Laser Argon Dating of Melt Breccias from the Siljan Impact Structure, Sweden: Implications for a Possible Relationship to Late Devonian Extinction Events

Total Page:16

File Type:pdf, Size:1020Kb

Laser Argon Dating of Melt Breccias from the Siljan Impact Structure, Sweden: Implications for a Possible Relationship to Late Devonian Extinction Events Meteoritics & Planetary Science 40, Nr 4, 591–607 (2005) Abstract available online at http://meteoritics.org Laser argon dating of melt breccias from the Siljan impact structure, Sweden: Implications for a possible relationship to Late Devonian extinction events Wolf U. REIMOLD1*, Simon P. KELLEY2, Sarah C. SHERLOCK2, Herbert HENKEL3, and Christian KOEBERL4 1Impact Cratering Research Group, School of Geosciences, University of the Witwatersrand, Private Bag 3, P. O. Wits 2050, Johannesburg, South Africa 2Department of Earth Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK 3Department of Land and Water Resources Engineering, Division of Engineering Geology and Geophysics, Royal Institute of Technology, Teknikringen 72, SE 100-44 Stockholm, Sweden 4Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria *Corresponding author. E-mail: [email protected] (Received 12 July 2004; revision accepted 08 February 2005) Abstract–In earlier studies, the 65–75 km diameter Siljan impact structure in Sweden has been linked to the Late Devonian mass extinction event. The Siljan impact event has previously been dated by K- Ar and Ar-Ar chronology at 342–368 Ma, with the commonly quoted age being 362.7 ± 2.2 Ma (2 σ, recalculated using currently accepted decay constants). Until recently, the accepted age for the Frasnian/Famennian boundary and associated extinction event was 364 Ma, which is within error limits of this earlier Siljan age. Here we report new Ar-Ar ages extracted by laser spot and laser step heating techniques for several melt breccia samples from Siljan (interpreted to be impact melt breccia). The analytical results show some scatter, which is greater in samples with more extensive alteration; these samples generally yield younger ages. The two samples with the least alteration yield the most reproducible weighted mean ages: one yielded a laser spot age of 377.2 ± 2.5 Ma (95% confidence limits) and the other yielded both a laser spot age of 376.1 ± 2.8 Ma (95% confidence limits) and a laser stepped heating plateau age over 70.6% 39Ar release of 377.5 ± 2.4 Ma (2 σ). Our conservative estimate for the age of Siljan is 377 ± 2 Ma (95% confidence limits), which is significantly different from both the previously accepted age for the Frasnian/Famennian (F/F) boundary and the previously quoted age of Siljan. However, the age of the F/F boundary has recently been revised to 374.5 ± 2.6 Ma by the International Commission for Stratigraphy, which is, within error, the same as our new age. However, the currently available age data are not proof that there was a connection between the Siljan impact event and the F/F boundary extinction. This new result highlights the dual problems of dating meteorite impacts where fine-grained melt rocks are often all that can be isotopically dated, and constraining the absolute age of biostratigraphic boundaries, which can only be constrained by age extrapolation. Further work is required to develop and improve the terrestrial impact age record and test whether or not the terrestrial impact flux increased significantly at certain times, perhaps resulting in major extinction events in Earth’s biostratigraphic record. INTRODUCTION known impact structure in Europe. Its diameter was originally estimated at 52 km (Grieve 1988), but Von Dalwigk and The Siljan impact structure (Fredriksson and Wickman Kenkmann (1999) and Kenkmann and Von Dalwigk (2000) 1963; Wickman et al. 1963; Svensson 1971, 1973; Rondot made a case for a larger diameter of at least 65 km on the basis 1975; BodÈn and Eriksson 1988; Juhlin and Pedersen 1987; of structural geological considerations and by applying the Kenkmann and von Dalwigk 2000; Henkel and Aaro 2005) is empirical morphometric scaling laws provided by Therriault located in the Dalarna region of south-central Sweden, et al. (1997). In contrast, Henkel and Aaro (2005) observe a centered at 61°02′N/14°52′E (Fig. 1). Siljan is the largest 75 km wide current topographic expression and estimate that 591 © The Meteoritical Society, 2005. Printed in USA. 592 W. U. Reimold et al. Fig. 1. The geology of the Siljan impact structure. The inset shows the location of Siljan in Scandinavia. the pre-erosional crater diameter could have been as much as Consequently, very little material that could be used to obtain 85 km. a reliable age for this impact structure has been produced. The evidence for impact at Siljan includes the presence Only “allochthonous breccia, small and narrow breccia dikes, of shatter cones and planar deformation features (PDFs) in and float of melt breccia” were reported by Rondot (1975). quartz. Exposure is poor in much of the Siljan structure, and Svensson (1971, 1973) suggested a post-Silurian age for the bona fide impact melt rock has, to date, remained elusive. impact event. Laser Ar dating of melt breccias from Siljan 593 In the 1980s, Siljan experienced an “impact exploration intriguing part of the Late Devonian, during which several boom” in the wake of Gold’s proposal (reviewed in Gold and important events occurred (geological time scale of Harland Soter 1980; Gold 1987, 1988) that the structure could provide et al. 1989). In this scheme, the Devonian was placed between access to significant mantle-derived hydrocarbon resources 417 and 354 Ma, with the Givetian stage between 380 and that might have infiltrated into the impact-deformed basement 370 Ma, the Frasnian from 370–364 Ma, and the Famennian of the structure. Accordingly, Siljan was extensively and from 364 to 354 Ma. It should also be noted that Ellwood deeply drilled (BodÈn and Eriksson 1988), but no economic et al. (2003) suggested the presence of evidence for impact at potential could be established. Some impact-related the Eifelian/Givetian stage boundary of the mid-Devonian, a hydrothermal Pb-Zn mineralization does, however, occur, and suggestion that has remained controversial (Racki and has been mined locally (e.g., Reimold et al. 2005 and Koeberl 2004). As reviewed by Sandberg et al. (2002), the references therein; Hode et al. 2002). Late Frasnian mass extinction occured just prior to 364 Ma Bottomley et al. (1978) referred to an outcrop with a (within 20,000 years), representing a major extinction event “small dikelet [of melt breccia] at shatter cone locality 3 of that decimated most groups of marine organisms. This event Svensson (1973).” Two samples from this site were described has been associated with alleged impact evidence, including a as containing 30–25% inclusions, predominantly quartz that weak iridium enrichment found at the Frasnian/Famennian occasionally shows shock deformation, but also with clasts of boundary in southern China (Wang et al. 1991) and in a cross- feldspar and brecciated granite with incipient recrystallization boundary section in the state of New York (Over et al. 1997). and rare inclusions of sandstone. Melt matrix was In addition, the presence of so-called “microtektite-like glass” microcrystalline and granular. Interstitial devitrified glass did at a locality in Belgium was reported by Claeys and Casier also occur. One sample yielded a humped spectrum with a (1994) and discussed by Sandberg et al. (1988). The Siljan maximum age of 380 Ma but no plateau. The second yielded impact structure was proposed by Claeys and Casier as the a similar pattern but with a three-step plateau comprising 92% possible source for these Belgian microtektites. Furthermore, of release, but only because the analytical error on the middle the Amˆnau catastrophic event of central Germany has also step was 4.5% (around 10 times the two adjacent plateau been tentatively linked with impact (Sandberg et al. 2000, steps). Re-analysis of the Bottomley et al. (1978) data using 2002), although no bona fide impact evidence has been ISOPLOT (Ludwig 1999) yields an age of 358.3 ± 4.8 Ma reported for this event. The Amˆnau event was placed at the (2 σ). In addition, the final age quoted by Bottomley et al. Givetian/Frasnian boundary at 370 Ma. The (1978) was quoted at the 1 σ level and was not the plateau age biochronologically dated Alamo impact breccia of southern but an integrated total fusion age, in effect a K-Ar age. It is Nevada (e.g., Warme et al. 2002) occurred in the early well documented that fine-grained whole rock samples Frasnian punctata zone at about 367 Ma (Sandberg and showing younger ages in the highest temperature release Warme 1993; Sandberg and Morrow 1998; Sandberg et al. result from 39Ar recoil (McDougall and Harrison 1999) and 2002). The latter authors proposed links between this Alamo are more likely obtained from altered samples. Ar-Ar impact breccia and the Siljan and Flynn Creek impact analyses presented below demonstrate that the hydrothermal structures and suggested that these events could have resulted alteration around Siljan has led to alteration of many melt from a comet shower. Such a link is, however, highly unlikely, samples and it is likely that the age of 362.7 ± 2.2 Ma as the geometry of the distribution of the Alamo breccia rather significantly underestimates the true age of the impact at indicates a nearby source crater in Nevada. A further mass Siljan. In fact, a later publication by Bottomley et al. (1990) extinction close to the Devonian/Carboniferous boundary was quotes an age of 368 ± 1.1 Ma, apparently from the same placed at 357 Ma. dataset, although no explanation was given for the difference. Recently, the International Commission on Stratigraphy A K-Ar age of 349 Ma for “shock melt” from another (ICS) proposed a revised geological time scale (Gradstein locality was cited by Åberg and Bollmark (1985); Juhlin et al. et al. 2004; Ogg 2004; Gradstein and Ogg 2004), resulting in a (1991) cite a 40Ar–39Ar date for a “granitic pseudotachylite” shift of the ages for the Givetian, Frasnian, and Famennian of 359 ± 4 Ma, as well as two K-Ar ages for “doleritic stages of the Devonian period from 370–380 to 385.3–392, pseudotachylite” of 342 ± 3 Ma and 349 ± 2 Ma (whereby it 364–370 to 374.5–385.3, and 359.2–374.5 Ma (errors at 2.5– is assumed that these breccias would have been formed by the 2.7 Ma), respectively.
