CST8207 – Linux O/S I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
At—At, Batch—Execute Commands at a Later Time
at—at, batch—execute commands at a later time at [–csm] [–f script] [–qqueue] time [date] [+ increment] at –l [ job...] at –r job... batch at and batch read commands from standard input to be executed at a later time. at allows you to specify when the commands should be executed, while jobs queued with batch will execute when system load level permits. Executes commands read from stdin or a file at some later time. Unless redirected, the output is mailed to the user. Example A.1 1 at 6:30am Dec 12 < program 2 at noon tomorrow < program 3 at 1945 pm August 9 < program 4 at now + 3 hours < program 5 at 8:30am Jan 4 < program 6 at -r 83883555320.a EXPLANATION 1. At 6:30 in the morning on December 12th, start the job. 2. At noon tomorrow start the job. 3. At 7:45 in the evening on August 9th, start the job. 4. In three hours start the job. 5. At 8:30 in the morning of January 4th, start the job. 6. Removes previously scheduled job 83883555320.a. awk—pattern scanning and processing language awk [ –fprogram–file ] [ –Fc ] [ prog ] [ parameters ] [ filename...] awk scans each input filename for lines that match any of a set of patterns specified in prog. Example A.2 1 awk '{print $1, $2}' file 2 awk '/John/{print $3, $4}' file 3 awk -F: '{print $3}' /etc/passwd 4 date | awk '{print $6}' EXPLANATION 1. Prints the first two fields of file where fields are separated by whitespace. 2. Prints fields 3 and 4 if the pattern John is found. -
Shutdown Script for Retropie
Shutdown Script for Retropie Use pin number 5 & 14 for “Shutdown” 1. Update RetroPie: • sudo apt-get update 2. Upgrade RetroPie • sudo apt-get upgrade 3. Install Python • sudo apt-get install python-dev • sudo apt-get install python3-dev • sudo apt-get install gcc • sudo apt-get install python-pip 4. Next you need to get RPi.GPIO: • wget https://pypi.python.org/packages/source/R/RPi.GPIO/RPi.GPIO-0.5.11.tar.gz 5. Extract the packages: • sudo tar -zxvf RPi.GPIO-0.5.11.tar.gz 6. Move into the newly created directory: • cd RPi.GPIO-0.5.11 • 7. Install the module by doing: • sudo python setup.py install • sudo python3 setup.py install 8. Creating a directory to hold your scripts: • mkdir /home/pi/scripts 9. Call our script shutdown.py (it is written in python). Create and edit the script by doing: • sudo nano /home/pi/scripts/shutdown.py The content of the script: Paste it in the blank area #!/usr/bin/python import RPi.GPIO as GPIO import time import subprocess # we will use the pin numbering to match the pins on the Pi, instead of the # GPIO pin outs (makes it easier to keep track of things) GPIO.setmode(GPIO.BOARD) # use the same pin that is used for the reset button (one button to rule them all!) GPIO.setup(5, GPIO.IN, pull_up_down = GPIO.PUD_UP) oldButtonState1 = True while True: #grab the current button state buttonState1 = GPIO.input(5) # check to see if button has been pushed if buttonState1 != oldButtonState1 and buttonState1 == False: subprocess.call("shutdown -h now", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) oldButtonState1 = buttonState1 time.sleep(.1) Press CRTL X Then Y and Enter 10. -
Adding a Shutdown Button to the Raspberry Pi B+ Version 1
Welcome, Guest Log in Register Activity Translate Content Search within content, members or groups Search Topics Resources Members Design Center Store All Places > Raspberry Pi > Raspberry Pi Projects > Documents Adding a Shutdown Button to the Raspberry Pi B+ Version 1 Created by ipv1 on Aug 4, 2015 3:05 AM. Last modified by ipv1 on Aug 18, 2015 9:52 AM. Introduction What do you need? Step 1. Setup the RPi Step 2. Connecting the button Step 3. Writing a Python Script Step 4. Adding it to startup Step 5. More to do Introduction For a beginner to the world of raspberry pi, there are a number of projects that can become the start of something big. In this article, I discuss such a simple project which is adding a button that can be used to shutdown the raspberry pi using a bit of software tinkering. I wrote a similar article in 2013 at my blog “embeddedcode.wordpress.com” and its got its share of attention since a lot of people starting out with a single board computer, kept looking for a power button. Additionally, those who wanted a headless system, needed a way to shutdown the computer without the mess of connecting to it over the network or attaching a monitor and keyboard to it. In this article, I revisit the tutorial on how to add a shutdown button while trying to explain the workings and perhaps beginners will find it an amusing to add find more things to do with this little recipe. What do you need? Here is a basic bill of materials required for this exercise. -
Shutdown Policies with Power Capping for Large Scale Computing Systems Anne Benoit, Laurent Lefèvre, Anne-Cécile Orgerie, Issam Raïs
