Calcium and Phosphate Compatibility: Revisited Again

Total Page:16

File Type:pdf, Size:1020Kb

Calcium and Phosphate Compatibility: Revisited Again COMMENTARY Calcium and phosphates COMMENTARY • The influence of other drugs and Calcium and phosphate compatibility: nutrients.4-8,10-18 Revisited again The application of knowledge about calcium and phosphate com- DAVI D W. NE W TO N A nd DAVI D F. DRISCOLL patibility in i.v. therapy has been fa- 3-6 Am J Health-Syst Pharm. 2008; 65:73-80 cilitated by four hallmark articles, several editions of the Handbook on he subject of the compatibility • The clinically relevant dissocia- Injectable Drugs17 since 1983, and between calcium and phosphates tion equilibria for which the pKa2 of Trissel’s Calcium and Phosphate Com- was revisited in an April 1994 phosphoric acid is 7.2 (i.e., the pH patibility in Parenteral Nutrition.18 T 1,2 FDA safety alert, 6–16 years after at which the concentrations or, ther- Despite the availability of these the four seminal research articles modynamically, the ionic activities of literature sources, calcium and phos- 3 4 5 2– – appeared in 1978, 1980, 1982, HPO4 and H2PO4 are equal) (Table phate compatibility continues to be a and 1988.6 In the 1980s there were 1): clinical enigma. two case reports of nonfatal adverse Physicochemical factors. Calcium – – 2– events involving calcium phosphate OH + H2PO4 ↔ HPO4 + H2O; shifts and phosphate solubility chemistry. precipitation in total parenteral nu- to right when pH increases (1) The aqueous chemistry and solubil- 7,8 – 2– + trient (TPN) admixtures. A review H2O + H2PO4 ↔ HPO4 + H3O ; ity of the two phosphate anions and of the main determinants of paren- shifts to left when pH decreases (2) their calcium salts that are important teral drug and admixture compat- to the safety of i.v. therapy are sum- ibility and stability also appeared • T h e Henderson–Hasselbach marized in Table 1. The main facts during that decade.9 Soon after equations9,19: are as follows: The lower the solution the April 1994 safety alert, several pH is below 7.2, which is the critical pH = pK + log ([A–]/[HA]); percent publications on calcium phosphate a pKa2 of phosphoric acid in practice, precipitation in TPN formulations ionized, A–, = 100/(1 + antilog the greater is the majority percentage 10-18 [pK – pH]) = 100{[A–]/([A–] + – appeared. Thus, this article is a of the desired H2PO4 anion (dihy- yet another revisit of calcium and [HA])} (3) drogen or monobasic phosphate). pH = pK + log ([HPO 2– ]/[H PO –]); – phosphate compatibility with i.v. a 4 2 4 H2PO4 , with two dissociable pro- percent HPO 2– = 100/(1 + anti- 2– formulations. 4 tons, is an acid relative to HPO4 , log [pK – pH]) = 100{[HPO 2–]/ 2– This article discusses the chem- a 4 and HPO4 (i.e., monohydrogen 2– – istry and practical compatibility ([HPO4 ] + [H2PO4 ])} (4) or dibasic phosphate) is a base or – or solubility factors relevant to the weaker acid relative to H2PO4 . • The compatibility curves for calcium safe administration of combination Ca[H2PO4]2 (calcium dihydrogen gluconate versus phosphate concen- therapy with calcium gluconate and phosphate) is 60 times more soluble 4,5,17,18 trations in clinical mixtures. potassium or sodium phosphate in- than CaHPO4 (calcium monohydro- jections. Patient case reports that led to adverse events and pharmaceuti- cal and clinical factors important to calcium phosphate solubility are also DAVI D W. NE W TO N , B.S.PHARM ., PH.D., Address correspondence to Dr. Newton presented. FAPHA, is Professor and Chairman, Depart- at the Bernard J. Dunn School of Phar- pH and pK equilibria relevant ment of Biopharmaceutical Sciences, Ber- macy, Shenandoah University, 1460 Univer- a nard J. Dunn School of Pharmacy, Shenan- sity Drive, Winchester, VA 22601 (dnewton@ to calcium and phosphate compat- doah University, Winchester, VA. DAVI D su.edu). ibility. The keys to understanding the F. DRI S COLL , B.S.PHARM ., PH.D., is Senior chemical reactions and relative risks Researcher, Department of Medicine, Beth Copyright © 2008, American Society of Israel Deaconess Medical Center, and Assis- Health-System Pharmacists, Inc. All rights for calcium phosphate precipitation tant Professor of Medicine, Harvard Medical reserved. 