Economic Challenges in the Anthropocene

Total Page:16

File Type:pdf, Size:1020Kb

Economic Challenges in the Anthropocene Ignazio Musu, Ca’ Foscari University of Venice. Economic challenges in the Anthropocene. 1 What is Anthropocene. •Nobel laureate Paul Crutzen (2002): for the past three centuries, profound shift between humans and the rest of nature; unprecedented influence of human action. •The Earth system has left the interglacial (Holocene) era and entered a new one: Anthropocene. •The qualitative shift was determined by the industrial era. •Energy bottleneck in the final stage of Holocene removed by diffusion of fossil fuels. 2 During Holocene: •Impact of preindustrial human societies on environment (through hunting, gathering and, later on, agriculture) within the bounds of environment’s natural variability (Steffen and al., 2007). •Constraints to energy available: • Water and wind power only in favorite locations and limited by importable technologies (of watermills, sailing ships and windmills). • Energy from animals (and through them from plants) limited by land suitable for crops and forage. 3 • Fossil fuels removed the energy bottleneck by offering access to carbon stored from millions of years of photosynthesis. • Industrial societies use four or five times as much energy as did agrarian societies , which in turn used three or four times as much as did hunting and gathering societies (Steffen and al., 2007). • Examples of scientific and technological progress based on fossil fuels: • Invention (and refinement) of the steam engine by James Watt in the 1780s; • Ammonia synthesis from atmospheric nitrogen pioneered by Fritz Haber (the Haber-Bosch synthesis) in the early 20th century. 4 Summary on energy transitions (Scott Taylor, 2012) •Biomass (old green power) to Coal •Coal to Liquid Fuels – Oil and Natural Gas •Liquid Fuels – New Green Power (?) •Past transitions were very slow and of relatively small magnitude. •Transitions always to higher density sources (density power: energy per m2). •Low pre-industrial energy density of “old green power” (plants, water, animals) led to small city size; denser energy sources in industrial era led to higher urban dimensions. •Fossil fuels reduced transport costs and widened their potential. 5 Oil Gas Coal From its introduction in 1850 to its complete dominance by 1920, coal took 70 years. From the first well in 1880 until its point of maximum dominance in 1970, oil and natural gas took 90 years. Source: Scott Taylor, Moreno Cruz, 2012 6 Biomass Coal Oil, gas Source: Scott Taylor, Moreno Cruz, 2012 7 Source: Scott Taylor, Moreno Cruz, 2012 8 Three stages in Anthropocene (Steffen and others, 2011): •First stage: from the industrial revolution to the Second World War. •Second stage: “Great Acceleration”, from the end of Second World War to the end of twentieth century; •Third stage: present one, challenge to mankind for the sustainability of the Earth system. 9 Great acceleration after the Second World War, Source: UNEP, GEO5, 2012 10 The Great Acceleration: population From 1800 to 1950 world population tripled: from 1 to 3 billions. From 1950 to 2000 world population doubled: from 3 to 6 billions. Source: Steffen e al. 2011. 11 The Great Acceleration: urban population In 2050 more than 50% will live in urban areas. Urban size will grow. Today more than 20 cities have more than 10 million inhabitants and 450 have more than one million. Source: Steffen e al. 2011. 12 The Great Acceleration: total real GDP From 1950 to 2000 world total real GDP increased from 7 to 35 trillions 1990 US dollars ( a multiplier of 5) Source: Steffen e al. 2011. 13 The Great Acceleration: motor vehicles Motor vehicles grew from 40 millions in 1945 to almost one billion now. According to IEA in China car sales in 2016 (11 millions) will be higher than in US. Source: Steffen e al. 2011. 14 New car sales in China IEA, WEO 2007, p.300 15 The Great Acceleration: fertilizers consumption Source: Steffen e al. 2011. 16 Global-scale transformation of the environment particularly evident in the atmosphere. CO2 concentration: •Range of Holocene variability: 260-285 ppm. •1750: 277 ppm. •1800: 283 ppm •1850: 285 ppm. •1900: 296 ppm. •1950: 311 ppm. •2000: 369 ppm. •2011: 395 ppm. 17 Temperature change and CO2 concentration Source: UNEP, GEO5, 2012 18 Anthropocene, technological change and economic growth. Three technological revolutions in the Anthropocene (Gordon, 2012; Smil, 2005, 2006). •First technological revolution (Industrial Revolution): 1750-1830. • Coal replaced wood as main energy source • Inventions of steam engines and cotton spinning. • Energy density of coal facilitated its use in transportation. • Improved communications through early railroad and steamships. 