INTENSIVE CARE in NEUROLOGY and NEUROSURGERY Pathophysiological Basis for the Management of Acute Cerebral Injury

Total Page:16

File Type:pdf, Size:1020Kb

INTENSIVE CARE in NEUROLOGY and NEUROSURGERY Pathophysiological Basis for the Management of Acute Cerebral Injury Daniel Agustín Godoy INTENSIVE CARE IN NEUROLOGY AND NEUROSURGERY Pathophysiological Basis for the Management of Acute Cerebral Injury VOLUME 1 Head Editor Daniel Agustín Godoy, MD, FCCM Neurointensive Care Unit- Sanatorio Pasteur Intensive Care Unit Hospital Interzonal de Agudos ‘’San Juan Bautista’’ Catamarca. Argentina Associate Editor Gustavo Rene Piñero, MD, FCCM Intensive Care Unit Hospital Municipal ‘’Leonidas Lucero’’ Assistant Professor Critical and Emergency MedicineHealth Sciences Department - South University Bahia Blanca, Buenos Aires. Argentina © SEEd srl. All rights reserved Piazza Carlo Emanuele II, 19 – 10123 Torino, Italy Tel. 011.566.02.58 – Fax 011.518.68.92 www.edizioniseed.it [email protected] First edition February 2013 VOLUME 1 ISBN 978-88-9741-939-6 Printed on acid-free paper by Tipografia Graphot, Torino (Italy) Although the information about medication given in this book has been carefully checked, the author and publisher accept no liability for the accuracy of this information. In every individual case the user must check such information by consulting the relevant literature. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcast- ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publi- cation or parts thereof is permitted only under the provisions of the Italian Copyright Law in its current version, and permission for use must always be obtained from SEEd Medical Publishers Srl. Violations are liable to prosecution under the Italian Copyright Law. To my parents Mirtha and Justino for giving me the life, education and the opportunity to study and acquire this wonderful profession. To my kids, Facundo, Luciano, Josefina and Alvaro who have suffered my absences and for all the love given me every day. To Veronica, my love, my friend, my support, guidance, and containment with whom if God willing I share what I have left. To all my colleagues and friends who have shared with me over than 23 years of hard and tireless work, uncertainties, anxieties, sorrows and joys in the Intensive Care Units where I have worked. To the life... Table of Contents Prologue ........................................................................................................................XV Preface ........................................................................................................................XVII References.........................................................................................................XVII SECTION 1. Introduction to Neuroinjury 1 Neuroscience Critical Care: Two Experts’ Point of View ................................................ 3 1.1 History, Organization, and Vision for the Future: Prof. Mirski’s Point of View ......3 1.2 NICU Organization: Past, Present and Future: Prof. Robertson’s Point of View .. 10 References........................................................................................................... 20 2 Basic Anatomy Applied to the Interpretation of Axial Tomography of the Brain in Emergency Medicine ............................................................................27 2.1 Introduction ........................................................................................................ 27 2.2 Development....................................................................................................... 27 2.3 Key Concepts ....................................................................................................... 36 2.4 Appendix: Images ................................................................................................ 36 References........................................................................................................... 51 General References ............................................................................................. 51 3 Physiological Basis for the Correct Interpretation of Different Situations in Acute Cerebral Injury ................................................................................................ 53 3.1 Functional and Structural Organization of the Nervous System .........................53 3.2 The Blood-Brain Barrier (BBB) .............................................................................55 3.3 Cerebrospinal Fluid (CSF) ....................................................................................56 3.4 Aquaporins (AQP)................................................................................................ 57 3.5 Intracranial Pressure ........................................................................................... 58 3.6 Cerebral Volume/Pressure Curve (V/P). Cerebral Compliance ............................59 3.7 Intracranial Pressure Curve .................................................................................60 3.8 Cerebral Oxygen Metabolism ..............................................................................61 3.9 Cerebral Blood Flow (CBF)...................................................................................62 3.10 Oxygen Tissue Pressure (ptiO2) ...........................................................................64 3.11 Cerebral Glucose Metabolism .............................................................................65 3.12 Cerebral Temperature ......................................................................................... 