1079-2082/08/0101-0073$06.00. are as follows: School, Boston, MA. DOI 10.2146/ajhp070138 Am J Health-Syst Pharm—Vol 65 Jan 1, 2008 73 COMMENTARY Calcium and phosphates of CaHPO reactions stated in the Table 1. 4 1967 source ended in 1968 with the Chemistry and Water Solubility of Phosphates and Calcium 21 Phosphates report that launched TPN, which made reactions between calcium Ion or Salta Names Solubility (mg/mL)5,10 and phosphates in i.v. formulations a –- b c H2PO4 Monobasic phosphate, dihydrogen NA matter of life and death. phosphate Calcium and phosphate solubility HPO 2– Dibasicd phosphate, monohydrogen NA 4 for i.v. therapy. It is unlikely that any phosphate patient-specific i.v. admixture con- Ca[H PO ] Monobasic calciumphosphate, 18 2 4 2 taining calcium and phosphates will calcium dihydrogen phosphate exactly duplicate the compatibility CaHPO4 Dibasic calcium phosphate, calcium 0.3 monohydrogen phosphate results of published studies. Three common variables are (1) practition- a – + 2– 3– + The phosphoric acid aqueous equilibria H3PO4 ↔ H2PO4 + H (for which pKa1 = 2.1) and HPO4 ↔ PO4 + H 19 14 er and device volume-measurement (for which pKa3 = 12.3 ) are clinically negligible. b – + + Monobasic refers to neutralization of the –1 charge on H2PO4 by one +1 cation (e.g., K or Na , from bases accuracy and precision, (2) content [alkali] such as potassium hydroxide or sodium hydroxide or carbonate). cNA = not applicable. and pH ranges from The United d 2– + + Dibasic refers to neutralization of the –2 charge on HPO4 by two +1 cations (e.g., 2 K or 2 Na , or one +2 States Pharmacopeia and The Na- 2+ cation, e.g., Ca ). tional Formulary (USP) for calcium gluconate injection (i.e., 95–105% of labeled content and pH 6.0–8.2) and gen phosphate), because CaHPO4 is should be expressed in millimoles for potassium and sodium phosphate less dissociated.19,20 Note that, typi- per liter, not in milliequivalents per injections (i.e., 95–105% of labeled cal of most divalent cation–divalent liter. In the article by Schuetz and content),22 and (3) other drugs and 3 anion salts, CaHPO4 is minimally King, phosphates were reported in nutrients that may be included in i.v. dissociated into its constituent ions. milliequivalents per liter but without admixtures (i.e., the variable compo- 2+ – Consequently, most of the Ca and specific concentrations of H2PO4 sition of TPN formulations, which 2– 2– HPO4 ions cannot be solvated by and HPO4 . The appendix shows the are often patient specific). Even dipolar water molecules via ion– calculation for milliequivalents of small differences in the USP-allowed dipole intermolecular forces, result- potassium and for millimoles of phos- percent content ranges of calcium ing in 0.3-mg/mL solubility in water. phates per milliliter in commercial gluconate and potassium or sodium Ion–dipole forces generally result in Potassium Phosphates Injection, USP, phosphate injections may contribute greater solubility in water than do and for milliequivalents of calcium to the precipitation or nonprecipita- other types of solute–water inter- per milliliter in commercial 10% Cal- tion of CaHPO4 in clinical practice. molecular forces.19,20 The contrasting cium Gluconate Injection, USP. The main factors that are impor- high solubility of the divalent cation– Before the