19 • Second technology revolution: 1870- 1960s. • First phase: 1870 – 1914. • Oil and gas replaced coal and wood. • Their higher energy density allowed further mobility and miniaturization of engines. • Great innovations: • Electricity, • Internal combustion engines , • Chemistry and chemical engineering, • Running water, indoor plumbing, central heating, • Telephone, telegraph, radio. • Crucial phase: roots of technological transformations of the second phase (Smil, 2005). 20 • Second technology revolution: 1870- 1960s. • Second phase: 1918-1960s. • Incremental innovations based upon first phase radical innovations: • road means of transport, • durable consumption goods, • new systems of communication and entertainment (motion pictures, TV). • Fading benefits of the second technological revolution in the 1970s ( “productivity slowdown” ). • Energy crises (increases in oil price). 21 • Third technology revolution: ICTs • Big developments in 1990s. • Economic globalization. • Technological «leapfrogging» in emerging economies. • Incremental innovations in communication and entertainment (Ipod, smart phones, tablets, Ipad). • 2001: ICTs bubble starts bursting; twin towers. • Growth supported through explosion of private debt: housing and financial bubbles. 22 Evolution of primary energy by different energy sources and technological innovation (Global Energy Assessment, 2012) 23 The nature of the technological revolutions in the first two stages of Anthropocene. •What did the three past technological revolution in the industrial era have in common: a virtuous circle between innovations and market demand. •Innovations successfully absorbed by a widening market demand, particularly for consumption goods. •Larger market demand at the basis of likely increasing profits from investments in R&D and new products, which promoted further innovations. 24 A new technological revolution for the third stage of Anthropocene? Warnings (Steffen e al., 2011): •Growing awareness of human impact on the Earth system, particularly through the energy-environment issue. •Commitment to build systems of global governance because of the globalization of the problems. •Awareness of limits (planetary boundaries (J. Rockstroem e al. 2009) ? 25 Source: J. Rockstroem e al., A safe operating space for humanity, Nature, 461, 2009, pp. 472-475. 26 Questions about the energy-environment crisis (latent during the economic crisis): •scarcity of fossil fuels? •energy safety? •sustainability: the climate change problem. 27 Scarcity of fossil fuels: increasing role of unconventional reserves. Remaining recoverable natural gas resources, end-2011 (tcm) (IEA, WEO 2012) Unconventional gas: 41.5% of total remaining resources 28 Unconventional gas production in 2035 (IEA, WEO 2012) 29 Energy safety: is there a “political peak” concerning fossil fuels supply? •Political power of the oil producers’ cartel, OPEC, and gas suppliers such as Russia; political instability in many oil producer countries. •However: • Price effect of restricting supply: alternative supplies encouraged, energy efficiency, promotion of alternative technologies. • Likely reaction by fossil fuels exporters: increased supply to finance investments for a better level of life asked by an expanding population. 30 The energy-environment challenge: climate change (Helm, The Carbon Crunch, 2012). •News about a world with still abundant fossil fuels are not good news for the climate change issue. •More necessary and urgent to explain why it requires to be addressed (particularly mitigation). •Important to recognize that different types of fossil fuels emit different quantities of carbon. •A switch from coal to gas: great difference in terms of aggregate emissions; useful as a transitional solution. 31 Energy efficiency. •Can be stimulated by a higher energy price; but it is doubtful whether markets will lead to this result, given the abundance of unconventional reserves. •Problems for markets to implement energy efficiency measures: why energy saving companies do not emerge to exploit the fact the investments now will produce future energy consumption savings? •Policies required to support energy saving investments: but they are costly and need resources. 