Learn Pascal.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NET Core & Linux
.NET Core & Linux Fabio Di Peri [email protected] Twitter: @kipters Telegram: @kipters Linux Day 2020 | .NET Core & Linux “ I went into .NET thinking this was a programming language, but it seems I've stumbled upon a mini operating system with support for multiple execution environments, programming languages, and now I have so many questions. — Kelsey Hightower (@kelseyhightower) July 30, 2020 “ Linux Day 2020 | .NET Core & Linux Multiple execution environments .NET Framework .NET Core Mono .NET Micro .NET Nano CoreRT Linux Day 2020 | .NET Core & Linux Multiple languages C# F# VB Linux Day 2020 | .NET Core & Linux Multiple languages C# F# VB C++ Python PHP ... Linux Day 2020 | .NET Core & Linux Codice CIL CLR Linux Day 2020 | .NET Core & Linux Codice CIL CLR Java bytecode JVM Linux Day 2020 | .NET Core & Linux CLR | Common Language Runtime "La JVM" CLR Mono CoreCLR Linux Day 2020 | .NET Core & Linux BCL | Base Class Library L'intero set di librerie e classi a disposizione delle applicazioni .NET Linux Day 2020 | .NET Core & Linux Nuget Linux Day 2020 | .NET Core & Linux dotnet CLI Linux Day 2020 | .NET Core & Linux 1995 Java Linux Day 2020 | .NET Core & Linux 1996 Anders Hejlsberg Linux Day 2020 | .NET Core & Linux 1996 Anders Hejlsberg Turbo Pascal Delphi Linux Day 2020 | .NET Core & Linux 1996 Anders Hejlsberg Turbo Pascal Delphi C# TypeScript Linux Day 2020 | .NET Core & Linux Visual J++ 1.1 Linux Day 2020 | .NET Core & Linux Visual J++ 6.0 Linux Day 2020 | .NET Core & Linux Visual J++ 1.x Abbraccia Java Linux Day 2020 | .NET Core -
B-Prolog User's Manual
B-Prolog User's Manual (Version 8.1) Prolog, Agent, and Constraint Programming Neng-Fa Zhou Afany Software & CUNY & Kyutech Copyright c Afany Software, 1994-2014. Last updated February 23, 2014 Preface Welcome to B-Prolog, a versatile and efficient constraint logic programming (CLP) system. B-Prolog is being brought to you by Afany Software. The birth of CLP is a milestone in the history of programming languages. CLP combines two declarative programming paradigms: logic programming and constraint solving. The declarative nature has proven appealing in numerous ap- plications, including computer-aided design and verification, databases, software engineering, optimization, configuration, graphical user interfaces, and language processing. It greatly enhances the productivity of software development and soft- ware maintainability. In addition, because of the availability of efficient constraint- solving, memory management, and compilation techniques, CLP programs can be more efficient than their counterparts that are written in procedural languages. B-Prolog is a Prolog system with extensions for programming concurrency, constraints, and interactive graphics. The system is based on a significantly refined WAM [1], called TOAM Jr. [19] (a successor of TOAM [16]), which facilitates software emulation. In addition to a TOAM emulator with a garbage collector that is written in C, the system consists of a compiler and an interpreter that are written in Prolog, and a library of built-in predicates that are written in C and in Prolog. B-Prolog does not only accept standard-form Prolog programs, but also accepts matching clauses, in which the determinacy and input/output unifications are explicitly denoted. Matching clauses are compiled into more compact and faster code than standard-form clauses. -
Decimal Rounding
Mathematics Instructional Plan – Grade 5 Decimal Rounding Strand: Number and Number Sense Topic: Rounding decimals, through the thousandths, to the nearest whole number, tenth, or hundredth. Primary SOL: 5.1 The student, given a decimal through thousandths, will round to the nearest whole number, tenth, or hundredth. Materials Base-10 blocks Decimal Rounding activity sheet (attached) “Highest or Lowest” Game (attached) Open Number Lines activity sheet (attached) Ten-sided number generators with digits 0–9, or decks of cards Vocabulary approximate, between, closer to, decimal number, decimal point, hundredth, rounding, tenth, thousandth, whole Student/Teacher Actions: What should students be doing? What should teachers be doing? 1. Begin with a review of decimal place value: Display a decimal in the thousandths place, such as 34.726, using base-10 blocks. In pairs, have students discuss how to read the number using place-value names, and review the decimal place each digit holds. Briefly have students share their thoughts with the class by asking: What digit is in the tenths place? The hundredths place? The thousandths place? Who would like to share how to say this decimal using place value? 2. Ask, “If this were a monetary amount, $34.726, how would we determine the amount to the nearest cent?” Allow partners or small groups to discuss this question. It may be helpful if students underlined the place that indicates cents (the hundredths place) in order to keep track of the rounding place. Distribute the Open Number Lines activity sheet and display this number line on the board. Guide students to recall that the nearest cent is the same as the nearest hundredth of a dollar. -
