DIGITAL Gallery of MUSEUM SPECIMENS (CHORDATES) B.Sc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Species Limits in Some Philippine Birds Including the Greater Flameback Chrysocolaptes Lucidus
FORKTAIL 27 (2011): 29–38 Species limits in some Philippine birds including the Greater Flameback Chrysocolaptes lucidus N. J. COLLAR Philippine bird taxonomy is relatively conservative and in need of re-examination. A number of well-marked subspecies were selected and subjected to a simple system of scoring (Tobias et al. 2010 Ibis 152: 724–746) that grades morphological and vocal differences between allopatric taxa (exceptional character 4, major 3, medium 2, minor 1; minimum score 7 for species status). This results in the recognition or confirmation of species status for (inverted commas where a new English name is proposed) ‘Philippine Collared Dove’ Streptopelia (bitorquatus) dusumieri, ‘Philippine Green Pigeon’ Treron (pompadora) axillaris and ‘Buru Green Pigeon’ T. (p.) aromatica, Luzon Racquet-tail Prioniturus montanus, Mindanao Racquet-tail P. waterstradti, Blue-winged Raquet-tail P. verticalis, Blue-headed Raquet-tail P. platenae, Yellow-breasted Racquet-tail P. flavicans, White-throated Kingfisher Halcyon (smyrnensis) gularis (with White-breasted Kingfisher applying to H. smyrnensis), ‘Northern Silvery Kingfisher’ Alcedo (argentata) flumenicola, ‘Rufous-crowned Bee-eater’ Merops (viridis) americanus, ‘Spot-throated Flameback’ Dinopium (javense) everetti, ‘Luzon Flameback’ Chrysocolaptes (lucidus) haematribon, ‘Buff-spotted Flameback’ C. (l.) lucidus, ‘Yellow-faced Flameback’ C. (l.) xanthocephalus, ‘Red-headed Flameback’ C. (l.) erythrocephalus, ‘Javan Flameback’ C. (l.) strictus, Greater Flameback C. (l.) guttacristatus, ‘Sri Lankan Flameback’ (Crimson-backed Flameback) Chrysocolaptes (l.) stricklandi, ‘Southern Sooty Woodpecker’ Mulleripicus (funebris) fuliginosus, Visayan Wattled Broadbill Eurylaimus (steerii) samarensis, White-lored Oriole Oriolus (steerii) albiloris, Tablas Drongo Dicrurus (hottentottus) menagei, Grand or Long-billed Rhabdornis Rhabdornis (inornatus) grandis, ‘Visayan Rhabdornis’ Rhabdornis (i.) rabori, and ‘Visayan Shama’ Copsychus (luzoniensis) superciliaris. -
First Record of Laticauda Semifasciata (Reptilia: Squamata: Elapidae: Laticaudinae) from Korea
Anim. Syst. Evol. Divers. Vol. 32, No. 2: 148-152, April 2016 http://dx.doi.org/10.5635/ASED.2016.32.2.148 Short communication First Record of Laticauda semifasciata (Reptilia: Squamata: Elapidae: Laticaudinae) from Korea Jaejin Park1, Il-Hun Kim1,2, Kyo-Sung Koo1, Daesik Park3,* 1Department of Biology, Kangwon National University, Chuncheon 24341, Korea 2National Marine Biodiversity Institute of Korea, Seocheon 33661, Korea 3Division of Science Education, Kangwon National University, Chuncheon 24341, Korea ABSTRACT The Chinese sea snake Laticauda semifasciata (Reinwardt in Schlegel, 1837) is newly reported from Korean waters based on three specimens collected from Jeju Island, Korea, in August, September, and November 2015. This is the first time that the genus Laticauda and subfamily Laticaudinae has been reported from Korean waters. The subfamily Laticaudinae has ventrals that are four to five times wider than the adjacent dorsals, which are unlike the ventrals that are similar or up to two times wider than adjacent dorsals in the subfamily Hydrophiinae. Laticauda semifasciata is distinct from other species because it has three prefrontals and its rostrals are horizontally divided into two. As the result of this report, four species (L. semifasciata, Hydrophis (Pelamis) platurus, Hydrophis cyanocinctus, and H. melanocephalus) of sea snakes have been reported in Korean waters. Keywords: sea snake, Hydrophiinae, Laticaudinae, Chinese sea snake, Laticauda semifasciata INTRODUCTION semifasciata (Reinwardt in Schlegel, 1837) of the genus Laticauda and subfamily Laticaudinae for the first time in Globally, 70 sea snakes (aquatic elapids) of 8 genera in the Korean waters based on the specimens collected in Jeju Is- two subfamilies Hydrophiinae and Laticaudinae have been land in 2015. -
Appendix 1. (Online Supplementary Material) Species, Gliding Strategies