32 Need of a carbon price: but on consumption rather than on production. 33 Problems with current renewable technologies as an alternative to fossil fuels. •Low density power and the need of large spaces. •Intermittency, storage and the need of back-up traditional technologies. •Needs of costly subsidies (feed-in tariffs). •Are the new infrastructure with the existing renewable worth? •For nuclear: increasing capital costs (safety) and unreliability of political framework. 34 The need of investing in new technologies. •Little technical progress in the energy industry in the past century. • Coal power stations date from the 19th century. • Gas combined cycle and the nuclear power stations
Recommended publications
  • What Is That Thing Called Philosophy of Technology? - R
    HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY – Vol. IV - What Is That Thing Called Philosophy of Technology? - R. J. Gómez WHAT IS THAT THING CALLED PHILOSOPHY OF TECHNOLOGY? R. J. Gómez Department of Philosophy. California State University (LA). USA Keywords: Adorno, Aristotle, Bunge, Ellul, Feenberg, Habermas, Heidegger, Horkheimer, Jonas, Latour, Marcuse, Mumford, Naess, Shrader-Frechette, artifact, assessment, determinism, ecosophy, ends, enlightenment, efficiency, epistemology, enframing, ideology, life-form, megamachine, metaphysics, method, naturalistic, fallacy, new, ethics, progress, rationality, rule, science, techno-philosophy Contents 1. Introduction 2. Locating technology with respect to science 2.1. Structure and Content 2.2. Method 2.3. Aim 2.4. Pattern of Change 3. Locating philosophy of technology 4. Early philosophies of technology 4.1. Aristotelianism 4.2. Technological Pessimism 4.3. Technological Optimism 4.4. Heidegger’s Existentialism and the Essence of Technology 4.5. Mumford’s Megamachinism 4.6. Neomarxism 4.6.1. Adorno-Horkheimer 4.6.2. Marcuse 4.6.3. Habermas 5. Recent philosophies of technology 5.1. L. Winner 5.2. A. Feenberg 5.3. EcosophyUNESCO – EOLSS 6. Technology and values 6.1. Shrader-Frechette Claims 6.2. H Jonas 7. Conclusions SAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary A philosophy of technology is mainly a critical reflection on technology from the point of view of the main chapters of philosophy, e.g., metaphysics, epistemology and ethics. Technology has had a fast development since the middle of the 20th century , especially ©Encyclopedia of Life Support Systems (EOLSS) HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY – Vol. IV - What Is That Thing Called Philosophy of Technology? - R.
    [Show full text]
  • Neil Postman
    Five Things We Need to Know About Technological Change by Neil Postman Talk delivered in Denver Colorado March 28, 1998 … I doubt that the 21st century will pose for us problems that are more stunning, disorienting or complex than those we faced in this century, or the 19th, 18th, 17th, or for that matter, many of the centuries before that. But for those who are excessively nervous about the new millennium, I can provide, right at the start, some good advice about how to confront it. …. Here is what Henry David Thoreau told us: “All our inventions are but improved means to an unimproved end.” Here is what Goethe told us: “One should, each day, try to hear a little song, read a good poem, see a fine picture, and, if possible, speak a few reasonable words.” Socrates told us: “The unexamined life is not worth living.” Rabbi Hillel told us: “What is hateful to thee, do not do to another.” And here is the prophet Micah: “What does the Lord require of thee but to do justly, to love mercy and to walk humbly with thy God.” And I could say, if we had the time, (although you know it well enough) what Jesus, Isaiah, Mohammad, Spinoza, and Shakespeare told us. It is all the same: There is no escaping from ourselves. The human dilemma is as it has always been, and it is a delusion to believe that the technological changes of our era have rendered irrelevant the wisdom of the ages and the sages. Nonetheless, having said this, I know perfectly well that because we do live in a technological age, we have some special problems that Jesus, Hillel, Socrates, and Micah did not and could not speak of.