A Concurrent PASCAL Compiler for Minicomputers
512 Appendix A DIFFERENCES BETWEEN UCSD'S PASCAL AND STANDARD PASCAL The PASCAL language used in this book contains most of the features described by K. Jensen and N. Wirth in PASCAL User Manual and Report, Springer Verlag, 1975. We refer to the PASCAL defined by Jensen and Wirth as "Standard" PASCAL, because of its widespread acceptance even though no international standard for the language has yet been established. The PASCAL used in this book has been implemented at University of California San Diego (UCSD) in a complete software system for use on a variety of small stand-alone microcomputers. This will be referred to as "UCSD PASCAL", which differs from the standard by a small number of omissions, a very small number of alterations, and several extensions. This appendix provides a very brief summary Of these differences. Only the PASCAL constructs used within this book will be mentioned herein. Documents are available from the author's group at UCSD describing UCSD PASCAL in detail. 1. CASE Statements Jensen & Wirth state that if there is no label equal to the value of the case statement selector, then the result of the case statement is undefined. UCSD PASCAL treats this situation by leaving the case statement normally with no action being taken. 2. Comments In UCSD PASCAL, a comment appears between the delimiting symbols "(*" and "*)". If the opening delimiter is followed immediately by a dollar sign, as in "(*$", then the remainder of the comment is treated as a directive to the compiler. The only compiler directive mentioned in this book is (*$G+*), which tells the compiler to allow the use of GOTO statements. -
Cobol Vs Standards and Conventions
Number: 11.10 COBOL VS STANDARDS AND CONVENTIONS July 2005 Number: 11.10 Effective: 07/01/05 TABLE OF CONTENTS 1 INTRODUCTION .................................................................................................................................................. 1 1.1 PURPOSE .................................................................................................................................................. 1 1.2 SCOPE ...................................................................................................................................................... 1 1.3 APPLICABILITY ........................................................................................................................................... 2 1.4 MAINFRAME COMPUTER PROCESSING ....................................................................................................... 2 1.5 MAINFRAME PRODUCTION JOB MANAGEMENT ............................................................................................ 2 1.6 COMMENTS AND SUGGESTIONS ................................................................................................................. 3 2 COBOL DESIGN STANDARDS .......................................................................................................................... 3 2.1 IDENTIFICATION DIVISION .................................................................................................................. 4 2.1.1 PROGRAM-ID .......................................................................................................................... -
Binary and Hexadecimal
Binary and Hexadecimal Binary and Hexadecimal Introduction This document introduces the binary (base two) and hexadecimal (base sixteen) number systems as a foundation for systems programming tasks and debugging. In this document, if the base of a number might be ambiguous, we use a base subscript to indicate the base of the value. For example: 45310 is a base ten (decimal) value 11012 is a base two (binary) value 821716 is a base sixteen (hexadecimal) value Why do we need binary? The binary number system (also called the base two number system) is the native language of digital computers. No matter how elegantly or naturally we might interact with today’s computers, phones, and other smart