Recommended publications
  • EMD Shale Gas and Liquids Committee Annual Report, FY 2014
    EMD Shale Gas and Liquids Committee Annual Report, FY 2014 Neil S. Fishman, Chair March 30, 2014 Vice Chairs: Brian Cardott, (Vice Chair, Government), Oklahoma Geological Survey, Norman, OK Harris Cander (Vice Chair, Industry), BP, Houston, TX Sven Egenhoff, (Vice Chair, University), Colorado State University, Fort Collins, CO Advisory Committee (in alphabetical order): Kent Bowker, Bowker Petroleum, The Woodlands, TX Ken Chew, IHS (retired), Perthsire, Scotland Thomas Chidsey, Utah Geological Survey, Salt Lake City, UT Russell Dubiel, U.S. Geological Survey, Denver, CO Catherine Enomoto, U.S. Geological Survey, Reston, VA William Harrison, Western Michigan University, Kalamazoo, MI Ursula Hammes, Bureau of Economic Geology, Austin, TX Shu Jiang, University of Utah, Salt Lake City, UT Margaret Keller, U.S. Geological Survey, Menlo Park, CA Julie LeFever, North Dakota Geological Survey, Grand Forks, ND Peng Li, Arkansas Geological Survey, Little Rock, AR Jock McCracken, Egret Consulting, Calgary, AB Stephen Nordeng, North Dakota Geological Survey, Grand Forks, ND Rich Nyahay, New York Museum, Albany, NY Stephen Sonnenberg, Colorado School of Mines, Golden, CO Michael D. Vanden Berg, Utah Geological Survey, Salt Lake City, UT Rachel Walker, Countrymark Energy Resources, LLC, Indianapolis, IN INTRODUCTION It is a pleasure to present this Annual Report from the EMD Shale Gas and Liquids Committee. This report contains information about specific shales across the U.S., Canada, Europe, China, as well as SE Asia from which hydrocarbons are currently being produced or shales that are of interest for hydrocarbon exploitation. The inclusion in this report of shales from which any hydrocarbon is produced reflects the expanded mission of the EMD Shale Gas and Liquids Committee to serve as a single point of access to technical information on shales regardless of the hydrocarbons produced from them (e.g., gas, oil, condensate).
    [Show full text]
  • Lunar and Planetary Science XXIX 1379.Pdf
    Lunar and Planetary Science XXIX 1379.pdf TEAGUE RING IMPACT STRUCTURE, WESTERN AUSTRALIA: GRAVITY SURVEY. J. B. Plescia, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91109 ([email protected]) As part of an effort to better define the nature and the A reconnaissance gravity survey conducted in crustal structure of Teague Ring, a GPS controlled grav- 1986 (2) defined a significant negative anomaly over ity survey was undertaken in the austral winter of 1996. Teague Ring. To better define the structure a more de- The objective was to define the gravity field, identify any tailed survey was conducted in August 1996.. Gravity anomalies, and interpret that anomaly in terms of crustal station positions were established by a GPS survey; structure. positional information was collected for 10 minutes (600 Teague Ring is an impact structure in Western readings) and differentially corrected. The typical stan- Australia (25° 50’ S; 120° 55’ E). It has a diameter of 31 dard deviation of the station locations were 0.2 m hori- km and an age of ~1630 Ma. Teague Ring was first rec- zontal N, 0.2 m horizontal E, 0.6 m vertical with a vertical ognized by Butler (1) and various models of origin have PDOP mean of 3.3. The datum for reduction of the GPS been proposed. The most recent detailed work was un- data was AGD 1966. Gravity values were measured using dertaken by Eugene and Carolyn Shoemaker, but it has a Lacoste Romberg gravity meter (#G-1035). Approxi- been published only in limited form (2).