    [Show full text]
  • The Fourth Industrial Revolution: How the EU Can Lead It
    EUV0010.1177/1781685818762890European ViewSchäfer 762890research-article2018 Article European View 2018, Vol. 17(1) 5 –12 The fourth industrial © The Author(s) 2018 https://doi.org/10.1177/1781685818762890DOI: 10.1177/1781685818762890 revolution: How the EU journals.sagepub.com/home/euv can lead it Matthias Schäfer Abstract The fourth industrial revolution is different from the previous three. This is because machines and artificial intelligence play a significant role in enhancing productivity and wealth creation, which directly changes and challenges the role of human beings. The fourth industrial revolution will also intensify globalisation. Therefore, technology will become much more significant, because regions and societies that cope positively with the technological impact of the fourth industrial revolution will have a better economic and social future. This article argues that the EU can play an important role in developing an environment appropriate for the fourth industrial revolution, an environment that is vibrant and open to new technologies. Member states would profit from an EU-wide coordinated framework for this area. The EU has to establish new common policies for the market-oriented diffusion and widespread use of new technologies. Keywords Fourth industrial revolution, Technology policy, Industrial policy, Leadership Introduction Historically there have been four industrial revolutions (see Schwab 2016). The first began in the early nineteenth century, when the power of steam and water dramatically increased the productivity of human (physical) labour. The second revolution started almost a hundred years later with electricity as its key driver. Mass industrial production Corresponding author: M. Schäfer, Department Politics and Consulting, Head of the Team for Economic Policy, Konrad-Adenauer- Stiftung, Berlin, Germany.
    [Show full text]
  • Engineering Growth: Innovative Capacity and Development in the Americas∗
    Engineering Growth: Innovative Capacity and Development in the Americas∗ William F. Maloneyy Felipe Valencia Caicedoz July 1, 2016 Abstract This paper offers the first systematic historical evidence on the role of a central actor in modern growth theory- the engineer. We collect cross-country and state level data on the population share of engineers for the Americas, and county level data on engineering and patenting for the US during the Second Industrial Revolution. These are robustly correlated with income today after controlling for literacy, other types of higher order human capital (e.g. lawyers, physicians), demand side factors, and instrumenting engineering using the Land Grant Colleges program. We support these results with historical case studies from the US and Latin America. A one standard deviation increase in engineers in 1880 accounts for a 16% increase in US county income today, and patenting capacity contributes another 10%. Our estimates also help explain why countries with similar levels of income in 1900, but tenfold differences in engineers diverged in their growth trajectories over the next century. Keywords: Innovative Capacity, Human Capital, Engineers, Technology Diffusion, Patents, Growth, Development, History. JEL: O11,O30,N10,I23 ∗Corresponding author Email: [email protected]. We thank Ufuk Akcigit, David de la Croix, Leo Feler, Claudio Ferraz, Christian Fons-Rosen, Oded Galor, Steve Haber, Lakshmi Iyer, David Mayer- Foulkes, Stelios Michalopoulos, Guy Michaels, Petra Moser, Giacomo Ponzetto, Luis Serven, Andrei Shleifer, Moritz Shularick, Enrico Spolaore, Uwe Sunde, Bulent Unel, Nico Voigtl¨ander,Hans-Joachim Voth, Fabian Waldinger, David Weil and Gavin Wright for helpful discussions. We are grateful to William Kerr for making available the county level patent data.