transition to the tant to ensuring total solubility or divalent anion, magnesium sulfate, Pharm.D. degree began achieving compatibility of calcium and phos- at more than 500 mg/mL, results national momentum in the 1970s, phates in TPN and other i.v. therapy from dipole–dipole forces between most U.S. pharmacy schools required are as follows1-18: water and the mostly nondissociated courses in qualitative and quantita- MgSO4 ion pairs, which are dipoles. tive chemical analysis and inorganic • The mixture should be agitated to The efficient water solubility of some pharmaceutical chemistry. Those achieve homogeneity after each ingre- nonionic organic compounds (e.g., courses were particularly pertinent dient is added. sugars) results from accepting and to the solubility of calcium salts, as • Potassium or sodium phosphate donating multiple intermolecular illustrated by the following excerpt injection should be added early, and hydrogen bonds with water (i.e., one from a monograph on CaHPO4 calcium gluconate injection should hydrogen bond for at least every four in a standard pharmacy textbook be added last or nearly last to the carbon atoms).20 from 1967: “Because this salt is al- most dilute phosphate concentration – 1,2,17,18 The percentages of H2PO4 and most insoluble in water, its chemi- possible. 2– HPO4 decrease and increase, re- cal reactions are few and relatively • A 0.2-mm air-eliminating sterile spectively, by 1.6% to 5.7% for each unimportant. It is soluble in diluted inline filter should be used for non- 19 0.1 pH unit increase over the pH hydrochloric acid.” That CaHPO4 fat-emulsion-containing i.v. admix- range of 6.0–7.6.14 Because 1 meq is more soluble at increasingly acidic tures, and a 1.2-mm filter should be 2– of HPO4 corresponds to 2 meq of pH represents the leftward shift in used for fat-emulsion-containing i.v. – 1-3,10,13,14,17,18 H2PO4 , phosphate concentration equation 2, and the “unimportance” admixtures. 74 Am J Health-Syst Pharm—Vol 65 Jan 1, 2008 COMMENTARY Calcium and phosphates • Calcium chloride injection should example, in one study of a simulated cipitation would occur
Recommended publications
  • Educate Your Patients About Kidney Stones a REFERENCE GUIDE for HEALTHCARE PROFESSIONALS
    Educate Your Patients about Kidney Stones A REFERENCE GUIDE FOR HEALTHCARE PROFESSIONALS Kidney stones Kidney stones can be a serious problem. A kidney stone is a hard object that is made from chemicals in the urine. There are five types of kidney stones: Calcium oxalate: Most common, created when calcium combines with oxalate in the urine. Calcium phosphate: Can be associated with hyperparathyroidism and renal tubular acidosis. Uric acid: Can be associated with a diet high in animal protein. Struvite: Less common, caused by infections in the upper urinary tract. Cystine: Rare and tend to run in families with a history of cystinuria. People who had a kidney stone are at higher risk of having another stone. Kidney stones may also increase the risk of kidney disease. Symptoms A stone that is small enough can pass through the ureter with no symptoms. However, if the stone is large enough, it may stay in the kidney or travel down the urinary tract into the ureter. Stones that don’t move may cause significant pain, urinary outflow obstruction, or other health problems. Possible symptoms include severe pain on either side of the lower back, more vague pain or stomach ache that doesn’t go away, blood in the urine, nausea or vomiting, fever and chills, or urine that smells bad or looks cloudy. Speak with a healthcare professional if you feel any of these symptoms. Risk factors Risk factors can include a family or personal history of kidney stones, diets high in protein, salt, or sugar, obesity, or digestive diseases or surgeries.