devices, all instructions and data are ultimately stored and manipulated in the computer as binary digits (also called bits, where a bit is either a 0 or a 1). CPUs (central processing units) and storage devices can only deal with information in this form. In a computer system, absolutely everything is represented as binary values, whether it’s a program you’re running, an image you’re viewing, a video you’re watching, or a document you’re writing. Everything, including text and images, is represented in binary. In the “old days,” before computer programming languages were available, programmers had to use sequences of binary digits to communicate directly with the computer. Today’s high level languages attempt to shield us from having to deal with binary at all. However, there are a few reasons why it’s important for programmers to understand the binary number system: 1. -
VERSION 2.0 Referene MANUAL
VERSION 2.0 REFERENe MANUAL BORlAnD INTERNATIONAL Borland International 4113 Scotts Valley Drive Scotts Valley, California 95066 Copyright Notice© This software package and manual are copyrighted 1983, 1984 by BORLAND INTERNATIONAL Inc. All rights reserved worldwide. No part of this publication may be reproduced, transmitted, transcribed, stored in any retrieval system, or translated into any language by any means without the express written per mission of BORLAND INTERNATIONAL Inc., 4113 Scotts Valley Drive, Scotts Valley, CA 95066, USA. Single CPU License The price paid for one copy of TURBO Pascal licenses you to use the product on one CPU when and only when you have signed and returned the License Agreement printed in this book. Disclaimer Borland International makes no warranties as to the contents of this manual and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Borland International further reserves the right to make changes to the specifications of the program and contents of the manual without obligation to notify any person or organization of such changes. Fifth edition, October 1984 Printed in the United States of America 98765 TABLE OF CONTENTS INTRODUCTION ............................................. 1 The Pascal Language .........................................1 TURBO Pascal ..............................................1 Structure of This Manual ..................................... 2 Typography ............................................... 3 Syntax Descriptions -
Instructors Prerequisites Time Commitment and Schedule
Instructors Anders Hejlsberg - Anders is a prominent Danish software engineer who co-designed several popular and commercially successful programming languages and development tools. He was the original author of Turbo Pascal and the chief architect of Delphi. He currently works for Microsoft as the lead architect of C# and core developer on TypeScript. Dan Wahlin - Dan Wahlin founded The Wahlin Group (http://www.TheWahlinGroup.com) which provides consulting and training services on Web technologies such as JavaScript, TypeScript, jQuery, AngularJS, SPAs, HTML5, ASP.NET and SharePoint. Dan is a Microsoft Regional Director and has been awarded Microsoft's MVP award multiple times for ASP.NET, Connected Systems and Silverlight. Dan blogs at http://weblogs.asp.net/dwahlin and writes regular columns for various technical magazines. Follow Dan on Twitter @DanWahlin. Prerequisites Working knowledge of JavaScript and experience coding in an object-oriented programming language. Time Commitment and Schedule 3-5 hours per week for 6 weeks. For students taking this course “live” content will be released twice per week typically on Tuesday and Thursday. Also note that all deadlines and release times are in UTC. This course will cover the following topics: Introduction to the TypeScript language Setting up your environment to work with TypeScript Understanding basic types Functions in TypeScript TypeScript classes (basics, constructors and inheritance, and properties) Interfaces in TypeScript Generics in TypeScript Deadlines and Grading Exercises are not graded but students will be asked to confirm that they have completed each homework assignment successfully as a part of the module assessment and will receive points for affirming that they have completed the exercises. -
TURBO Pascal Tutor·