    [Show full text]
  • The Siljan Ring in Central Sweden - a Window Into the Palaeozoic History of Baltoscandia
    Geophysical Research Abstracts Vol. 14, EGU2012-11247-1, 2012 EGU General Assembly 2012 © Author(s) 2012 The Siljan Ring in central Sweden - a window into the Palaeozoic history of Baltoscandia O. Lehnert (1), G. Meinhold (2), S.M. Bergström (3), M. Calner (4), J.O.R. Ebbestad (5), S. Egenhoff (6), Å.M. Frisk (7), A.E.S. Högström (8), and J. Maletz (9) (1) GeoZentrum Nordbayern, Lithosphere Dynamics, University of Erlangen-Nürnberg, Schloßgarten 5, D-91054, Erlangen, Germany ([email protected]), (2) Sedimentology & Environmental Geology, Geoscience Centre, University of Göttingen, Goldschmidtstrasse 3, D-37077 Göttingen, Germany ([email protected]), (3) School of Earth Sciences, Division of Earth History, The Ohio State University, 125 S. Oval Mall, Columbus, Ohio 443210, USA ([email protected]), (4) Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden ([email protected]), (5) Museum of Evolution, Uppsala University, Norbyvägen 16, SE - 752 36 Uppsala, Sweden ([email protected]), (6) Department of Geosciences, Colorado State University, 322 Natural Resources Building, Fort Collins, CO 80523-1482, USA ([email protected]), (7) Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland ([email protected]), (8) Tromsö University Museum, Natural Sciences, N-9037 Tromsö, Norway ([email protected]), (9) Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteser Str. 74-100, Haus B, Raum 322, D-12249 Berlin, Germany ([email protected]) The Siljan meteorite crater, the largest known impact crater in Europe, is a main target of the research project ‘Concentric Impact Structures in the Palaeozoic (CISP)’, an integral of the Swedish Deep Drilling Program (SDDP).
    [Show full text]
  • SILJAN AIR PARK PPL/IR EUROPE Siljan Air Park by Russell Myles N the Forests of Central Sweden Next to Lake Siljan Is the Small Airfield of Siljansnäs (ESVS)
    PPL/IR EUROPE SILJAN AIR PARK PPL/IR EUROPE Siljan Air Park by Russell Myles n the forests of central Sweden next to Lake Siljan is the small airfield of Siljansnäs (ESVS). It is not very big, with just 850m of hard runway and a parallel 850m of grass, is daylight only and just has an air-to-ground frequency; no radar, approaches or ATC. It is however a great place to visit and if the weather means you need to exercise the privileges of your IR to get there then the nearby airfields at Mora and Borlänge both have ILS. ISiljansnäs is a lovely place to visit and has become a preferred jet all over the world lives about 30 miles north of Charlotte in North destination for pilots touring central Sweden. It has one distinctive Carolina. Danny’s airpark house is his home and his chipmunk is feature which sets it apart from almost all the other Swedish for fun. Here in Europe it seems that airpark homes are more likely airfields. It is not the flying club, although that offers gliding and to be second homes, used for holidays and the weekends. The Pilot powered flying, a regular social calendar and a fantastic fly in article’s author found the Vendée Air Park to be very quiet, with and airshow in early August. It is not the flying club sauna (every only a few people in residence at the time of visiting. We found the flying club should have a sauna!), the guest cabins or same when we took time to visit Siljansnäs in late May.