Shutdown Policies with Power Capping for Large Scale Computing Systems Anne Benoit, Laurent Lefèvre, Anne-Cécile Orgerie, Issam Raïs To cite this version: Anne Benoit, Laurent Lefèvre, Anne-Cécile Orgerie, Issam Raïs. Shutdown Policies with Power Capping for Large Scale Computing Systems. Euro-Par: International European Conference on Parallel and Distributed Computing, Aug 2017, Santiago de Compostela, Spain. pp.134 - 146, 10.1109/COMST.2016.2545109. hal-01589555 HAL Id: hal-01589555 https://hal.archives-ouvertes.fr/hal-01589555 Submitted on 18 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Shutdown policies with power capping for large scale computing systems Anne Benoit1, Laurent Lef`evre1, Anne-C´ecileOrgerie2, and Issam Ra¨ıs1 1 Univ. Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP 2 CNRS, IRISA, Rennes, France Abstract Large scale distributed systems are expected to consume huge amounts of energy. To solve this issue, shutdown policies constitute an appealing approach able to dynamically adapt the resource set to the actual workload. However, multiple constraints have to be taken into account for such policies to be applied on real infrastructures, in partic- ular the time and energy cost of shutting down and waking up nodes, and power capping to avoid disruption of the system. -
Unix/Linux Command Reference
Unix/Linux Command Reference .com File Commands System Info ls – directory listing date – show the current date and time ls -al – formatted listing with hidden files cal – show this month's calendar cd dir - change directory to dir uptime – show current uptime cd – change to home w – display who is online pwd – show current directory whoami – who you are logged in as mkdir dir – create a directory dir finger user – display information about user rm file – delete file uname -a – show kernel information rm -r dir – delete directory dir cat /proc/cpuinfo – cpu information rm -f file – force remove file cat /proc/meminfo – memory information rm -rf dir – force remove directory dir * man command – show the manual for command cp file1 file2 – copy file1 to file2 df – show disk usage cp -r dir1 dir2 – copy dir1 to dir2; create dir2 if it du – show directory space usage doesn't exist free – show memory and swap usage mv file1 file2 – rename or move file1 to file2 whereis app – show possible locations of app if file2 is an existing directory, moves file1 into which app – show which app will be run by default directory file2 ln -s file link – create symbolic link link to file Compression touch file – create or update file tar cf file.tar files – create a tar named cat > file – places standard input into file file.tar containing files more file – output the contents of file tar xf file.tar – extract the files from file.tar head file – output the first 10 lines of file tar czf file.tar.gz files – create a tar with tail file – output the last 10 lines -
80842-Su | Cc/Led/27W/E26-E39/Mv/50K Corn Cob Sunlite
Item: 80842-SU CC/LED/27W/E26-E39/MV/50K CORN COB SUNLITE General Characteristics Bulb Corn Lamp Type Corn Cob Lamp Life Hours 50000 Hours Material Aluminium & Plastic LED Type LG5630 Base Medium (E26) Lumens Per Watt (LPW) 135.00 Life (based on 3hr/day) 45.7 Years Estimated Energy Cost $3.25 per Year Safety Rating UL Listed Ingress Protection IP64 Sunlite CC/LED/27W/E26-E39/MV/50K LED 27W (100W MHL/HPSW Electrical Characteristics Equivalent) Corn Bulb, Medium (E26), Watts 27 5000K Super White Volts 100-277 Equivalent Watts 100 LED Chip Manufacturer LG5630 Sunlite's super efficient LED corn lamps were created to Number of LEDs 84 replace the equivalent but power hungry metal halide and Power Factor 0.9 high-pressure sodium lamps. Capable of withstanding water sprays from any direction in thanks to its IP64 rating, these Temperature -40° To 140° bulbs will keep outdoor paths, back yards and many more locations illuminated for a significantly longer period of time Light Characteristics when compared to a high-pressure sodium lamp or a metal Brightness 3645 Lumens halide while also lowering your electrical usage. Color Accuracy (CRI) 85 Light Appearance Super White Color Temperature 5000K • This modern corn cob lamp produces an efficient 5000K Beam Angle 360° super white beam of 360° light at a powerful 3645 lumens • On average, this multi-volt LED corn cob lamp lasts up to Product Dimensions an astonishing 50,000 hours and features 84 energy MOL (in) 7.4 saving diodes Diameter (in) 3.65 • Ideal for all post lights, Street lights, security Lighting, high Package Dimensions (in) (W) 3.70 (H) 11.90 (D) 3.80 bay lights while also designed for indoor as well as Product Data outdoor usage. -
Unix/Linux Command Reference
Unix/Linux Command Reference .com File Commands System Info ls – directory listing date – show the current date and time ls -al – formatted listing with hidden files cal – show this month's calendar cd dir - change directory to dir uptime – show current uptime cd – change to home w – display who is online pwd – show current directory whoami – who you are logged in as mkdir dir – create a directory dir finger user – display information about user rm file – delete file uname -a – show kernel information rm -r dir – delete directory dir cat /proc/cpuinfo – cpu information rm -f file – force remove file cat /proc/meminfo – memory information rm -rf dir – force remove directory dir * man command – show the manual for command cp file1 file2 – copy file1 to file2 df – show disk usage cp -r dir1 dir2 – copy dir1 to dir2; create dir2 if it du – show directory space usage doesn't exist free – show memory and swap usage mv file1 file2 – rename or move file1 to file2 whereis app – show possible locations of app if file2 is an existing directory, moves file1 into which app – show which app will be run by default directory file2 ln -s file link – create symbolic link link to file Compression touch file – create or update file tar cf file.tar files – create a tar named cat > file – places standard input into file file.tar containing files more file – output the contents of file tar xf file.tar – extract the files from file.tar head file – output the first 10 lines of file tar czf file.tar.gz files – create a tar with tail file – output the last 10 lines -