The TURBO Pascal Tutor· A Self-Study Guide to TURBO Pascal Copyright @1984 Copyright @1985 BORLAND INTERNATIONAL, INC. 4585 Scotts Valley Drive Scotts Valley, CA 95066 U.S.A. Borland's No-Nonsense License Statement! This software is protected by both United States Copyright Law and International Treaty provisions. Therefore you must treat this software just like a book with the following single exception. Borland International authorizes you to make archival copies of the software for the sole purpose of backing-up your software and protecting your investment from loss. By saying, "just like a book", Borland means for example that this software may be used by any number of people and may be freely moved from one computer location to another so long as there is No Possibility of it being used at one location while it's being used at another. Just like a book that can't be read by two different people in two different places at the same time, neither can the software be used by two different people in two different places at the same time. (Unless, of course, Borland's Copyright has been violated.) WARRANTY With respect to the physical diskette and physical documentation enclosed herein, BORLAND INTERNATIONAL, INC., ("BORLAND") warrants the same to be free of defects in materials and workmanship for a period of 30 days from the date of purchase. In the event of notification within the warranty period of defects in material or workmanship, BORLAND will replace the defective diskette or documentation. The remedy for breach of this warranty shall be limited to replacement and· shall not encompass any other damages, including but not limited to loss of profit, special, incidental, consequential, or other similar claims. -
Open Office Specification 1.0
Open Office Specification 1.0 Committee Draft 1, 22 Mar 2004 Document identifier: office-spec-1.0-cd-1.sxw Location: http://www.oasis-open.org/committees/office/ Editors: Michael Brauer, Sun Microsystems <[email protected]> Gary Edwards <[email protected]> Daniel Vogelheim, Sun Microsystems <[email protected]> Contributors: Doug Alberg, Boeing <[email protected]> Simon Davis, National Archive of Australia <[email protected]> Patrick Durusau, Society of Biblical Literature <[email protected]> David Faure, <[email protected]> Paul Grosso, Arbortext <[email protected]> Tom Magliery, Blast Radius <[email protected]> Phil Boutros, Stellent <[email protected]> John Chelsom, CSW Informatics <[email protected]> Jason Harrop, SpeedLegal <[email protected]> Mark Heller, New York State Office of the Attorney General <[email protected]> Paul Langille, Corel <[email protected]> Monica Martin, Drake Certivo <[email protected]> Uche Ogbuji <[email protected]> Lauren Wood <[email protected]> Abstract: This is the specification of Open Office XML, an open, XML-based file format for office applications, based on OpenOffice.org XML [OOo]. Status: This document is a draft, and will be updated periodically on no particular schedule. Send comments to the editors. Committee members should send comments on this specification to the [email protected] list. Others should subscribe to and send comments to the [email protected] list. To subscribe, send an email message to office- [email protected] with the word "subscribe" as the body of the message. -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
A Quick Reference to C Programming Language
A Quick Reference to C Programming Language Structure of a C Program #include(stdio.h) /* include IO library */ #include... /* include other files */ #define.. /* define constants */ /* Declare global variables*/) (variable type)(variable list); /* Define program functions */ (type returned)(function name)(parameter list) (declaration of parameter types) { (declaration of local variables); (body of function code); } /* Define main function*/ main ((optional argc and argv arguments)) (optional declaration parameters) { (declaration of local variables); (body of main function code); } Comments Format: /*(body of comment) */ Example: /*This is a comment in C*/ Constant Declarations Format: #define(constant name)(constant value) Example: #define MAXIMUM 1000 Type Definitions Format: typedef(datatype)(symbolic name); Example: typedef int KILOGRAMS; Variables Declarations: Format: (variable type)(name 1)(name 2),...; Example: int firstnum, secondnum; char alpha; int firstarray[10]; int doublearray[2][5]; char firststring[1O]; Initializing: Format: (variable type)(name)=(value); Example: int firstnum=5; Assignments: Format: (name)=(value); Example: firstnum=5; Alpha='a'; Unions Declarations: Format: union(tag) {(type)(member name); (type)(member name); ... }(variable name); Example: union demotagname {int a; float b; }demovarname; Assignment: Format: (tag).(member name)=(value); demovarname.a=1; demovarname.b=4.6; Structures Declarations: Format: struct(tag) {(type)(variable); (type)(variable); ... }(variable list); Example: struct student {int