65 3.13 Brain-systemic Temperature Gradient ................................................................66 3.14 Concept of Primary and Secondary Injury ..........................................................68 General References ............................................................................................. 68 4 Examination of the Critically Ill Neurological Patient .................................................. 71 4.1 Clinical Evaluation (or Examination) of the Critically Ill Neurological Patient .....71 4.2 General Examination ........................................................................................... 72 4.3 Comprehensive Neurological Examination .........................................................74 4.4 Routine Investigations of the Neurocritical Patient ............................................74 V Intensive Care in Neurology and Neurosurgery 4.5 Focused Neurological Examination of Selected Topics .......................................75 References......................................................................................................... 101 General References ...........................................................................................102 5 Evaluation Scales in Neurocritically Ill Patients ......................................................... 105 5.1 Objectives ......................................................................................................... 105 5.2 Introduction ...................................................................................................... 105 5.3 Evaluation in the Acute Phase ...........................................................................105 5.4 Imaging-based Assessment Scales ....................................................................114 5.5 Scale of Evolution, Evaluation of Consciousness in Advanced Stages of Brain Injury Outcome Scales .........................................................................123 General References ...........................................................................................129 SECTION 2. Neuromonitoring 6 Neuroimage Monitoring in the Management of Neurocritical Care Patients ...........135 6.1 Introduction ...................................................................................................... 135 6.2 CT in Head-injured Patients...............................................................................137 6.3 CT in Patients With Cerebrovascular Hemorrhagic Disease ..............................145 6.4 CT in the Diagnosis of Acute Ischemic Cerebrovascular Diseases ....................152 6.5 Conclusions ....................................................................................................... 156 References......................................................................................................... 156 7 Intracranial Pressure Monitoring. Acute Cerebral Injury: the First 48 Hours ...........159 7.1 Intracranial Pressure .........................................................................................159 7.2 Techniques for Monitoring Intracranial Pressure ..............................................160 7.3 The ICP Waveform ............................................................................................. 161 7.4 Elevated Intracranial Pressure and Pressure Waves ..........................................163 7.5 Cerebral Perfusion Pressure ..............................................................................165 7.6 Cerebral Autoregulation ....................................................................................165 7.7 Indications for ICP Monitoring ..........................................................................166 7.8 Conclusions ....................................................................................................... 166 References........................................................................................................
Recommended publications
  • Challenges and Techniques for Presurgical Brain Mapping with Functional MRI
    Challenges and techniques for presurgical brain mapping with functional MRI The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Silva, Michael A., Alfred P. See, Walid I. Essayed, Alexandra J. Golby, and Yanmei Tie. 2017. “Challenges and techniques for presurgical brain mapping with functional MRI.” NeuroImage : Clinical 17 (1): 794-803. doi:10.1016/j.nicl.2017.12.008. http://dx.doi.org/10.1016/ j.nicl.2017.12.008. Published Version doi:10.1016/j.nicl.2017.12.008 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34651769 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NeuroImage: Clinical 17 (2018) 794–803 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Challenges and techniques for presurgical brain mapping with functional T MRI ⁎ Michael A. Silvaa,b, Alfred P. Seea,b, Walid I. Essayeda,b, Alexandra J. Golbya,b,c, Yanmei Tiea,b, a Harvard Medical School, Boston, MA, USA b Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA c Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA ABSTRACT Functional magnetic resonance imaging (fMRI) is increasingly used for preoperative counseling and planning, and intraoperative guidance for tumor resection in the eloquent cortex. Although there have been improvements in image resolution and artifact correction, there are still limitations of this modality.
