A Cenozoic Diffuse Alkaline Magmatic Province (DAMP) in the Southwest Pacific Without Rift Or Plume Origin

Total Page:16

File Type:pdf, Size:1020Kb

A Cenozoic Diffuse Alkaline Magmatic Province (DAMP) in the Southwest Pacific Without Rift Or Plume Origin Article Geochemistry 3 Volume 6, Number 1 Geophysics 16 February 2005 Q02005, doi:10.1029/2004GC000723 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin Carol A. Finn U.S. Geological Survey, Denver Federal Center, MS 945, Denver, Colorado 80226, USA R. Dietmar Mu¨ller School of Geosciences and University of Sydney Institute of Marine Science, University of Sydney, Edgeworth David Building F05, Sydney, New South Wales 2006, Australia Kurt S. Panter Department of Geology, Bowling Green State University, Bowling Green, Ohio 53503-0218, USA ([email protected]) [1] Common geological, geochemical, and geophysical characteristics of continental fragments of East Gondwana and adjacent oceanic lithosphere define a long-lived, low-volume, diffuse alkaline magmatic province (DAMP) encompassing the easternmost part of the Indo-Australian Plate, West Antarctica, and the southwest portion of the Pacific Plate. A key to generating the Cenozoic magmatism is the combination of metasomatized lithosphere underlain by mantle at only slightly elevated temperatures, in contrast to large igneous provinces where mantle temperatures are presumed to be high. The SW Pacific DAMP magmatism has been conjecturally linked to rifting, strike-slip faulting, mantle plumes, or hundreds of hot spots, but all of these associations have flaws. We suggest instead that sudden detachment and sinking of subducted slabs in the late Cretaceous induced Rayleigh-Taylor instabilities along the former Gondwana margin that in turn triggered lateral and vertical flow of warm Pacific mantle. The interaction of the warm mantle with metasomatized subcontinental lithosphere that characterizes much of the SW Pacific DAMP concentrates magmatism along zones of weakness. The model may also provide a mechanism for warming south Pacific mantle and resulting Cenozoic alkaline magmatism, where the oceanic areas are characterized primarily, but not exclusively, by short-lived hot spot tracks not readily explained by conventional mantle plume theory. This proposed south Pacific DAMP is much larger and longer-lived than previously considered. Components: 16,174 words, 10 figures, 1 table. Keywords: geochemistry; geophysics; tectonics; alkaline magmatism; metasomatism. Index Terms: 3040 Marine Geology and Geophysics: Plate tectonics (8150, 8155, 8157, 8158); 3099 Marine Geology and Geophysics: General or miscellaneous; 1099 Geochemistry: General or miscellaneous. Received 2 March 2004; Revised 5 November 2004; Accepted 22 November 2004; Published 16 February 2005. Finn, C. A., R. D. Mu¨ller, and K. S. Panter (2005), A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin, Geochem. Geophys. Geosyst., 6, Q02005, doi:10.1029/2004GC000723. 1. Introduction Australia, the Tasman Sea, New Zealand, and the Antarctic plate extending east of the Australia- [2] Cenozoic alkaline igneous rocks cover conti- Antarctic discordance, south of the Pacific- nental fragments of East Gondwana and adjacent Antarctic Ridge and west of the Antarctic Peninsula oceanic lithosphere in parts of Antarctica, eastern (Figure 1). This region is distinguished by dis- Copyright 2005 by the American Geophysical Union 1 of 26 Geochemistry 3 finn et al.: alkaline magmatic province Geophysics 10.1029/2004GC000723 Geosystems G Figure 1. Topographic and bathymetric map of south Pacific [Sandwell and Smith, 1997]. The SW Pacific DAMP study area is indicated by the thick black line. AP, Antarctic Peninsula; AT, Adare Trough; BI, Balleny Islands; BFZ, Balleny Fracture Zone; CP, Campbell Plateau; CR, Chatham Rise; CS, Coral Sea; LHR, Lord Howe Rise; LR, Louisville Ridge; LTK, Lau-Tonga-Kermadec trench; NFB, North Fiji Basin; NQ, Northern Queensland; MBL, Marie Byrd Land; MI, Macquarie Island; P-DG, Peter I and De Gerlache Seamounts; RS, Ross Sea; TAM, Transantarctic Mountains; TS, Tasman Sea; TZ, Tasmania; WA, West Antarctica; WV, Western Victoria. tinctly low velocity upper mantle with variably developing a general model for magmatism is to enriched geochemical signatures (Figure 2). The synthesize a variety of the modern data sets, igneous