    [Show full text]
  • AB Igrene Corporate Presentation the Company - Introduction
    AB Igrene Corporate presentation The company - introduction • AB Igrene is prospecting for gas and oil in the Siljan Meteoritc Impact Ring. • The company is quoted on Swedish multilateral trading facility, Aktietorget, and been operating since year 2002 • Igrene has made oil & gas discoveries in several locations in the Siljan Ring and secure exploration concessions covering a large part of the area • Origin and size is currently analyzed by the Igrene team of international scientists and experts • In parallel to exploration Igrene production testing identified hydrocarbon wells and evaluating best methods in order to commercialize the proven resources Background – the Siljan Ring • The Siljan Ring is the largest known impact crater in Europe. It was caused by a major meteorite impact 377 millions years ago. • The powerful impact and subsequent explosion caused major deep faults reaching depths of 15- 20km within a diameter of 100km around the impact area. • The returning pressure from within the earth led the magma to rise up into the centre of the impact crater. • The local population has since long back observed gas wells and oil. Oil was produced in the Rättvik area for industrial use in the 19th century • Intense research is spent in order to understand the theory and mechanisms behind the presence of hydrocarbons The impact crater of the Siljan Ring in Sweden Exploration concessions of AB Igrene (publ) The total area of exploration concessions is 21 651 hektar. History – key milestones • 2002 - Mats Budh, Sören Hedberg and Paul Storm starts active • 2014 – The company goes public, AB Igrene (publ), and becomes prospecting for and research on the potential for geothermal quoted at Aktietorget.
    [Show full text]
  • Siljan Ring Findings Remain Unchanged Since 1984
    Siljan Crater Findings Reported to Vattenfall in 1984 Remain Unchanged Richard R. Donofrio, EDGe Research Associate, August 2005 The Siljan Ring (Siljan impact structure) is Europe’s largest meteorite-impact crater, having a diameter of ~50-km. In 1984 Vattenfall (Swedish State Power Board) convened an independent team of geoscientists to evaluate this crater for commercial abiogenic gas production. The findings of the independent group were printed by Vattenfall and circulated primarily as an internal report. This 63-page document, pictured above, has been shown on European TV but is rarely found in the literature or online. For example, the comprehensive Earth Impact Database lists over 70 references for Siljan, but no mention of the above. This report was the only independent team evaluation of Siljan prior to drilling. The findings in the unheeded report discouraged commercial exploration. Today, after renewed interest in abiogenic hydrocarbons, dozens of Siljan publications, two deep wells (one reached ~6,800 m [22,300 ft]), expenditures of tens of millions of dollars, a multitude of displeased investors, and over 20 years of controversy, the independent team findings remain valid and are presented here without restraint. 1 The Independent Group The independent / expert group selected by Vattenfall to evaluate the Siljan crater for exploratory drilling of commercial abiogenic hydrocarbons consisted of 5 geoscientists; 3 from the United States and 2 from Sweden: Richard R. Donofrio - Astro Geological Resources, USA – petroleum geology Kenneth H. Olsen - Los Alamos National Laboratory, USA – geophysics Fred W. Vlierboom - Occidental, USA – petroleum geochemistry Fred Witschard - Studsvik Analytica, Sweden – regional geology Goran Petersson - Studsvik Analytica, Sweden – regional geology We were at the Siljan crater in June of 1984 and in Stockholm on several occasions in the fall of the same year.
    [Show full text]
  • Jeomorfolojik Araştırmalar Dergisi / Journal of Geomorphological Researches, 2020 (5): 15-21