    [Show full text]
  • Medical Term for Spine
    Medical Term For Spine Is Urban encircled or Jacobethan when tosses some deflections Jacobinising alfresco? How Ethiopian is Fonz when undercuttingprobationary and locoedformulated ahorse, Stefan uncompounded recommence andsome laigh. fifers? Si rage his Saiva niche querulously or therewith after Reagan Centers for too extensively or destroy nerve roots exit the term for back pain Information on spinal stenosis for patients and caregivers what fear is signs and symptoms getting diagnosed treatment options and tips for. Medical Terminology Skeletal Root Words dummies. Depending on relieving pressure for medical terms literally means that put too much as well as pain? At birth involving either within this? Transverse sinus stenting is rotation or relax the space narrowing can cause narrowing is made worse in determining if a form for medical term results in alphabetical order for? Below this term for these terms and spine conditions, making a flat on depression can develop? Spine Glossary Dr Joshua Rovner. The term for hypophysectomies among pediatric neurooncological care professional medical terms, or weakness of. Understanding Lumbosacral Strain Fairview. Decompressive surgery often involves a laminectomy or erase process of enlarging your spinal canal to relieve pressure on the spinal cord or nerves by removing. Vertigo is a medical term that refers to the big of motion that help out of. It is prominent only rehabilitation system licensed as a military-term acute day hospital. Spinal Surgery Terminology Gwinnett Medical Center. Lumbago Is a non medical term usually lower lumbar back pain. A Glossary of Neurosurgical Terms Weill Cornell Brain and. Anatomy of the Spine Cedars-Sinai. Glossary of terms used in Neurosurgery brain thoracic spine.
    [Show full text]
  • Electrophysiologic Monitoring in Neurointensive Care
    Ovid: Electrophysiologic monitoring in neurointensive care. Main Search Page Ask A LibrarianDisplay Knowledge BaseHelpLogoff Full Text Save Article TextEmail Article TextPrint Preview Electrophysiologic monitoring in neurointensive care Procaccio, Francesco MD*†; Polo, Alberto MD*; Lanteri, Paola MD†; Sala, ISSN: Author(s): Francesco MD† 1070- 5295 Issue: Volume 7(2), April 2001, pp 74-80 Accession: Publication Type: [Neuroscience] 00075198- Publisher: © 2001 Lippincott Williams & Wilkins, Inc. 200104000- University and City Hospital Neuroanesthesia and Intensive Care, Department 00004 of Neurological Sciences and Vision, Divisions of *Neurology and Full †Neurosurgery, Verona, Italy. Institution(s): Text Correspondence to Francesco Procaccio, MD, Neuroanesthesia and Intensive (PDF) Care, University and City Hospital, Pz Stefani, 1, 37124 Verona, Italy; e-mail: 69 K [email protected] Email Jumpstart Table of Contents: Find ≪ Neurologic complications in intensive care. Citing ≫ Pediatric neurologic emergencies. Articles ≪ Abstract Table Links of Cumulative evidence of potential benefits of Contents Abstract electroencephalography (EEG) and evoked potentials in About Complete Reference the management of patients with acute cerebral this ExternalResolverBasic damage has been confirmed. Continuous EEG Journal Outline monitoring is the best method for detecting ≫ nonconvulsive seizures and is strongly recommended for the treatment of status epilepticus. Continuously displayed, ● Abstract validated quantitative EEG may facilitate early detection
    [Show full text]
  • An Introduction to Anaesthesia for Neurosurgery
    AN INTRODUCTION TO ANAESTHESIA FOR NEUROSURGERY Barbara Stanley, Norfolk and Norwich University Hospital, UK Email: [email protected] Introduction • Intracranial hypertension Anaesthesia for neurosurgical procedures requires • Associated conditions or trauma understanding of the normal anatomy and physiology of the central nervous system and the likely changes The procedure that occur in response to the presence of space • Short procedure time occupying lesions, trauma or infection. • Great surgical stimulation whilst shunt is In addition to balanced anaesthesia with smooth tunnelled induction and emergence, particular attention should The practicalities be paid to the maintenance of an adequate cerebral perfusion pressure (CPP), avoidance of intracranial • Supine position hypertension and the provision of optimal surgical • Invasive monitoring for burr hole conditions to avoid further progression of the pre- existing neurological insult. Postoperative care Aims of neuroanaesthesia • Rapid recovery and neurological assessment • To maintain an adequate cerebral perfusion Physiological Principals pressure (CPP) Cerebral perfusion pressure and the intracranial pressure/volume relationship • To maintain a stable intracranial pressure (ICP) Maintenance of adequate blood flow to the brain is • To create optimal surgical conditions of fundamental importance in neuroanaesthesia. • To ensure an adequately anaesthetised patient Cerebral blood flow (CBF) accounts for approximately who is not coughing or straining 15% of cardiac output, or 700ml/min.