    [Show full text]
  • Criminal Justice and the Technological Revolution Download The
    Criminal justice and the technological revolution COVID-19 has prompted a profound shift in the use of technology across justice systems internationally. The challenge today is how to build on and accelerate recent progress. Criminal justice and the technological revolution The journey towards a fully digitally-enabled criminal justice system is underway and the potential benefits are vast. The work yet to do is daunting, but the increased access to justice it could deliver is exciting. In this article, we set out some ways that digital and The impact of these changes still needs to be virtual justice can support service transformation evaluated, but this remains a profound shift. And in for victims, witnesses, people with convictions, and many cases, COVID-19 responses either accelerated or criminal justice professionals. We focus on the need to complemented longer-term initiatives to digitise large create a new digital ecosystem around current services parts of the criminal justice system. Our work shows and to target technology investments on the biggest that our focus geographies all have major programmes problems highlighted in our international research of technology-enabled change underway to digitise effort: and manage criminal case information through online platforms and to increase use of remote and virtual • Harnessing digital twin capabilities to reduce court working technologies. Many involve long-term billion- backlogs dollar investments and are among the most significant change programmes operating across governments. • Making virtual prisons a reality Digital and virtual justice at a crossroads • Supporting rehabilitation through virtual desistance The challenge today is how to build on and accelerate platforms recent progress.
    [Show full text]
  • Technology, Development and Economic Crisis: the Schumpeterian Legacy
    CIMR Research Working Paper Series Working Paper No. 23 Technology, development and economic crisis: the Schumpeterian legacy by Rinaldo Evangelista University of Camerino Piazza Cavour, 19/F, 62032 Camerino (IT) +39-0737-403074 [email protected] June 2015 ISSN 2052-062X Abstract This contribution aims at highlighting the complex, non-linear and potentially contradictory nature of the relationships between technological progress, economic growth and social development, in particular within the context of market based economies. The main (provocative) argument put forward in the paper is that the recent neo-Schumpeterian literature, while providing fundamental contributions to our understanding of innovation, has contributed to the rising of a positivistic reading of the relationship between technology, economy and society, with technology being able to guaranty strong economic growth and (implicitly) social welfare. This is confirmed by the fact that, contrary to other influential heterodox economic schools and Schumpeter himself, in the recent neo- Schumpeterian literature technology is only rarely associated to macroeconomic market failures such as systemic crises, structural unemployment, and the growth of social and economic inequalities. It is also argued that the emergence of a “positivistic bias” in the neo-Schumpeterian literature has been associated to the dominance of a supply-side and micro-based view of the technology-economy relationships. Key words: Technology, Innovation, Schumpeter, Development, Crisis JEL codes: B52, O00, O30. 2 1. Introduction There is no doubt that the last economic crisis, with its depth, extension and length, could have, at least in principle, the potentiality of shaking at the fundamentals the dominant neo-liberal economic thinking and policy framework.
    [Show full text]
  • Fourth Industrial Revolution, Challenge Accepted a Guide to Understanding Why Japan Is Set to Re-Own International Leadership in the ‘Era of Acceleration’
    J APAN Fourth Industrial Revolution, challenge accepted A guide to understanding why Japan is set to re-own international leadership in the ‘era of acceleration’ As the dominant force in global manufacturing in the 1970s and early 1980s, particularly in the consumer electronics industry, Japan became an economic juggernaut and a poster boy for technological innovation. However, what followed has since become commonly known Like any revolution, there will is already a pioneer – is expected to as the “Lost Decades”: a period of be winners and losers, so Japan, it grow at an annual rate of 12% to “Japan’s forte is in economic decline characterized by seems, couldn’t have timed its manu- reach $79.5bn by 2022. creating high-quality a loss of ground to manufacturing facturing comeback much better. On Yoshiharu Inaba, Chairman and authentic products” rivals in the Asian region and further the back of Prime Minister Shinzo CEO of FANUC – Japan’s leading exasperated by the global fnancial Abe’s eponymous ‘Abenomics’ strate- robotics company – believes the Kazuhiro Kashio, crisis in 2008. gy and Japanese industry’s great glo- signifcance of such growth will be President, CASIO The pendulum though has swung balization push, the country shipped historically monumental. once again, and this period in the run $645.2 billion worth of goods inter- “With the invention of steam en- up to 2020 – the year Japan will host nationally last year, up by 11.1% since gines, Britain’s industrial revolution ucts were synonymous with quality the Olympics – is being marked as 2009 when the economic recession boosted the effciency of manufac- and reliability, and the world knew the country’s great comeback to kicked in, and up 3.2% from 2015.