Appendix 1. (Online Supplementary Material) Species, gliding strategies, species distributions, geographic range sizes, habitat, and egg buoyancy characteristics used for concentrated changes tests. Species Gliding strategy Species distribution (reference #) Geographic range size Habitat (reference #) Egg buoyancy (reference #) Cheilopogon abei (Parin, 1996) 4 wings Indian, Indo-Pacific (1) 2 or more ocean basins meroepipelagic (1) Buoyant (2) Cheilopogon atrisignis (Jenkins, 1903) 4 wings Indian, Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon cyanopterus (Valenciennes, 1847) 4 wings Atlantic, Indo-Pacific (2) 2 or more ocean basins meroepipelgic (3) Non-Buoyant (5) Cheilopogon dorsomacula (Fowler, 1944) 4 wings Pacific (1) within 1 ocean basin holoepipelagic (1) Buoyant (2) Cheilopogon exsiliens (Linnaeus, 1771) 4 wings Atlantic (2) within 1 ocean basin holoepipelagic (3) Buoyant (2,5) Cheilopogon furcatus (Mitchill, 1815) 4 wings Atlantic, Indian, Pacific (6) 2 or more ocean basins holoepipelagic (3) Non-Buoyant (5) Cheilopogon melanurus (Valenciennes, 1847) 4 wings Atlantic (7) within 1 ocean basin meroepipelagic (7) Non-Buoyant (5,8) Cheilopogon pinnatibarbatus (californicus) (Cooper, 1863) 4 wings eastern tropical Pacific (9) within 1 ocean basin meroepipelgic (3) Non-Buoyant (10) Cheilopogon spilonotopterus (Bleeker, 1865) 4 wings Indian and Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon xenopterus (Gilbert, 1890) 4 wings eastern tropical Pacific (11) within 1 ocean basin -
A New Species of Subgenus Passiflora, Series Serratifoliae (Passifloraceae) from the Brazilian Amazon
Phytotaxa 208 (2): 170–174 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.208.2.6 Passiflora echinasteris: a new species of subgenus Passiflora, series Serratifoliae (Passifloraceae) from the Brazilian Amazon ANA KELLY KOCH1,2,3, ANDRÉ LUIZ DE REZENDE CARDOSO2* & ANNA LUIZA ILKIU-BORGES2 1Instituto de Botânica de São Paulo, Núcleo de Pesquisa Orquidário do Estado. Av. Miguel Estéfano, 3687, Água Funda, São Paulo-SP, Brazil. 2Museu Paraense Emilio Goeldi, Coordenação de Botânica. Av. Perimetral, 1901, Montese, Belém-PA, Brazil. *Programa de Capacita- ção Institucional (PCI-CNPq). 3Author for correspondence, email: [email protected] Abstract Passiflora echinasteris from a secondary vegetation area on the Great Curve of the Xingu River, in the Brazilian Amazon, is newly described. It belongs to the series Serratifoliae with three other Brazilian species. The new species is illustrated and its affinities with related species are discussed, and a key to the Brazilian species of the series is provided. Key words: Brazilian Amazon, Belo Monte, Passion flower, Xingu River Introduction Passiflora Linnaeus (1753: 955) is a genus that could be easily used to demonstrate the need of taxonomic studies for several further groups of plants in the Amazon. As a result of only a few isolated taxonomic studies in the Brazilian Amazon, the number of new species of Passiflora recently increased as showed by Koch et al. (2013, 2014), as well as the register of new records. During the activities of the project “Survey and Scientific exploration of the Flora of the UHE Belo Monte” in the Xingu region, several individuals of a Passiflora of the series Serratifoliae Killip ex Cervi (1997: 30) were found. -
Bird List Column A: We Should Encounter (At Least a 90% Chance) Column B: May Encounter (About a 50%-90% Chance) Column C: Possible, but Unlikely (20% – 50% Chance)
THE PHILIPPINES Prospective Bird List Column A: we should encounter (at least a 90% chance) Column B: may encounter (about a 50%-90% chance) Column C: possible, but unlikely (20% – 50% chance) A B C Philippine Megapode (Tabon Scrubfowl) X Megapodius cumingii King Quail X Coturnix chinensis Red Junglefowl X Gallus gallus Palawan Peacock-Pheasant X Polyplectron emphanum Wandering Whistling Duck X Dendrocygna arcuata Eastern Spot-billed Duck X Anas zonorhyncha Philippine Duck X Anas luzonica Garganey X Anas querquedula Little Egret X Egretta garzetta Chinese Egret X Egretta eulophotes Eastern Reef Egret X Egretta sacra Grey Heron X Ardea cinerea Great-billed Heron X Ardea sumatrana Purple Heron X Ardea purpurea Great Egret X Ardea alba Intermediate Egret X Ardea intermedia Cattle Egret X Ardea ibis