    Jeomorfolojik Araştırmalar Dergisi / Journal of Geomorphological Researches, 2020 (5): 15-21 Jeomorfolojik Araştırmalar Dergisi Journal of Geomorphological Researches © Jeomorfoloji Derneği www.dergipark.gov.tr/jader E - ISSN: 2667 - 4238 Derleme / Review TÜRKİYE’DE JEOMORFOLOJİK AÇIDAN DOĞRU BİLİNEN YANLIŞLAR (1): METEOR ÇUKURU From Geomorphological Perspective, Mistakes Known as Correct in Turkey (1): Meteor Pit Hakan YİĞİTBAŞIOĞLU Ankara Üniversitesi, Dil ve Tarih - Coğrafya Fakültesi, Coğrafya Bölümü, Sıhhiye - Ankara [email protected] https://orcid.org/0000-0003-0661-070X Makale Tarihçesi ÖZET Geliş 8 Nisan 2020 Düzenleme 18 Temmuz 2020 Günümüzde gelişen teknolojik gelişmeler sayesinde iletişim sadece ulusal bağlamda değil Kabul 29 Temmuz 2020 küresel olarak da çok hızlanmış, çeşitleri artmış ve erişimi kolay hale gelmiştir. Bu çeşitlilik bilimsel alanlarda da kendisini göstermiş ve makaleler, kitaplar veya bazı bilgilere ulaşmak Article History kolaylaşmıştır. Bu gelişimde en önemli etkenlerden biri internet kullanımının yaygınlaşması Received April 8, 2020 Received in revised form July 18, 2020 ve erişim olanaklarının artmasıdır. Bu durum toplumsal bilgi seviyesinin artmasında önemli Accepted July 29, 2020 bir rol oynayabilir. Bununla beraber, internet ortamında herhangi bir bilimsel denetim söz konusu olmadığı için bilgi kirliliği gibi çok ciddi bir soruna yol açması riski de bulunmaktadır. Anahtar Kelimeler Bu yazının amacı, Türkiye’de özellikle internet ortamında karşılaşılan hatalı jeomorfolojik Meteor Çukuru, Meteor, Krater, tanımlamaları ortaya koymak ve bu hataların nereden kaynaklandığı ve nasıl önlenebileceğini Doğubayazıt, çöküntü tartışmaktır. Ne yazık ki, jeomorfolojik olarak hatalı tanımlamalara sadece internet ortamında Keywords değil basın organlarında ve bazen bilimsel yayınlarda da rastlanmaktadır. Bir dizi olarak Meteor Çukuru, Meteor, Krater, olarak yayınlanması düşünülen bu serinin ilki Ağrı’daki Meteor Çukuru’na ayrılmıştır.
    [Show full text]
  • Sweden's Upland Birds
    Sweden's Upland Birds Naturetrek Tour Report 3 - 10 June 2016 Red-necked Phalarope on Flatruet high plateau Eurasian Pygmy Ow l Eurasian Dotterel Four Spotted Chaser Report and images by John Willsher Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Sweden's Upland Birds Tour participants: Daniel Green & John Willsher (leaders) with nine Naturetrek clients Summary This trip to central Sweden began with a mid-afternoon arrival at Vasteras in sunshine and 27°C. We were soon out of this small airport and almost immediately in the Black River Valley where we searched the forests and red- barn-dotted farmlands for Owls and Woodpeckers. No time was wasted, and an after dinner foray on our first evening produced Pygmy and Ural Owls, Black and Great Spotted Woodpeckers all accompanied by the sound of Thrush Nightingale, roding Woodcock and Cuckoo. This set the trend, with the good weather continuing as we spent a further day in the valley watching Cranes with young, Whooper Swans on nests, White-tailed Eagles, and finally watching Ural Owl chicks being ringed before we finally headed northwards. Next day in Fulufjallet National Park, a walk through the boreal forest brought us to the highest waterfall in Sweden and a nesting Gyrfalcon. In the north, we saw lekking Great Snipe and on the Flatruet Plateau we watched nesting Dotterel, Golden Plovers, singing Lapland Buntings, confiding Red-necked Phalaropes and a distant Golden Eagle plus, of course, numerous Reindeer.
    [Show full text]
  • Terrestrial Impact Structures- a Bibliography 1965-68
    Terrestrial Impact Structures- A Bibliography 1965-68 By JACQUELYN H. FREEBERG GEOLOGICAL SURVEY BULLETIN 1320 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 74-650225 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 30 cents paper cover CONTENTS Page Abstract--------------------------------------------------------- 1 Introduction______________________________________________________ 1 Seria~----------------------------------------------------------- 2 Bibliography______________________________________________________ 3· Distribution and general characteristics of impact structures_________ 3: Impact sites___________________________________________________ 12: Agnak Island Oraters _ _ __ _ __ _ __ __ _ __ __ _ _ _ __ __ _ _ __ _ _ _ __ _ _ _ __ 1Z Aouelloul Crater___________________________________________ 12 Arn Valley Craters________________________________________ 12 Barringer Crater__________________________________________ 12 Bass Strait_______________________________________________ 13 Boxhole Crater____________________________________________ 14 Brent Crater______________________________________________ 14 Butare Crater_______________________________________ ------ 14 Campo del Cielo Craters----------------------------------- 14 Carswell Lake structure _________________________ . _ _ _ __ _ _ __ _ 15 Chassenon
    [Show full text]
  • Laser Argon Dating of Melt Breccias from the Siljan Impact Structure, Sweden: Implications for a Possible Relationship to Late Devonian Extinction Events