    [Show full text]
  • Remineralisation of Enamel Subsurface Lesions with Casein Phosphopeptide - Amorphous Calcium Phosphate in Patients with Fixed Orthodontic Appliances
    Y T E I C O S L BALKAN JOURNAL OF STOMATOLOGY A ISSN 1107 - 1141 IC G LO TO STOMA Remineralisation of Enamel Subsurface Lesions with Casein Phosphopeptide - Amorphous Calcium Phosphate in Patients with Fixed Orthodontic Appliances SUMMARY Darko Pop Acev1, Julijana Gjorgova2 One of the most common problems in everyday dental practice is the 1PZU Pop Acevi, Skopje, FYROM occurrence of dental caries. The easiest way to deal with this problem is its 2Department of Orthodontics prevention. A lot of research has been done to find a material that would “Ss. Cyril and Methodius” University, Skopje help to prevent the occurrence of dental caries, which means to stop tooth FYROM demineralization (loss of minerals from the tooth structure) and replace it with the process of remineralisation (reincorporating minerals in dental tissue). In this review article we will present the remineralisation potential of casein phosphopeptide - amorphous calcium phosphate (CPP-ACP) in clinical studies. We considered all articles that were available through the browser of Pubmed Central. After analyzing the results obtained from these studies, we concluded that casein phosphopeptide - amorphous calcium phosphate has significant remineralisation effect when used in patients with fixed orthodontic appliances. Keywords: Dental Remineralisation; Casein Phosphopeptide; Amorphous Calcium LITERATURE REVIEW (LR) Phosphate Balk J Stom, 2013; 17:81-91 Introduction of the enamel porous and sensitive to internal and external factors9. Apart of this, maintaining oral hygiene Dental caries is defined as localized destruction of is difficult in patients with fixed orthodontic appliances; tooth hard tissue with acids, produced during fermentation this is the reason for accumulating food debris on the of carbohydrates, by bacteria in dental plaque1,2.
    [Show full text]
  • Spray-Dried Monocalcium Phosphate Monohydrate for Soluble Phosphate Fertilizer Khouloud Nasri, Hafed El Feki, Patrick Sharrock, Marina Fiallo, Ange Nzihou
    Spray-Dried Monocalcium Phosphate Monohydrate for Soluble Phosphate Fertilizer Khouloud Nasri, Hafed El Feki, Patrick Sharrock, Marina Fiallo, Ange Nzihou To cite this version: Khouloud Nasri, Hafed El Feki, Patrick Sharrock, Marina Fiallo, Ange Nzihou. Spray-Dried Monocal- cium Phosphate Monohydrate for Soluble Phosphate Fertilizer. Industrial and engineering chemistry research, American Chemical Society, 2015, 54 (33), p. 8043-8047. 10.1021/acs.iecr.5b02100. hal- 01609207 HAL Id: hal-01609207 https://hal.archives-ouvertes.fr/hal-01609207 Submitted on 15 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Spray-Dried Monocalcium Phosphate Monohydrate for Soluble Phosphate Fertilizer Khouloud Nasri and Hafed El Feki Laboratory of Materials and Environmental Sciences, Faculty of Sciences of Sfax, Soukra Road km 4B. P. no 802−3038, Sfax, Tunisia Patrick Sharrock* and Marina Fiallo Université de Toulouse, SIMAD, IUT Paul Sabatier, Avenue Georges Pompidou, 81104 Castres, France Ange Nzihou Centre RAPSODEE, Université de Toulouse, Mines Albi, CNRS, Albi, France ABSTRACT: Monocalcium phosphate monohydrate (MCPM) was obtained by water extraction of triple superphosphate. The solubility of MCPM is 783.1 g/L, and is entirely soluble. Saturated MCPM solution dissociates into free phosphoric acid and monetite (CaHPO4), but evaporation to dryness by spray drying forms MCPM during crystallization.