activity has been related to adiabatic whichhasnotbeenpreviouslydone.Inthis decompression melting due to rifting [Johnson, paper, we describe the geological, geochemical, 1989; Tessensohn, 1994; Wo¨rner, 1999] or strike- and geophysical characteristics of the crust and slip faulting [Rocchi et al., 2002a, 2003], large mantle that we use to define a diffuse Cenozoic mantle plumes [Behrendt, 1999; LeMasurier and alkaline magmatic province (DAMP). On the Landis, 1996], or numerous separate, small hot basis of our synthesis and analysis of the limi- spots [Gaina et al., 2000; Lanyon et al., 1993; tations of existing models, we identify the key Sutherland, 1991]. As we will argue, all of these combination of elements required to bring about models are flawed, whether the magmatism is the regional alkaline magmatism in the largely considered as separate or related events. continental fragments of East Gondwana and suggest an alternate model linked to late Creta- [3] Accumulating geological, geophysical and ceous slab detachments to explain these charac- geochemical data collected over the last several teristics. Finally, this model will be used to show years provide a foundation to revisit the issue of that the largely continental magmatism in the SW the origin of the volcanism. Our approach toward Pacific DAMP may be part of a much broader 2of26 Geochemistry 3 finn et al.: alkaline magmatic province Geophysics 10.1029/2004GC000723 Geosystems G Figure 2. Rayleigh wave 150s group velocity map (120 km depth) [Larson and Ekstro¨m, 2001]. Only long-lived hot spots with long traces [Clouard and Bonneville, 2001; Gaina et al., 2000; Ritsema and Allen, 2003] underlain by low-velocity perturbations in the upper mantle are shown. Abbreviations same as Figure 1 and AAD, Australian- Antarctic Discordance; LHR, Lord Howe Rise; RS, Ross Sea; TAM, Transantarctic Mountains, BH, Bellingshausen Sea. The SW Pacific DAMP study area is indicated by the thick black line. This region also includes the expected low velocities associated with the mid-ocean ridges. The white line locates the projection of the location of the postulated 130 Ma subducted plate in the mantle [Mu¨ller et al., 1993]. province encompassing much of the south igneous rocks extend 4400 km from offshore of Pacific. its northern coast south to Tasmania and Victoria (Figure 1). The 100–300 km wide belt contains 2. Characteristics of the Cenozoic scattered local volcanic centers whose estimated Alkaline Magmatism thickness derived from gravity modeling averages 70 m, yielding a total upper crustal (<2 km) volume of 0.02–0.07 Â 106 km3 (surface 2.1. Location of Alkaline Magmatism area times estimated thickness) [Wellman and [4] Cenozoic dominantly alkaline igneous rocks McDougall, 1974]. In New Zealand, Cenozoic cover large, but discontinuous portions of the intraplate volcanic rock is widely distributed along SW Pacific (Figure 1). The continental basement 1000 km of the coastlines in 3 distinct, 50– to the Cenozoic alkaline magmatism formed as a 100 km wide, mostly mafic provinces from the result of subduction processes and is composed of northeastern part of the North Island, to Auckland, Paleozoic-Mesozoic arc plutonic roots of magmatic and the southern portions of the South Island. arcs, and accreted sedimentary and oceanic crust, Compared to Australia, most of the predominantly covered in part by Jurassic igneous rocks [e.g., mafic volcanic centers are considerably smaller Dalziel, 1992]. In East Australia, the exposed, with estimated volumes an order of magnitude mainly mafic (alkaline and tholeiitic basalts), lower [Weaver et al., 1989]. The thinned continental 3of26 Geochemistry 3 finn et al.: alkaline magmatic province Geophysics 10.1029/2004GC000723 Geosystems G crust of the Campbell Plateau region and seafloor [Weaver et al., 1989]. Intermittent Cenozoic between Australia and Antarctica host scattered volcanism in the Campbell Plateau region began alkaline volcanic islands [Johnson, 1989] and small 40 Ma (Chatham Islands) and extends to 1Ma seamounts (Figure 1). (Antipodes Islands) [Weaver et al., 1989]. In Ant- arctica, magmatism started at least 48 Ma in [5] Cenozoic alkaline igneous rocks crop out at the the Transantarctic Mountains–Ross Sea region edge and offshore of West Antarctica (Marie Byrd [Tonarini et al., 1997], 37 Ma in Marie