    [Show full text]
  • Mobile Leapfrogging and Digital Divide Policy Assessing the Limitations of Mobile Internet Access
    New America Foundation Mobile Leapfrogging and Digital Divide Policy Assessing the limitations of mobile Internet access By Philip M. Napoli and Jonathan A. Obar1 April 2013 This paper examines the emerging global phenomenon of mobile leapfrogging in Internet access. Leapfrogging refers to the process in which new Internet users are obtaining access by mobile devices and are skipping the traditional means of access: personal computers. This leapfrogging of PC-based Internet access has been hailed in many quarters as an important means of rapidly and inexpensively reducing the gap in Internet access between developed and developing nations, thereby reducing the need for policy interventions to address this persistent digital divide. This paper offers a critical perspective on the process of mobile leapfrogging. Drawing upon data on Internet access and device penetration from 34 countries, this paper first shows that while greater access to mobile technologies suggests the possibility of a leapfrog effect, the lack of 3G adoption suggests that mobile phones are not yet acting as functionally equivalent substitutes for personal computers. Next, this paper puts forth a set of concerns regarding the limitations and potential shortcomings of mobile-based Internet access relative to traditional PC-based Internet access. This paper illustrates a number of important relative shortcomings in terms of memory and speed, content availability, network architecture, and patterns of information seeking and content creation amongst users. This paper concludes that policymakers should be cautions about promoting mobile access as a solution to the digital divide, and undertake policy reforms that ensure that communities that rely on mobile as their only gateway to the Internet do not get left further behind.
    [Show full text]
  • Spring Quarter 2019 – Undergraduate Course Offerings
    Spring Quarter 2019 – Undergraduate Course Offerings Courses with an asterisk (*) are open for Pre-registration. ANTHROPOLOGY ANTHRO 221-0 - Social and Health Inequalities 20 (32686) Thomas McDade - TuTh 2:00PM - 3:20PM *Income inequality in the U.S is expanding, while social inequalities in health remain large, and represent longstanding challenges to public health. This course will investigate trends in social and health inequality in the U.S., and their intersection, with attention to the broader global context as well. It will examine how social stratification by race/ethnicity, gender, marital status, national origin, sexual orientation, education, and/or other dimensions influence the health status of individuals, families, and populations; and, conversely, how health itself is thought to be a fundamental determinant of key social outcomes such as educational achievement and economic status. The course will draw on research from anthropology, sociology, psychology, economics, political science, social epidemiology, biomedicine, and evolutionary biology. ANTHRO 314-0 - Human Growth & Development 20 (32683) Erin Beth Waxenbaum Dennison - MoWe 9:30AM - 10:50AM *In this course, we will examine human growth and development. By its very nature, this topic is a bio cultural process that requires an integrated analysis of social construction and biological phenomena. To this end, we will incorporate insight from evolutionary ecology, developmental biology and psychology, human biology and cultural anthropology. Development is not a simple matter of biological unfolding from birth through adolescence; rather, it is a process that is designed to be in sync with the surrounding environment within which the organism develops. Additionally we will apply these bio cultural and socio-ecological insights to emerging health challenges associated with these developmental stages.