    [Show full text]
  • Phosphate & Rock
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399.Volume 8, Issue 11 Ver. III (Nov. 2014), PP 22-39 www.iosrjournals.org Comparative Study Of Rock Phosphate And Calcium Phosphate On The Growth &Biochemistry Of Brassica Juncea And It’s Impact On Soil Heath Sandhya Buddh Department Of Biotechnology Boston College For Professional Studies, Gwalior Abstract: A study was conducted to compare the effect of rock phosphate & calcium phosphate on the growth and the biochemistry of the plant Brassica juncea and its impact on soil health. The rock phosphate is highly favorable than tri-calcium phosphate for the mustard growth. Physiochemical effect of the plant was evaluated through the analysis of amino acid, pigment, shoot & root biomass content of the plant. The following parameters of soil (treated with Tri calcium phosphate & Rock phosphate) such as pH, EC, moisture, ash were analyzed. The pH of the soil mixed with tri-calcium phosphate and rock phosphate was decreased slightly from original & EC was increased .Impact of rock phosphate & calcium phosphate on the soil health can be observed by calculating TOC and nitrogen estimation at regular interval of days. Nitrogen concentration at 5th day is gradually decreases except control, R2 and R4 and after in 10th day and 20th day it becomes increased. The highest TOC value was observed on 10th day i.e. (C1)9.64 in calcium phosphate and R1 (10.17) on 1st day in rock phosphate. I. Introduction Phosphorus, one of the 17 chemical elements required for plant growth and reproduction, is often referred to as the ―energizer‖ since it helps store and transfer energy during photosynthesis.
    [Show full text]
  • Sonochemical Synthesis of Cellulose/Hydroxyapatite
    www.nature.com/scientificreports OPEN Sonochemical synthesis of cellulose/hydroxyapatite nanocomposites and their Received: 10 January 2018 Accepted: 20 April 2018 application in protein adsorption Published: xx xx xxxx Lian-Hua Fu1,2,3, Chao Qi2, Yan-Jun Liu1, Wen-Tao Cao1 & Ming-Guo Ma 1 Hydroxyapatite (HA) is the main mineral constituent in the hard tissue of vertebrate, which is recognized as an important biomedical material owing to its excellent bioactivity and biocompatibility. Herein, we report a facile and green sonochemical route for the rapid synthesis of cellulose/ HA nanocomposites in NaOH/urea aqueous solution. The in vitro behavior of the cellulose/HA nanocomposites was studied to evaluate the biological response of the nanocomposites following immersion in simulated body fuid for various periods (maximum of 28 days). The HA crystals formed on the surface of the nanocomposites were carbonate-containing apatite, which is similar to the naturally occurring calcium phosphate materials. The HA nanosheets (assembly of nanorods) were mineralized on the surface of the nanocomposites, and maximum mass of the nanocomposites was reached 1.82 times of initial mass after 28 days of soaking. Moreover, the as-prepared cellulose/HA nanocomposites have good cytocompatibility, and show a relatively high protein adsorption ability using hemoglobin as a model protein. These results indicate that the as-prepared cellulose/HA nanocomposites are promising for applications in various biomedical felds such as tissue engineering and protein/drug delivery. Hydroxyapatite (HA) is the main mineral component in the hard tissue of vertebrate bones and teeth as well as the most stable calcium phosphate phase under physiological conditions1,2.
    [Show full text]
  • Enhanced Remineralisation of Tooth Enamel Using Casein Phosphopeptide-Amorphous Calcium Phosphate Complex: a Review
    Review Article Int J Clin Prev Dent 2018;14(1):1-10ㆍhttps://doi.org/10.15236/ijcpd.2018.14.1.1 ISSN (Print) 1738-8546ㆍISSN (Online) 2287-6197 Enhanced Remineralisation of Tooth Enamel Using Casein Phosphopeptide-Amorphous Calcium Phosphate Complex: A Review Nidhi Chhabra, Anuj Chhabra Department of Dental Surgery, North DMC Medical College and Hindu Rao Hospital, Delhi, India The protective effects of milk and milk products against dental caries, due to micellar casein or caseinopeptide derivatives, have been demonstrated in various animal and human in situ studies. Among all the remineralising agents, casein phospho- peptide-amorphous calcium phosphate (CPP-ACP) technology has shown the most promising scientific evidence to support its use in prevention and reversal of carious lesions. CPP-ACP complex acts as a calcium phosphate reservoir and buffer the activities of free calcium and phosphate ions in the plaque. Calcium phosphate stabilized by CPP produces a metastable sol- ution supersaturated with respect to the amorphous and crystalline calcium phosphate phases, thereby depressing enamel demineralisation and enhancing mineralisation. CPP-ACP provides new avenue for the remineralisation of noncavitated ca- ries lesions. The objective of this article was to review the clinical trials of CPP-ACP complex and highlight its evidence based applications in dentistry. Keywords: remineralisation, casein derivatives, casein phospho peptide-amorphous calcium phosphate Introduction from an imbalance in the physiological process of remineralisa- tion/demineralisation of the tooth structure and results in the Recent scientific advances in restorative materials, techni- formation of a subsurface lesion [1]. At an early stage, the caries ques and better understanding of the etiology, pathogenicity and lesion is reversible via remineralisation process involving the prevention of caries, have led to more efficient management of diffusion of calcium and phosphate ions into the subsurface le- oral health.