Byrd Land seamounts and Peter I Island) and parts of Land [Rocchi et al., 2002b] and continues today East Antarctica (e.g., Balleny Islands), on islands [LeMasurier and Thomson, 1990] (Figure 1). in the Ross Sea and in the Transantarctic Moun- Because much of the region is covered by ice, tains (Figure 1). In contrast to much of the rest of age data are sparse, but indicate pulses of activity in the region, 20 volcanoes have summit elevations the Upper Oligocene-lower Miocene in the western greater than 2500 m, but thousands of small cinder Ross Sea and Marie Byrd Land regions and the cones and flows are also observed [LeMasurier last 10 Myr, with 20 volcanoes manifesting and Thomson, 1990]. In the mostly ice-covered Holocene activity [LeMasurier and Thomson, regions of West Antarctica, only a few volcanic 1990; Rocchi et al., 2002a]. edifices have been imaged in sub-ice bedrock
Recommended publications
  • MANTLE PLUMES and FLOOD BASALTS Scribedblob of Uniformtemperature, Rather Than Resultingfrom Startsat the Paranaflood Basalt Province,South America
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Memorial University Research Repository JOURNALOF GEOPHYSICAL RESEARCH, VOL. 106, NO. B2, PAGES 2047-2059, FEBRUARY 10, 2001 Mantleplumes and flood basalts: Enhanced melting fromplume ascent and an eclogitecomponent A.M. Leitch•, andG. F.Davies ResearchSchool of EarthSciences, Australian National University, Canberra, ACT Abstract.New numerical models of startingplumes reproduce the observed volumes and rates of floodbasalt eruptions, even for a plumeof moderatetemperature arriving under thick lithosphere. Thesemodels follow the growth of a newplume from a thermalboundary layer and its subsequent risethrough the mantle viscosity structure. They show that as a plumehead rises into the lower- viscosityupper mantle it narrows,and it isthus able to penetrate rapidly right to thebase of litho- sphere,where it spreadsas a thinlayer. This behavior also brings the hottest plume matehal to the shallowestdepths. Both factors enhance melt production compared with previous plume models. Themodel plumes are also assumed to containeclogite bodies, inferred from geochemistry to be recycledoceanic crust. Previous numerical models have shown that the presence of nonreacting eclogitebodies may greatly enhance melt production. it hasbeen argued that the eclogite-derived meltwould react with surroundingperidotite and refreeze; however, recent experimental studies indicatethat eclogite-derived melts may have reached the Earth's surface with onlymoderate or evenminor
    [Show full text]
  • Mantle Plumes and Intraplate Volcanism Volcanism on the Earth
    Mantle Plumes and Intraplate Volcanism Origin of Oceanic Island Volcanoes EAS 302 Lecture 20 Volcanism on the Earth • Mid-ocean ridges (>90% of the volcanism) – “constructive” plate margins • Subduction-related (much of the rest) – “destructive plate” margins • Volcanism in plate interiors (usually) – , e.g., Yellowstone, Hawaii not explained by the plate tectonic paradigm. Characteristics of Intra-plate Volcanoes • Not restricted to plate margins. • Occur at locations that are stationary relative to plate motions, “hot spots”(pointed out by J. T. Wilson, 1963). • Distinctive isotopic and trace element composition. Hot Spot Traces on the Pacific Ocean Floor The Mantle Plume Model • “ Hot spot” volcanoes are manifestations of mantle plumes: columns of hot rock rising buoyantly from the deep mantle – This idea proposed by W. J. Morgan in 1971. • Evidence – Maintain (almost) fixed positions relative to each other; i.e., they are not affected by plate motions – A number of “hot spots” are associated with “swells”, indicative of hot mantle below – Their magmas are compositionally distinct from mid-ocean ridge basalts and therefore must be derived from a different part of the mantle Current Mantle Plumes The Hawaiian Mantle Plume Age of Hawaiian Volcanism The Hawaiian “Swell” Plumes at the surface • In the last 100-200 km, the plume begins to melt. • Once it reaches the base of the lithosphere, it can no longer rise and spreads out. Isotopic Compositions of Oceanic Island Basalts • Nd and Sr isotope ratios 12 DMM distinct from MORB: 10 derived from separate MORB 8 reservoir which is less 6 depleted (and Society ε Nd 4 sometimes enriched) in HIMU incompatible elements.