    [Show full text]
  • EDITORIAL BOARD THOUGHTS the Fourth Industrial Revolution Does It Pose an Existential Threat to Libraries? Brady Lund
    EDITORIAL BOARD THOUGHTS The Fourth Industrial Revolution Does It Pose an Existential Threat to Libraries? Brady Lund No. No, it does not. Not any more than any other technological innovation (information systems, personal computers, the Internet, e-readers, Google, Google Scholar) did. However, what is very likely is that the technologies that emerge from this era will slowly (but surely) lead to profound changes in how libraries operate. Those libraries that fail to understand or embrace these technologies may, in fact, be left behind. So, we must, as always, stay abreast of trends in emerging technologies and what the literature (i.e., articles in this journal) propose as ideas for adopting (and adapting) them to better serve our patrons. With this column, my aim is to briefly discuss what the fourth industrial revolution is and its relevance within our profession. THE “FOURTH” INDUSTRIAL REVOLUTION? The term “fourth industrial revolution” describes the evolution of information technology towards greater automation and interconnectedness. It includes or incorporates technological advancements such as artificial intelligence, blockchain, advanced robotics, the Internet of Things, autonomous vehicles, virtual reality, 3D printing, nanotechnology, and quantum computing.1 Imaginations can run amok with idyllic visions of Walt Disney’s EPCOT—a utopian world of interconnectedness and efficiency—or dystopian nightmares captured in the mind of Stephen King, George Orwell, or Pixar’s WALL-E. If we have learned anything from the past though—and after the last 12 months I cannot be entirely sure of that—it is that reality is likely to settle somewhere in the middle. Some things will improve dramatically in our lives but there will also be negative impacts—funding changes, learning curves, and maybe a bit of soul-searching within the profession (not that that last one is necessarily a bad thing).
    [Show full text]
  • Leapfrogging: Look Before You Leap
    UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT No.71 DECEMBER 2018 LEAPFROGGING: LOOK BEFORE YOU LEAP New technologies, such as digital mobile communications, drones for precision agriculture and decentralized renewable energy systems that provide electricity in rural areas far from the grid, open up opportunities for leapfrogging. As developing countries have limited capabilities, opportunities for leapfrogging in these countries are presented primarily through the adoption of technologies. Innovation policies can help developing countries foster and facilitate the deployment of frontier technologies and their adaptation to meet their needs, to promote sustainable development.1 Frontier technologies and Potential for leapfrogging leapfrogging In large part, the experience of the ICT Discussions of the developmental dimension sector has brought increased attention to of frontier technologies, particularly digital leapfrogging. Rapid technological advances technologies, often highlight the possibility and cost reductions in ICT in recent decades have enabled some developing countries, POLICY BRIEF of “leapfrogging”, the concept of “bypassing intermediate stages of technology through notably in Africa and Asia, to skip the Key points which countries have historically passed development of landline infrastructure by 2 moving directly to mobile telecommunications. • Countries engage in during the development process”. The leapfrogging by bypassing traditional notion of “catch-up” refers For example, in the early 2000s, Cambodia, the imtermediate stages of to the narrowing of gaps in income and Côte d’Ivoire, Gambia, Ghana, Mali, Nepal technology in a development technological capabilities between a late- and Timor-Leste had less than three fixed- process. telephone subscriptions per 100 inhabitants, • Rapid technological advances developing country and a front-runner and cost reductions in country.
    [Show full text]
  • Information Technological Revolution and Institutional Innovations
    UNIVERSITY OF HELSINKI FACULTY OF BEHAVIOURAL SCIENCES Reijo Miettinen INFORMATION TECHNOLOGICAL REVOLUTION AND INSTITUTIONAL INNOVATIONS CRADLE Center for Research on Activity, Development and Learning Working papers 4/2014 University of Helsinki Center for Research on Activity, Development and Learning CRADLE Working papers 4/2014 Reijo Miettinen INFORMATION TECHNOLOGICAL REVOLUTION AND INSTITUTIONAL INNOVATIONS University of Helsinki ISBN 978-952-10-8226-9 ISSN-L 1798-3118 ISSN 1798-3118 Helsinki 2014 CONTENTS 1 Technological revolutions and institutional change ....................................... 4 2 The organizational consequences of the information technological revolution ....................................................................................................... 6 3 Networks, open innovation and the breakthrough of commons-based peer-production ............................................................................................ 11 4 Intellectual property rights and the internal contradiction of the knowledge society .................................................................................. 19 5 Innovations and democracy: from top-down policies to local experiments and institutional learning .............................................................................. 27 PREFACE The history of this working paper is the following. I wrote a small book entitled National innovation system. Scientific concept or political rhetoric published by the Finnish Innovation Fund (Sitra) and Edita publisher in
    [Show full text]