Unix Security Overview: 1
CIS/CSE 643: Computer Security (Syracuse University) Unix Security Overview: 1 Unix Security Overview 1 User and Group • Users – root: super user (uid = 0) – daemon: handle networks. – nobody: owns no files, used as a default user for unprivileged operations. ∗ Web browser can run with this mode. – User needs to log in with a password. The encrypted password is stored in /etc/shadow. – User information is stored in /etc/passwd, the place that was used to store passwords (not anymore). The following is an example of an entry in this file. john:x:30000:40000:John Doe:/home/john:/usr/local/bin/tcsh • Groups – Sometimes, it is more convenient if we can assign permissions to a group of users, i.e. we would like to assign permission based on groups. – A user has a primary group (listed in /etc/passwd), and this is the one associated to the files the user created. – Any user can be a member of multiple groups. – Group member information is stored in /etc/group % groups uid (display the groups that uid belongs to) – For systems that use NIS (Network Information Service), originally called Yellow Page (YP), we can get the group information using the command ypcat. % ypcat group (can display all the groups and their members) 2 File Permissions • File Permissions – The meaning of the permission bits in Unix. ∗ Owner (u), Group (g), and Others (o). ∗ Readable (r), Writable (w), and Executable (x). ∗ Example: -rwxrwxrwx (777) • Permissions on Directories: – r: the directory can be listed. – w: can create/delete a file or a directory within the directory. -
LAB MANUAL for Computer Network
LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. -
Maintenance Commands for Avaya Communication Manager, Media Gateways and Servers
Maintenance Commands for Avaya Communication Manager, Media Gateways and Servers 03-300431 Issue 4 January 2008 © 2008 Avaya Inc. All Rights Reserved. Notice While reasonable efforts were made to ensure that the information in this document was complete and accurate at the time of printing, Avaya Inc. can assume no liability for any errors. Changes and corrections to the information in this document may be incorporated in future releases. For full legal page information, please see the complete document, Avaya Legal Page for Software Documentation, Document number 03-600758. To locate this document on the website, simply go to http://www.avaya.com/support and search for the document number in the search box. Documentation disclaimer Avaya Inc. is not responsible for any modifications, additions, or deletions to the original published version of this documentation unless such modifications, additions, or deletions were performed by Avaya. Customer and/or End User agree to indemnify and hold harmless Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation to the extent made by the Customer or End User. Link disclaimer Avaya Inc. is not responsible for the contents or reliability of any linked Web sites referenced elsewhere within this documentation, and Avaya does not necessarily endorse the products, services, or information described or offered within them. We cannot guarantee that these links will work all of the time and we have no control over the availability of the linked pages. Warranty Avaya Inc. -
Lab Intro to Console Commands
New Lab Intro to KDE Terminal Konsole After completing this lab activity the student will be able to; Access the KDE Terminal Konsole and enter basic commands. Enter commands using a typical command line interface (CLI). Explain the use of the following commands, ls, ls –al, dir, mkdir, whoami, Explain the directory structure of a typical user. This lab activity will introduce you to one of the many command line interfaces available in Linux/UNIX operating systems and a few of the most basic commands. The command line interface you will be using for this lab activity is the console called the Konsole and is also referred to as Terminal. Note: As you notice, in the KDE system many features are written with the capital letter “K” in place of the first letter or the utility to reflect the fact it was modified for the KDE system. The original UNIX system did not use a graphical user interface GUI but rather was a command line interface (CLI) similar to the command prompt in Windows operating systems. The command line interface is referred to as a shell. Even today the command line interface (the shell) is used to issue commands on a Linux server to minimize system resources. For example, there is no need to start the GUI on the server to add a new user to an existing system. Starting the GUI will reduce the system performance because it requires RAM to run the GUI. A GUI will affect the overall performance of the server when it is supporting many users (clients). -
Command Reference Guide for Cisco Prime Infrastructure 3.9
Command Reference Guide for Cisco Prime Infrastructure 3.9 First Published: 2020-12-17 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.