    [Show full text]
  • Critical Care Neurology and Neuro Critical Care
    CRITICAL CARE NEUROLOGY AND NEURO CRITICAL CARE 1 of 86 ROADMAP CRITICAL CARE NEUROLOGY • Analgesia, sedation and neuromuscular blockade o Basic principles, goals, general guidelines and assessment o Table of established drugs o Sedation for endotracheal intubation in critical care o Specialist analgesia in critical care • Sleep • Neurological dysfunction in critical care o Acute brain dysfunction o Delirium o Autonomic dysfunction o Critical illness neuromyopathy o Encephalopathy o Disease specific / syndromal encephalopathies ( ° Hypertensive encephalopathies ° Toxic and metabolic encephalopathies o Common infectious and inflammatory diseases of the nervous system ° Meningitis ° Encephalitis - gereralised and limbic • Transverse myelitis ° Acute inflammatory demyelinating polyneuropathy (AIDP) ° Myaesthenic crises ° Therapeutic plasma exchange and IVIg o Epilespy and seizures ° EEG ° Pathophysiology ° Epidemiology and epileptogenesis ° Epilepsy in ICU • Post injury epilepsy • Status epilepticus ° Anti-epileptic drugs (AEDs) • The controversy of prophylactic AEDs • Proconvulsant drugs o Persistent disorders of consciousness o Brain stem death: diagnosis, pathophysiology and management of the potential organ donor. CORE TOPICS IN NEURO CRITICAL CARE • Secondary brain injury o Pathophysiology – oedema, vascular autoregulation, sodium, glucose, temperature (metabolic supply / demand imbalance), oxygen, carbon dioxide o Prevention and neuroprotection – discussed for each topic above plus pharmacological therapies (epo, progesterone, magnesium
    [Show full text]
  • Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke
    International Journal of Molecular Sciences Review Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke Yun Hwa Choi 1, Collin Laaker 2, Martin Hsu 2, Peter Cismaru 3, Matyas Sandor 4 and Zsuzsanna Fabry 2,4,* 1 School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 2 Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] (C.L.); [email protected] (M.H.) 3 Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 4 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] * Correspondence: [email protected] Abstract: Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communi- cation. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, Citation: Choi, Y.H.; Laaker, C.; Hsu, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation M.; Cismaru, P.; Sandor, M.; Fabry, Z.
    [Show full text]
  • The Range of Neurological Complications in Chikungunya Fever
    Neurocrit Care DOI 10.1007/s12028-017-0413-8 REVIEW ARTICLE The Range of Neurological Complications in Chikungunya Fever 1 2 3 4 5,6 T. Cerny • M. Schwarz • U. Schwarz • J. Lemant • P. Ge´rardin • E. Keller1 Ó Springer Science+Business Media New York 2017 Abstract assigning categories A–C, category A representing the Background Chikungunya fever is a globally spreading highest level of quality. Only A and B cases were con- mosquito-borne disease that shows an unexpected neu- sidered for further analysis. After general analysis, cases rovirulence. Even though the neurological complications were clustered according to geospatial criteria for subgroup have been a major cause of intensive care unit admission analysis. and death, to date, there is no systematic analysis of their Results Thirty-six of 1196 studies were included, yielding spectrum available. 130 cases. Nine were ranked as category A (diagnosis of Objective To review evidence of neurological manifesta- Neuro-Chikungunya probable), 55 as B (plausible), and 51 tions in Chikungunya fever and map their epidemiology, as C (disputable). In 15 cases, alternative diagnoses were clinical spectrum, pathomechanisms, diagnostics, therapies more likely. Patient age distribution was bimodal with a and outcomes. mean of 49 years and a second peak in infants. Fifty per- Methods Case report and systematic review of the litera- cent of the cases occurred in patients <45 years with no ture followed established guidelines. All cases found were reported comorbidity. Frequent diagnoses were encephali- assessed using a 5-step clinical diagnostic algorithm tis, optic neuropathy, neuroretinitis, and Guillain–Barre´ syndrome. Neurologic conditions showing characteristics of a direct viral pathomechanism showed a peak in infants Electronic supplementary material The online version of this and a second one in elder patients, and complications and article (doi:10.1007/s12028-017-0413-8) contains supplementary neurologic sequelae were more freque material, which is available to authorized users.