    [Show full text]
  • Volcanism in a Plate Tectonics Perspective
    Appendix I Volcanism in a Plate Tectonics Perspective 1 APPENDIX I VOLCANISM IN A PLATE TECTONICS PERSPECTIVE Contributed by Tom Sisson Volcanoes and Earth’s Interior Structure (See Surrounded by Volcanoes and Magma Mash for relevant illustrations and activities.) To understand how volcanoes form, it is necessary to know something about the inner structure and dynamics of the Earth. The speed at which earthquake waves travel indicates that Earth contains a dense core composed chiefly of iron. The inner part of the core is solid metal, but the outer part is melted and can flow. Circulation (movement) of the liquid outer core probably creates Earth’s magnetic field that causes compass needles to point north and helps some animals migrate. The outer core is surrounded by hot, dense rock known as the mantle. Although the mantle is nearly everywhere completely solid, the rock is hot enough that it is soft and pliable. It flows very slowly, at speeds of inches-to-feet each year, in much the same way as solid ice flows in a glacier. Earth’s interior is hot both because of heat left over from its formation 4.56 billion years ago by meteorites crashing together (accreting due to gravity), and because of traces of natural radioactivity in rocks. As radioactive elements break down into other elements, they release heat, which warms the inside of the Earth. The outermost part of the solid Earth is the crust, which is colder and about ten percent less dense than the mantle, both because it has a different chemical composition and because of lower pressures that favor low-density minerals.
    [Show full text]
  • Large Igneous Provinces and the Mantle Plume Hypothesis
    Large Igneous Provinces and the Mantle Plume Hypothesis Columnar jointing in a postglacial basalt flow at Aldeyarfoss, NE Iceland. PHOTO JOHN MACLENNAN Ian H. Campbell1 antle plumes are columns of hot, solid material that originate deep in the mantle, probably at the core–mantle boundary. Laboratory 1990) and aseismic ridges, like the Chagos–Lacadive Ridge, to the and numerical models replicating conditions appropriate to the M melting of a plume tail (Wilson mantle show that mantle plumes have a regular and predictable shape that 1963; Morgan 1971). allows a number of testable predictions to be made. New mantle plumes are predicted to consist of a large head, 1000 km in diameter, followed by a THE MANTLE PLUME HYPOTHESIS narrower tail. Initial eruption of basalt from a plume head should be preceded Convection in fluids is driven by by ~1000 m of domal uplift. High-temperature magmas are expected to buoyancy anomalies that originate dominate the first eruptive products of a new plume and should be concen- in thermal boundary layers. trated near the centre of the volcanic province. All of these predictions are Earth’s mantle has two boundary confirmed by observations. layers. The upper boundary layer is the lithosphere, which cools KEYWORDS: mantle plume, large igneous provinces, uplift, picrite through its upper surface. It even- tually becomes denser than the INTRODUCTION underlying mantle and sinks back into it, driving plate tectonics. The lower boundary layer is The plate tectonic hypothesis provides an elegant explana- the contact between the Earth’s molten iron–nickel outer tion for Earth’s two principal types of basaltic volcanism, core and the mantle.