    [Show full text]
  • Attending Rounds a Woman with Recurrent Calcium Phosphate
    Attending Rounds A Woman with Recurrent Calcium Phosphate Kidney Stones David S. Goldfarb Summary Kidney stones composed predominantly (50% or more) of calcium phosphate constitute up to 10% of all stones and 15%–20% of calcium stones, 80% of which are composed of calcium oxalate. Calcium phosphate is a minor component of up to 30% of calcium oxalate stones as well. The cause of calcium phosphate stones is often obscure Nephrology Section, New York Harbor but most often related to a high urine pH. Some patients with calcium phosphate stones may have incomplete renal Department of tubular acidosis. Others have distal renal tubular acidosis characterized by hyperchloremic acidosis, hypocitraturia, Veterans Affairs and high urine pH. The use of carbonic anhydrase inhibitors such as acetazolamide, topiramate, and Healthcare System, zonisamide leads to a similar picture. Treatment options to specifically prevent calcium phosphate stone recur- New York, New York; Endourology Section, rence have not been tested in clinical trials. Increases in urine volume and restriction of sodium intake to limit Lenox Hill Hospital, calcium excretion are important. Citrate supplementation is probably effective, although the concomitant in- New York, New York; crease in urine pH may increase calcium phosphate supersaturation and partially offset the inhibition of crys- and Division of tallization resulting from the increased urine citrate excretion and the alkali-associated reduction in urine calcium Nephrology, New excretion. Thiazides lower urine calcium excretion and may help ensure the safety of citrate supplementation. York University Langone Medical Clin J Am Soc Nephrol 7: 1172–1178, 2012. doi: 10.2215/CJN.00560112 Center, New York, New York Introduction calcium was 9.4 mg/dl, potassium was 4.7 meq/L, Correspondence: Dr.
    [Show full text]
  • Calcium and Phosphate Balance in CKD
    Calcium and phosphate balance in CKD Sharon M. Moe, MD Indiana University School of Medicine Roudebush Veterans Affairs Medical Center Indiana University Health Partners Indianapolis, IN, USA Disclosures • Dr. Moe has current grant support from the NIH, the Veterans Administration, Novartis • The balance study was funded by Genzyme/ Sanofi to Dr. Munro Peacock; Dr. Moe was a co-investigator. • Dr. Moe has served as a scientific advisor/ consultant/received honoraria for Amgen and Sanofi. Current KDIGO Guidelines • 4.1.4. In patients with CKD stages 3–5 (2D) and 5D (2B), we suggest using phosphate-binding agents in the treatment of hyperphosphatemia. It is reasonable that the choice of phosphate binder takes into account CKD stage, presence of other components of CKD–MBD, concomitant therapies, and side-effect profile (not graded). • 4.1.5. In patients with CKD stages 3–5D and hyperphosphatemia, we recommend restricting the dose of calcium-based phosphate binders and/or the dose of calcitriol or vitamin D analog in the presence of persistent or recurrent hypercalcemia (1B). • In patients with CKD stages 3–5D and hyperphosphatemia, we suggest restricting the dose of calcium-based phosphate binders in the presence of arterial calcification (2C) and/or adynamic bone disease (2C) and/or if serum PTH levels are persistently low (2C). K/DOQI Guidelines In CKD Patients (Stages 3 and 4): • 5.2 Calcium-based phosphate binders are effective in lowering serum phosphorus levels (EVIDENCE) and may be used as the initial binder therapy. (OPINION) In CKD Patients With Kidney Failure (Stage 5): • 5.3 Both calcium-based phosphate binders and other noncalcium-, nonaluminum-, nonmagnesium-containing phosphate-binding agents (such as sevelamer HCl) are effective in lowering serum phosphorus levels (EVIDENCE) and either may be used as the primary therapy.
