3) : 227-235. 227 TWO NEW AGRICULTURAL PEST SPECIES OF CONOTRACHELUS (COLEOPTERA : CURCULIONIDAE : MOLYTINAE) IN SOUTH AMERICA Charles W. O’BRIEN (*) & Guy COUTURIER (*:k) (*) Entomology -Biological Control, Florida A & M University, Tallahassee, FL 32307-4100, USA. (**) ORSTOM, Institut Français de Recherche Scientifique pour le Développement en Coopération, 213, rue Lafayette, F-75480 Paris Cedex 10, France. ,Key words : life histories, parasitoid, Urosigalphus venezuelaensis, Cholonzyia acromion, Eugenia stipitata, arazá, Myrciaria dubia, camu-camu, Myrta- ceae. Résumé. - Deux nouvelles espèces de Conotracltelus (Coleoptera : Curculio- nidae : Molytinae) nuisibles à l’agriculture en Amérique du Sud. - Deux nouvelles espèces de Conotrachelus du Pérou sont décrites. Les habitus et les genitalia des mâles des deux espèces sont figurés. Des notes sur leur biologie et des informations sur la bionomie de leurs plantes-hôtes cultivées (arazá, Eugenia stipitata et camu-camu, Myrciaria dubia) sont données. Conotrachelas deletaiigi Hustache est considéré comme synonyme plus récent de Conotrachelus umbrinus Fiedler (syn. nov.). Abstract. - Two new species of Conotrachelus from Peru are described. Illus- trations of their habitus and of pertinent parts of their genitalia are provided. Notes on their biologies and bionomic information regarding their agricultural host plants (arazá, Eugenia stipitata and camu-camu, Myrciaria dubia) are inclu- ded. Corzotraclzelus deletangi Hustache is treated as a junior synonym of Cono- trachelus unibriiius Fiedler (syn. nov.). Conotmclzelus Dejean is one of the largest genera in the world with more than 1,100 species considered to be valid.
    [Show full text]
  • Spontaneous Poisoning by Talisia Esculenta in Cattle1 Jaianne K.A
    Pesq. Vet. Bras. 39(12):949-953, December 2019 DOI: 10.1590/1678-5150-PVB-6362 Original Article Livestock Diseases ISSN 0100-736X (Print) ISSN 1678-5150 (Online) PVB-6362 LD Spontaneous poisoning by Talisia esculenta in cattle1 Jaianne K.A. Melo2, Gliére S.L. Soares2, Taciana R.R. Ramos3, Valdir M. Almeida4, Ana L.O. Nascimento5, Givaldo B. Silva Filho5, Hisadora A.S. Chaves5 and Fábio S. Mendonça5* ABSTRACT.- Melo J.K.A., Soares G.S.L., Ramos T.R.R., Almeida V.M., Nascimento A.L.O., Silva Filho G.B., Chaves H.A.S. & Mendonça F.S. 2019. Spontaneous poisoning by Talisia esculenta in cattle. Pesquisa Veterinária Brasileira 39(12):949-953. Laboratório de Diagnóstico Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE 52171-900, Brazil. E-mail: [email protected] Talisia esculenta, commonly known as pitombeira, is a tree which fruits are widely consumed by human beings in northeastern Brazil. The aim of this work is to describe the epidemiological, clinical and pathological aspects of two outbreaks of spontaneous poisoning by T. esculenta in cattle in the dry region of Pernambuco, northeastern Brazil. The cases occurred in the municipalities of São Bento do Una and Belo Jardim. From a total of 25 adult cattle, eight become sick after ingest T. esculenta leaves and fruits. Four cattle died until 72 hours after the spasms in the limbs, rigidity of the pelvic limbs with wide base stance position, ruminal atony firstand, clinicalwhen stressed, signs; which presented consisted falls in ataxia,and remained reluctance in toabnormal walk, tottering, positions.
    [Show full text]
  • Inselbergs As a Source of Β Diversity in a Vegetation Matrix in Coqueiral, Minas Gerais, Brazil
    Ciência Florestal, Santa Maria, v. 25, n. 4, p. 947-958, out.-dez., 2015 947 ISSN 0103-9954 INSELBERGS AS A SOURCE OF β DIVERSITY IN A VEGETATION MATRIX IN COQUEIRAL, MINAS GERAIS, BRAZIL INSELBERG COMO FONTE DE DIVERSIDADE β EM UMA MATRIZ VEGETACIONAL, NO MUNICÍPIO DE COQUEIRAL - MG Gisele Cristina de Oliveira Menino1 Rubens Manoel dos Santos2 Daniel Salgado Pifano3 Rosângela Alves Tristão Borém4 Carlos Alberto Melo de Almeida5 Daniel Quedes Domingos6 Aline Martins Moreira7 ABSTRACT This study aimed to answer the following question: Does habitat heterogeneity affect the tree community? To answer that question, we evaluated the influence of the species composition and structure of the tree community of inselbergs on the tree community of the matrix where the inselberg is located. The correlations between environmental and vegetation gradients were analyzed by canonical correspondence analysis of a species composition matrix constructed from abundance data of 40 plots sampled in two areas, one composed of seasonal semideciduous forest (SSF) and another with riparian forests, a vegetation corridor, and inselbergs. A similarity dendrogram of the four areas was calculated using the Dice-Sorensen index and UPGMA linkage method. The species indicator analysis was used to evaluate which species were characteristic of each area sampled. The eigenvalues of the first two axes were high indicating high species turnover. The correlations between environmental variables and plots indicated the formation of three groups: the first one formed by the SSF patch plots with high clay content; the second group formed by the vegetation corridor and inselberg plots, which did not separate as sharply as the first group, with a small separation in organic matter content; and the third group, formed by the riparian forest plots, which are located in areas of highest soil fertility, with high content of calcium, sum of bases and base saturation.
    [Show full text]