    [Show full text]
  • Origin of Indian Ocean Seamount Province by Shallow Recycling of Continental Lithosphere
    LETTERS PUBLISHED ONLINE: 27 NOVEMBER 2011 | DOI: 10.1038/NGEO1331 Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere K. Hoernle1*, F. Hauff1, R. Werner1, P. van den Bogaard1, A. D. Gibbons2, S. Conrad1 and R. D. Müller2 The origin of the Christmas Island Seamount Province in the 5° S Outsider Seamount Sumatra northeast Indian Ocean is enigmatic. The seamounts do not Java form the narrow, linear and continuous trail of volcanoes 53 Investigator Rise Bali that would be expected if they had formed above a mantle Vening-Meinesz 1,2 3 Cocos- plume . Volcanism above a fracture in the lithosphere is also Keeling Volcanic Province 10° S unlikely, because the fractures trend orthogonally with respect Islands 4¬44 Christmas Island 64 70 65 85 105 to the east–west trend of the Christmas Island chain. Here 56 71 94 40 39 we combine Ar= Ar age, Sr, Nd, Hf and high-precision Pb 47 64 81 107 97 112 104 136 Argo isotope analyses of volcanic rocks from the province with plate 90 95 115 Basin tectonic reconstructions. We find that the seamounts are 47– 47 102 115 Volc. 15° S Prov. 136 million years old, decrease in age from east to west and are Cocos-Keeling Eastern Wharton Basin consistently 0–25 million years younger than the underlying Volc. Prov. Volcanic Province oceanic crust, consistent with formation near a mid-ocean 7 cm yr¬1 ridge. The seamounts also exhibit an enriched geochemical 95° E 100° E 105° E 110° E 115° E signal, indicating that recycled continental lithosphere was present in their source.
    [Show full text]
  • A New Insight Into the Hawaiian Plume
    Earth and Planetary Science Letters 241 (2006) 438–453 www.elsevier.com/locate/epsl A new insight into the Hawaiian plume Jianshe Lei *, Dapeng Zhao Geodynamics Research Centre, Ehime University, Japan Received 19 June 2005; received in revised form 22 November 2005; accepted 27 November 2005 Available online 5 January 2006 Editor: S. King Abstract Although many geochemical, geophysical and seismological studies have suggested that the Hawaiian mantle plume originates from the core–mantle boundary (CMB), so far no tomographic model shows a continuous image of the Hawaiian plume in the entire mantle because of the few seismic stations on the narrow Hawaiian island chain. Here we present a new tomographic image beneath Hawaii determined by using simultaneously 10 kinds of seismic phases, P, pP, PP, PcP, Pdiff, PKPab, PKPbc, PKiKP, PKKPab and PKKPbc, extracted from the data set compiled by the International Seismological Center. Of these phases, PKiKP, PKKPab and PKKPbc are, for the first time, attempted to use in the global seismic tomography. Our results show a slow anomaly beneath Hawaii ascending continuously from the CMB to the surface, implying that the Hawaiian plume indeed originates from the CMB. This image is improved notably over the previous results in the whole mantle, particularly in and below the middle mantle, suggesting that later phases, PP, Pdiff, PKP and particularly PKiKP, are of great importance for better imaging the Hawaiian plume. This slow anomaly is considered to be a plume conduit being tilted, which is likely caused by the mantle flow. This indicates that the position of the Hawaiian hotspot on the surface is not stationary, as evidenced by the recent paleomagnetic and numerical modeling studies.