    [Show full text]
  • Nutrient Value of the Phosphorus In
    NUTRIENT VALUE OF THE PHOSPHORUS IN DEFLUORI- NATED PHOSPHATE, CALCIUM METAPHOSPHATE, AND OTHER PHOSPHATIC MATERIALS AS DETERMINED BY GROWTH OF PLANTS IN POT EXPERIMENTS ' By K. D. JACOB and WILLIAM H. ROSS, senior chemists. Fertilizer Research Divi- sion, Bureau of Agricultural Chemistry and Engineering, United States Depart- ment of Agriculture ^ ^ INTRODUCTION In recent years much work has been done on the development of methods for the production of new phosphatic materials suitable for use as fertilizer. Some of these materials, particularly defluorinated phosphate, calcium metaphosphate, and potassium metaphosphate, offer considerable promise as sources of phosphorus for plant growth, either because of their high content of plant food and the consequent- economy in transportation and handling costs or because of the possi- bility of effecting a considerable reduction in processing costs. In either case the primary object/)f the work is to supply the farmer with cheaper phosphate and at the same time to maintain at a high level the nutrient value of the phosphorus contained therein. Defluorinated phosphate (prepared by heating phosphate rock at high temperatures in the presence of water vapor and silica) has been produced experimentally in two forms—calcined phosphate and fused phosphate rock—which differ in certain physical characteristics, but which appear to be identical in chemical structure (28) ^ Calcined phosphate, obtained in the form of a sintered or semifused, more or less porous clinker, is prepared by defluorinating phosphate rock at temperatures below the melting point of the charge, usually at 1,400° C. (85j 46, 58, 59, 60). Fused phosphate rock, obtained in the form of a hard glassy material, is prepared by defluorinating phosphate rock at temperatures above the melting point of the charge, usually at about 1,550° C.
    [Show full text]
  • Calcium Phosphate Kidney Stone: Problems and Perspectives Daniel Callaghan and Bidhan C
    ogy: iol Cu ys r h re P n t & R y e s Anatomy & Physiology: Current m e Callaghan and Bandyopadhyay, Anat Physiol 2012, 2:4 o a t r a c DOI: 10.4172/2161-0940.1000e118 n h A Research ISSN: 2161-0940 Editorial Open Access Calcium Phosphate Kidney Stone: Problems and Perspectives Daniel Callaghan and Bidhan C. Bandyopadhyay* Calcium Signaling Laboratory, DVA Medical Center, Washington DC, USA Acute renal colic due to kidney stones is probably the most obstructions [8]; v) medications such as acetazolamide, calcium excruciatingly painful event a person can endure. This painful event, antacids, glucocorticoids, loop diuretics, theophylline, and vitamin D which starts without warning, is often described as being worse than [9,11]. In living systems, all of these factors are intertwined with each childbirth, broken bones, gunshot wounds, burns, or surgery. Kidney other, along with the overwhelming complexity of cellular behaviors, stone disease, or nephrolithiasis, is a common disease that is estimated regulatory pathways, and differences in renal pathology in individuals. to produce medical costs of $2.1 billion per year in the United States. This poses a great challenge in the ability to understand and predict the Renal colic affects approximately 1.2 million people each year and biomineralization process. To date, the mechanism by which crystals accounts for approximately 1% of all hospital admissions. The incidence grow into stones is still poorly understood. For instance, some suggest of kidney stone disease has been increasing in the United States over that the attachment of preformed microcrystals to the surface of renal recent years and it is now estimated that approximately 5% of American tubular cells leads to the further deposition of crystals and eventual women and 12% of American men will be affected at some point in formation of full-sized stones.
