Qt08t5c2m9.Pdf
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Posets, Polytopes and Positroids Permalink https://escholarship.org/uc/item/08t5c2m9 Author Chavez, Anastasia Maria Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Posets, Polytopes, and Positroids by Anastasia Maria Chavez A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Lauren K. Williams, Chair Professor Federico Ardila Professor Daniel I. Tataru Professor Rodolfo Mendoza-Denton Spring 2017 Posets, Polytopes, and Positroids Copyright 2017 by Anastasia Maria Chavez 1 Abstract Posets, Polytopes, and Positroids by Anastasia Maria Chavez Doctor of Philosophy in Mathematics University of California, Berkeley Professor Lauren K. Williams, Chair This dissertation explores questions about posets and polytopes through the lenses of positroids and geometry. The introduction and study of positroids, a special class of ma- troids, was pioneered by Postnikov in his study of the totally nonnegative Grassmannian and has subsequently been applied to various fields such as cluster algebras, physics, and free probability. Postnikov showed that positroids, the matroids realized by full rank k × n real matrices whose maximal minors are nonnegative, are in bijection with several combinatorial objects: Grassmann necklaces, decorated permutations, Le-diagrams and plabic graphs. In the first chapter, following work of Skandera and Reed, we define the unit interval positroid arising from a unit interval order poset via its associated antiadjacency matrix. We give a simple description of the decorated permutation representation of a unit interval positroid, and show it can be recovered from the Dyck path drawn on the associated antiad- jacency matrix.
[Show full text]