    [Show full text]
  • Psychiatry and Neurology
    ensic For Ps f yc o h l a o l n o r g u y o J ISSN: 2475-319X Journal of Forensic Psychology Editorial Psychiatry and Neurology Carlos Roberto* Department of Psychology, La Sierra University, California, USA DESCRIPTION between neurological and psychiatric disorders. for instance , it's documented that a lot of patients with paralysis agitans and Psychiatry is that the medicine dedicated to the diagnosis, stroke manifest depression and, in some, dementia. Is there a prevention, and treatment of mental disorders. These include substantive difference between a toxic psychosis (psychiatry) and various maladaptation’s associated with mood, behavior, a metabolic encephalopathy with delirium (neurology) we've cognition, and perceptions. See glossary of psychiatry. known of those examples for several years? Never and dramatic evidence has come largely through functional resonance imaging Neurology is that the branch of drugs concerned with the study and positron emission tomography. Obsessive-compulsive and treatment of disorders of the system nervosum. The system a disorder is characterized by recurrent, unwanted, intrusive ideas, nervosum may be a complex, sophisticated system that regulates images, or impulses that appear silly, weird, nasty, or horrible and coordinates body activities. Its two major divisions: Central nervous system: the brain and medulla spinalis. (obsessions) and by urges to hold out an act (compulsions) which will lessen the discomfort thanks to the obsessions. Increasing the amount of brain serotonin with selective reuptake inhibitors DIFFERENCE BETWEEN PSYCHITARY may control the symptoms and signs of this disorder. Evidence AND NEUROLOGY of a genetic basis in some patients, structural abnormalities of the brain on resonance imaging in others, and abnormal brain For quite 2000 years within the West, neurology and psychiatry function on functional resonance imaging and positron were thought to be a part of one, unified branch of drugs, which emission tomography collectively suggest that schizophrenia may was often designated neuropsychiatry.
    [Show full text]
  • Clinical Neurophysiology (CNP) Section Resident Core Curriculum
    American Academy of Neurology Clinical Neurophysiology (CNP) Section Resident Core Curriculum 9/7/01 Definition of the Subspecialty of Clinical Neurophysiology The subspecialty of Clinical Neurophysiology involves the assessment of function of the central and peripheral nervous system for the purpose of diagnosing and treatment of neurologic disorders. The CNP procedures commonly used include EEG, EMG, evoked potentials, polysomnography, epilepsy monitoring, intraoperative monitoring, evaluation of movement disorders, and autonomic nervous system testing. The use of CNP procedures requires an understanding of neurophysiology, clinical neurology, and the findings that can occur in various neurologic disorders. The following are the recommended CORE curriculum for residents re CNP. Basic Neurophysiology: Membrane properties of nerve and muscle potentials (resting, action, synaptic, generator), ion channels, synaptic transmission, physiologic basis of EEG, EMG, evoked potentials, sleep mechanisms, autonomic disorders, epilepsy, neuromuscular diseases, and movement disorders Anatomic Substrates of EEG, EMG, evoked potentials, sleep and autonomic activity Indications: Know the indications for and the interpretation of the various CNP tests in the context of the clinical problem. EEG: 1. Recognize normal EEG patterns of infants, children, and adults 2. Recognize abnormal EEG patterns and their clinical significance, including epileptiform patterns, coma patterns, periodic patterns, and the EEG patterns seen with various focal and diffuse neurologic and systemic disorders. 3. Know the EEG criteria for recording in suspected brain death EMG: 1. Know the normal parameters of nerve conduction studies and needle exam of infants, children, and adults 2. Know the abnormal patterns of nerve conduction studies and needle exam and the clinical correlates with various diseases that affect the neuromuscular and peripheral nervous system Evoked Potential Studies 1.
