atmosphere Article Nonlinear Effects on the Precessional Instability in Magnetized Turbulence Abdelaziz Salhi 1,2, Amor Khlifi 1 and Claude Cambon 2,* 1 Département de Physique, Faculté des sciences de Tunis, Tunis 1060, Tunisia;
[email protected] (A.S.);
[email protected] (A.K.) 2 Laboratoire de Mécanique des Fluides et d’Acoustique, Université de Lyon, UMR 5509, Ecole Centrale de Lyon, CNRS, UCBL, CEDEX, INSA F-69134 Ecully, France * Correspondence:
[email protected] Received: 14 November 2019; Accepted: 13 December 2019; Published: 22 December 2019 Abstract: By means of direct numerical simulations (DNS), we study the impact of an imposed uniform magnetic field on precessing magnetohydrodynamic homogeneous turbulence with a unit magnetic Prandtl number. The base flow which can trigger the precessional instability consists of the superposition of a solid-body rotation around the vertical (x3) axis (with rate W) and a plane shear (with rate S = 2#W) viewed in a frame rotating (with rate Wp = #W) about an axis normal to the plane of shear and to the solid-body rotation axis and under an imposed magnetic field that aligns with the solid-body rotation axis (B k W). While rotation rate and Poincaré number are fixed, W = 20 and # = 0.17, the B intensity was varied, B = 0.1, 0.5, and 2.5, so that the Elsasser number is about L = 0.1, 2.5 and 62.5, respectively. At the final computational dimensionless time, St = 2#Wt = 67, the Rossby number Ro is about 0.1 characterizing rapidly rotating flow. It is shown that the total (kinetic + magnetic) energy (E), production rate (P) due the basic flow and dissipation rate (D) occur in two main phases associated with different flow topologies: (i) an exponential growth and (ii) nonlinear saturation during which these global quantities remain almost time independent with P ∼ D.