    [Show full text]
  • A Brief Review on Hydroxyapatite Production and Use in Biomedicine
    282 Cerâmica 65 (2019) 282-302 http://dx.doi.org/10.1590/0366-69132019653742706 A brief review on hydroxyapatite production and use in biomedicine (Uma breve revisão sobre a obtenção de hidroxiapatita e aplicação na biomedicina) D. S. Gomes1,2*, A. M. C. Santos2, G. A. Neves1,2, R. R. Menezes1,2 1Federal University of Campina Grande, Graduating Program in Materials Science and Engineering, Campina Grande, PB, Brazil 2Federal University of Campina Grande, Department of Materials Engineering, Av. Aprígio Veloso 882, 58109-970, Campina Grande, PB, Brazil Abstract Hydroxyapatite (HAp) is a bioceramic widely studied due to its chemical similarity with the mineral component of bones. Besides, it is biocompatible, bioactive and thermodynamically stable in the body fluid what poses it as an attractive material for a wide range of applications in the biomedical field. Several efforts have been focused on the synthesis of particles of this material aiming to the precise control of size and morphology, porosity and surface area. HAp is widely used as an implant for bone tissue regeneration, as a coating for metallic implants and in a drug-controlled release. In this sense, the objective of this review is to gather information related to HAp, providing readers with information about synthesis methods, material characteristics and their applications. Keywords: hydroxyapatite, synthesis, biomedical applications. Resumo A hidroxiapatita (HAp) é uma biocerâmica amplamente estudada devido à sua similaridade química com o componente mineral dos ossos. Além disso, é biocompatível, bioativa e termodinamicamente estável no fluido corporal, o que a coloca como um material atraente para uma ampla gama de aplicações no campo biomédico.
    [Show full text]
  • Non-Fluoridated Remineralising Agents - a Review of Literature
    Jemds.com Review Article Non-Fluoridated Remineralising Agents - A Review of Literature Akriti Batra1, Vabitha Shetty2, 1, 2, Department of Paediatric & Preventive Dentistry, A.B. Shetty Memorial Institute of Dental Sciences (NITTE Deemed to Be University), Derlakatte, Mangalore, Karnataka, India. ABSTRACT Dental caries is not merely a continuous and one-way process of demineralisation of Corresponding Author: the mineral phase, but repeated episodes of demineralisations and remineralisation. Dr. Vabitha Shetty, The remineralisation process is a natural repair mechanism to restore the minerals Capitol Apartments, Flat No. 702, again, in ionic forms, to the hydroxyapatite (HAP) crystal lattice. It occurs under near- Mangalore, Karnataka, India. E-mail: [email protected] neutral physiological pH conditions whereby calcium and phosphate mineral ions are redeposited within the caries lesion from saliva and plaque fluid resulting in the DOI: 10.14260/jemds/2021/136 formation of newer HAP crystals, which are larger and more resistant to acid dissolution. An insight into the caries process’s multifactorial aetiopathogenesis has How to Cite This Article: resulted in a paradigm shift towards minimally invasive dentistry. This era of Batra A, Shetty V. Non-fluoridated personalised care using the medical model for caries management assimilates the remineralising agents - a review of signs of examining, diagnosing, intercepting, and managing dental caries at a literature. J Evolution Med Dent Sci microscopic level. Fluoride mediated salivary remineralisation system is considered 2021;10(09):638-644, DOI: 10.14260/jemds/2021/136 the cornerstone of non-invasive approach for managing non-cavitated carious lesions. However, the effect of fluoride was found to be limited to the outer surface of Submission 09-10-2020, the tooth, and it was observed that fluoride does not influence the modifiable factors Peer Review 22-12-2020, in dental caries such as the biofilm.
    [Show full text]