    [Show full text]
  • Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury
    Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Irimia, Andrei, Micah C. Chambers, Carinna M. Torgerson, Maria Filippou, David A. Hovda, Jeffry R. Alger, Guido Gerig, et al. 2012. Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury. Frontiers in Neurology 3:10. Published Version doi://10.3389/fneur.2012.00010 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8462352 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA METHODS ARTICLE published: 06 February 2012 doi: 10.3389/fneur.2012.00010 Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury Andrei Irimia1, Micah C. Chambers 1, Carinna M.Torgerson1, Maria Filippou 2, David A. Hovda2, Jeffry R. Alger 3, Guido Gerig 4, Arthur W.Toga1, Paul M. Vespa2, Ron Kikinis 5 and John D. Van Horn1* 1 Laboratory of Neuro Imaging, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA 2 Brain Injury Research Center, Departments of Neurology and Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA 3 Department of Radiology, David
    [Show full text]
  • Neuropathology / Neurosurgery
    Interinstitutional and interstate teleneuropathology Clayton A. Wiley, MD/PhD [email protected] Disclosures • None – Employee of UPMC and U Pittsburgh – Clinical evaluation board for OMNYX • But I remain receptive if anyone has any great ideas ….. History • 1973: Washington, DC pathologists diagnosed lymphosarcoma/leukemia via satellite in a patient on a ship docked in Brazil • 1986: “telepathology” coined • 1993: first teleneuropathology paper (Becker et al.) – High error rate (27%) – Static imaging system • 2001: Szymas et al. – Robotic dynamic system – 83 paraffin-embedded neurosurgical cases – 95% accuracy Telepathology systems • Static versus dynamic – Static images dependent on proper selection of diagnostic fields • Dynamic: Robotic versus non-robotic – Non-robotic requires two pathologists, one at each end • Whole Slide Imaging 2001 • Dynamic non-robotic for IO consults • Teleconferencing between 2 pathologists at 2 hospitals 18 blocks apart • Problems – Inadequate image quality (NTSC 640 X 480) – No remote control – Required 2 pathologists – Frequent technical glitches, also required presence of IT techs to assist 2002: Nikon DN100 • Static, non-robotic • High-resolution imaging (1280 X 960) • Broadcast every 2 seconds • No remote control • No whole-slide image available 2003: Nikon Coolscope • Dynamic-robotic system • High resolution • Full remote control by consulting neuropathologist • Trained PA to make specimens Our Analysis • Compared error and deferral rates between conventional and telepathology IO cases over 5 years 2002-2006
    [Show full text]
  • Synaesthesia — a Window Into Perception, Thought and Language
    V.S.Ramachandran and E.M. Hubbard Synaesthesia—AWindow Into Perception, Thought and Language Abstract: We investigated grapheme–colour synaesthesia and found that: (1) The induced colours led to perceptual grouping and pop-out, (2) a grapheme rendered invisible through ‘crowding’ or lateral masking induced synaesthetic colours — a form of blindsight — and (3) peripherally presented graphemes did not induce colours even when they were clearly visible. Taken collectively, these and other experiments prove conclusively that synaesthesia is a genuine percep- tual phenomenon, not an effect based on memory associations from childhood or on vague metaphorical speech. We identify different subtypes of number–colour synaesthesia and propose that they are caused by hyperconnectivity between col- our and number areas at different stages in processing; lower synaesthetes may have cross-wiring (or cross-activation) within the fusiform gyrus, whereas higher synaesthetes may have cross-activation in the angular gyrus. This hyperconnec- tivity might be caused by a genetic mutation that causes defective pruning of con- nections between brain maps. The mutation may further be expressed selectively (due to transcription factors) in the fusiform or angular gyri, and this may explain the existence of different forms of synaesthesia. If expressed very diffusely, there may be extensive cross-wiring between brain regions that represent abstract concepts, which would explain the link between creativity, metaphor and synaesthesia (and the higher incidence of synaesthesia among artists and poets). Also, hyperconnectivity between the sensory cortex and amygdala would explain the heightened aversion synaesthetes experience when seeing numbers printed in the ‘wrong’ colour. Lastly, kindling (induced hyperconnectivity in the temporal lobes of temporal lobe epilepsy [TLE] patients) may explain the purported higher incidence of synaesthesia in these patients.
    [Show full text]