    Meteoritics & Planetary Science 40, Nr 4, 591–607 (2005) Abstract available online at http://meteoritics.org Laser argon dating of melt breccias from the Siljan impact structure, Sweden: Implications for a possible relationship to Late Devonian extinction events Wolf U. REIMOLD1*, Simon P. KELLEY2, Sarah C. SHERLOCK2, Herbert HENKEL3, and Christian KOEBERL4 1Impact Cratering Research Group, School of Geosciences, University of the Witwatersrand, Private Bag 3, P. O. Wits 2050, Johannesburg, South Africa 2Department of Earth Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK 3Department of Land and Water Resources Engineering, Division of Engineering Geology and Geophysics, Royal Institute of Technology, Teknikringen 72, SE 100-44 Stockholm, Sweden 4Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria *Corresponding author. E-mail: [email protected] (Received 12 July 2004; revision accepted 08 February 2005) Abstract–In earlier studies, the 65–75 km diameter Siljan impact structure in Sweden has been linked to the Late Devonian mass extinction event. The Siljan impact event has previously been dated by K- Ar and Ar-Ar chronology at 342–368 Ma, with the commonly quoted age being 362.7 ± 2.2 Ma (2 σ, recalculated using currently accepted decay constants). Until recently, the accepted age for the Frasnian/Famennian boundary and associated extinction event was 364 Ma, which is within error limits of this earlier Siljan age. Here we report new Ar-Ar ages extracted by laser spot and laser step heating techniques for several melt breccia samples from Siljan (interpreted to be impact melt breccia). The analytical results show some scatter, which is greater in samples with more extensive alteration; these samples generally yield younger ages.
    [Show full text]
  • Rapakivi-Granite on Åland (Finland)
    Rapakivi-granite on Åland (Finland) Version 1 Erich Spicar Lorensbergavägen 2B S-771 42 LUDVIKA [email protected] Abstract On the sea-floor around Åland there exist a white Jotnian sandstone; it existed previously on the geographical site of the Åland archipelago, too. The age of the sandstone is probably 1200 million years. By influence of intense heat, created by a thermal leak from the mantle or the core like in Hawaii or by the fall of a large meteorite or asteroid at that site, the existing Jotnian sand or Jotnian sandstone can have been melted and during cooling transformed into Ålands rapakivi granite. At Åland we have no evidence for a thermal leak. Therefore there the only feasible way is the impact of an asteroid. In fact it has been proven, that the large lake Lumparn inside Åland is an astrobleme. A crater of 9 km diameter is visible, with only 20 m depth and a layer of Ordovician sediments with fossils from that time exists in that lake. To day we do not know anything about the sea level at that time. At sites with a rough rapakivi (in the north of the archipelago), Fig. 3. and 4., many rings with a diameter between 0,5 to 2 cm are seen, which do not origin from the exsolution of plagioclase, typical for rapakivi granite. They are like pieces from the stem of sea-lilies (crinoidéa). If this could be proven it would give the approximate instant, when the asteroide fell on Åland. Introduction Åland is an Archipelago between Sweden and Finland in the Baltic Sea, consisting of may islands and a main island, which itself is intruded by many fjords (with contact with the sea) and previous fjords, now cut off the sea and filled with fresh water.
    [Show full text]
  • Evaluating the Influence of Meteorite Impact Events on Global Potassium Feldspar Availability to the Atmosphere Since 600 Ma
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 23, 2021 Accepted Manuscript Journal of the Geological Society Evaluating the influence of meteorite impact events on global potassium feldspar availability to the atmosphere since 600 Ma. Beverley Claire Coldwell & Matthew Pankhurst DOI: https://doi.org/10.1144/jgs2018-084 Received 24 April 2018 Revised 2 October 2018 Accepted 3 October 2018 © 2018 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 License (http://creativecommons.org/licenses/by/3.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Supplementary material at https://doi.org/10.6084/m9.figshare.c.4253312 To cite this article, please follow the guidance at http://www.geolsoc.org.uk/onlinefirst#cit_journal Manuscript version: Accepted Manuscript This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record once published for full citation and copyright details, as permissions may be required. Downloaded from http://jgs.lyellcollection.org/ by guest on September 23, 2021 Title: Evaluating the influence of meteorite impact events on global potassium feldspar availability to the atmosphere since 600 Ma.
    [Show full text]