    [Show full text]
  • Mantle Plumes
    CORE CONCEPTS CORE CONCEPTS Mantle plumes Charles Choi The potential importance of mantle plumes Science Writer may go well beyond explaining volcanism within plates. For example, the mantle plume that may lie under Réunion Island in the Indian Ocean has apparently burned Volcanoes are usually found near the borders volcanoes, which dwell more than 2,000 a track of volcanic activity that reaches of tectonic plates that are violently either miles (3,200 km) from the nearest plate about 3,400 miles (5,500 km) northward pushing or pulling at each other. Mysteri- boundary. Scientists think that as the Pacific to the Deccan Plateau region of what is ously, however, volcanoes sometimes erupt plate slid over a “hot spot,” a line of volca- now India. Catastrophic volcanism there in the middle of these plates instead. The 65 million years ago gushed lava across noes blossomed. 2 culprits behind these outbursts might be In 1971, geophysicist W. Jason Morgan 580,000 square miles (1.5 million km ), giant pillars of hot molten rock known as proposed that hot spots resulted from plumes more than twice the area of Texas, po- mantle plumes, jets of magma rising up of magma originating in the lower mantle tentially hastening the end of the age of from near the Earth’s core to penetrate over- dinosaurs. near the Earth’scoreatdepthsofmorethan lying material like a blowtorch. Still, decades However, it remains hotly debated whether after mantle plumes were first proposed, 1,550 miles (2,500 km). Researchers think mantle plumes exist. For example, Massa- controversy remains as to whether or not these mantle plumes are shaped like mush- chusetts Institute of Technology seismologist they exist.
    [Show full text]
  • Mantle Plumes and Their Role in Earth Processes
    REVIEWS ­­Mantle plumes and their role in Earth processes Anthony A. P. Koppers 1 ✉ , Thorsten W. Becker 2, Matthew G. Jackson 3, Kevin Konrad 1,4, R. Dietmar Müller 5, Barbara Romanowicz6,7,8, Bernhard Steinberger 9,10 and Joanne M. Whittaker 11 Abstract | The existence of mantle plumes was first proposed in the 1970s to explain intra-plate, hotspot volcanism, yet owing to difficulties in resolving mantle upwellings with geophysical images and discrepancies in interpretations of geochemical and geochronological data, the origin, dynamics and composition of plumes and their links to plate tectonics are still contested. In this Review, we discuss progress in seismic imaging, mantle flow modelling, plate tectonic reconstructions and geochemical analyses that have led to a more detailed understanding of mantle plumes. Observations suggest plumes could be both thermal and chemical in nature, can attain complex and broad shapes, and that more than 18 plumes might be rooted in regions of the lowermost mantle. The case for a deep mantle origin is strengthened by the geochemistry of hotspot volcanoes that provide evidence for entrainment of deeply recycled subducted components, primordial m an tle domains and, potentially, materials from Earth’s core. Deep mantle plumes often appear deflected by large-scale mantle flow, resulting in hotspot motions required to resolve past tectonic plate motions. Future research requires improvements in resolution of seismic tomography to better visualize deep mantle plume structures at smaller than 100-km scales. Concerted multi-proxy geochemical and dating efforts are also needed to better resolve spatiotemporal and chemical evolutions of long-lived mantle plumes.
    [Show full text]
  • Vicente De Gouveia Et Al 2018.Pdf
    Earth and Planetary Science Letters 487 (2018) 210–220 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening ∗ S. Vicente de Gouveia a, , J. Besse a, D. Frizon de Lamotte b, M. Greff-Lefftz a, M. Lescanne c, F. Gueydan d, F. Leparmentier e a Institut de Physique du Globe de Paris - Sorbonne Paris Cité, Université Paris Diderot, UMR CNRS 7154, 1 rue Jussieu, 75252 Paris 05, France b Département Géosciences et Environnement, Université de Cergy-Pontoise, Cergy-Pontoise, France c Total EP, Pau, France d Géosciences Montpellier, Université de Montpellier, CNRS UMR 5243, Montpellier, France e Total EP, Paris La Défense, France a r t i c l e i n f o a b s t r a c t Article history: Rifts are often associated with ancient traces of hotspots, which are supposed to participate to the Received 11 December 2017 weakening of the lithosphere. We investigated the expected past trajectories followed by three hotspots Received in revised form 25 January 2018 (Afar, East-Africa and Lake-Victoria) located around the Red Sea. We used a hotspot reference frame Accepted 29 January 2018 to compute their location with respect to time, which is then compared to mantle tomography Available online xxxx interpretations and geological features. Their tracks are frequently situated under continental crust, which Editor: R. Bendick is known to strongly filter plume activity. We looked for surface markers of their putative ancient Keywords: existence, such as volcanism typology, doming, and heat-flow data from petroleum wells.
    [Show full text]
  • On the Great Plume Debate of Geophysical Fluid Dynamics at Research School of Earth Sciences, the Australian National University
    NEWS & VIEWS Chinese Science Bulletin 2005 Vol. 50 No. 15 1537—1540 2 About the authors Geoff F. Davies is currently a Senior Research Fellow On the great plume debate of Geophysical Fluid Dynamics at Research School of Earth Sciences, The Australian National University. He Yaoling Niu received a B.Sc. with honours (1966) and an M.Sc. (1968) Department of Earth Sciences, Durham University, Durham DH1 3LE, UK from Monash University in Australia, and a Ph.D. from (email: [email protected]) California Institute of Technology (Caltech) in the USA DOI: 10.1360/982005-1156 (1973). His PhD thesis dealt with mineral physics titled ‘Elasticity of solids at high temperatures and pressures: 1 Introductory note Theory, measurement and geophysical application’. He held positions at Harvard University, University of Roch- Geological processes are ultimately consequences of ester and Washington University in the USA before he Earth’s thermal evolution. Plate tectonic theory, which took his present post in 1983. He is an expert on mineral explains geological phenomena along plate boundaries, physics, very knowledgeable on geology and geochemis- elegantly illustrates this concept. For example, the origin try with deep interest in dynamics and evolution of the of oceanic plates at ocean ridges, the movement and earth's mantle: plate tectonics, mantle convection and growth of these plates, and their ultimate consumption chemical evolution. He is also interested in and researches back into the Earth’s deep interior through subduction on crust-mantle interaction, early Earth process and other zones provide an efficient mechanism to cool the earth’s planets.
    [Show full text]
  • The Yellowstone Magmatic System from the Mantle Plume to the Upper Crust Hsin-Hua Huang, Fan-Chi Lin, Brandon Schmandt, Jamie Farrell, Robert B
    RESEARCH ◥ and the largest continental hydrothermal system REPORTS in the world (6, 7). The most recent cataclysmic eruption occurred at 0.64 Ma and created the 40 km × 60 km Yellowstone caldera, which is VOLCANOLOGY filled with rhyolitic lava flows as young as 70,000 years (Fig. 1). Earlier teleseismic studies have im- aged a west-northwest–dipping plume extending The Yellowstone magmatic system into the top of the lower mantle (8–11). Local earth- quake tomography and waveform modeling studies have revealed an upper-crustal magma reservoir from the mantle plume to the between 5 and 16 km depth (3, 12, 13), of which the shallowest portion correlates with the largest upper crust area of hydrothermal activity and extends 15 km northeast of the caldera (3). Even with a large Hsin-Hua Huang,1,2* Fan-Chi Lin,1 Brandon Schmandt,3 Jamie Farrell,1 volume of >4000 km3 and a high melt fraction of Robert B. Smith,1 Victor C. Tsai2 up to 32% (2, 3, 13), this upper-crustal reservoir 7 cannot account for the large CO2 flux of 4.5 × 10 kg The Yellowstone supervolcano is one of the largest active continental silicic volcanic daily and requires additional input of basaltic fields in the world. An understanding of its properties is key to enhancing our knowledge magma invading the lower to middle crust (6, 7). of volcanic mechanisms and corresponding risk. Using a joint local and teleseismic Moreover, it is unclear how the mantle plume earthquake P-wave seismic inversion, we revealed a basaltic lower-crustal magma body that interacts with the crustal volcanic system.
    [Show full text]
  • The Controversy Over Plumes: Who Is Actually Right? V
    ISSN 0016-8521, Geotectonics, 2009, Vol. 43, No. 1, pp. 1–17. © Pleiades Publishing, Inc., 2009. Original Russian Text © V.N. Puchkov, 2009, published in Geotektonika, 2009, No. 1, pp. 3–22. The Controversy over Plumes: Who Is Actually Right? V. N. Puchkov Institute of Geology, Ufa Scientific Center, Russian Academy of Sciences, ul. K. Marksa 16/2, Ufa, 450000, Russia e-mail: [email protected] Received February 5, 2008 Abstract—The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes' advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle–core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-iso- tope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow.
    [Show full text]