Javan Pond-Heron X Ardeola speciosa Striated Heron X Butorides striatus Yellow Bittern X Ixobrychus sinensis Von Schrenck's Bittern X Ixobrychus eurhythmus Cinnamon Bittern X Ixobrychus cinnamomeus Black Bittern X Ixobrychus flavicollis Black-crowned Night-Heron X Nycticorax nycticorax Western Osprey X Pandion haliaetus Oriental Honey-Buzzard X Pernis ptilorhynchus Barred Honey-Buzzard X Pernis celebensis Black-winged Kite X Elanus caeruleus Brahminy Kite X Haliastur indus White-bellied Sea-Eagle X Haliaeetus leucogaster Grey-headed Fish-Eagle X Ichthyophaga ichthyaetus ________________________________________________________________________________________________________ WINGS ● 1643 N. Alvernon Way Ste. 109 ● Tucson ● AZ ● 85712 ● www.wingsbirds.com -
Draft Animal Keepers Species List
Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290, -
AC31 Doc. 14.2
Original language: English AC31 Doc. 14.2 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Thirty-first meeting of the Animals Committee Geneva (Switzerland), 13-17 July 2020 Interpretation and implementation matters Regulation of trade Non-detriment findings PUBLICATION OF A MANAGEMENT REPORT FOR COMMON WATER MONITORS (VARANUS SALVATOR) IN PENINSULAR MALAYSIA 1. This document has been submitted by Malaysia (Management Authorities of Peninsular Malaysia – Ministry of Energy and Natural Resources and Department of Wildlife and National Park Peninsular Malaysia).* Background 2. For the last 50 years, Malaysia has sustained a trade in the skins of Common Water Monitors (Varanus salvator), listed in Appendix II since 1975. In accordance of Article IV, paragraph 3, exports of the specimens of Appendix-II species must be monitored continuously and suitable measures to be taken to limit such exports in order to maintain such species throughout their range at a level consistent with their role in the ecosystems and well above the level at which they would qualify for Appendix I. 3. The CITES Scientific and Management Authorities of Peninsular Malaysia committed to improve monitoring and management systems for Varanus salvator in Malaysia, which has resulted in the management system published here (Annex). Objectives and overview of the Management System for Varanus salvator 4. The management report provides information on the biological attributes of V. salvator, recent population data findings in Peninsular Malaysia and the monitoring and management systems used to ensure its sustainable trade. 5. The main specific objectives of the management report are: a) To provide a tool to support wildlife management authorities in Malaysia in the application of CITES provisions such as Non-detriment findings (NDFs). -
Fishes Scales & Tails Scale Types 1
Phylum Chordata SUBPHYLUM VERTEBRATA Metameric chordates Linear series of cartilaginous or boney support (vertebrae) surrounding or replacing the notochord Expanded anterior portion of nervous system THE FISHES SCALES & TAILS SCALE TYPES 1. COSMOID (most primitive) First found on ostracaderm agnathans, thick & boney - composed of: Ganoine (enamel outer layer) Cosmine (thick under layer) Spongy bone Lamellar bone Perhaps selected for protection against eurypterids, but decreased flexibility 2. GANOID (primitive, still found on some living fish like gar) 3. PLACOID (old scale type found on the chondrichthyes) Dentine, tooth-like 4. CYCLOID (more recent scale type, found in modern osteichthyes) 5. CTENOID (most modern scale type, found in modern osteichthyes) TAILS HETEROCERCAL (primitive, still found on chondrichthyes) ABBREVIATED HETEROCERCAL (found on some primitive living fish like gar) DIPHYCERCAL (primitive, found on sarcopterygii) HOMOCERCAL (most modern, found on most modern osteichthyes) Agnatha (class) [connect the taxa] Cyclostomata (order) Placodermi Acanthodii (class) (class) Chondrichthyes (class) Osteichthyes (class) Actinopterygii (subclass) Sarcopterygii (subclass) Dipnoi (order) Crossopterygii (order) Ripidistia (suborder) Coelacanthiformes (suborder) Chondrostei (infra class) Holostei (infra class) Teleostei (infra class) CLASS AGNATHA ("without jaws") Most primitive - first fossils in Ordovician Bottom feeders, dorsal/ventral flattened Cosmoid scales (Ostracoderms) Pair of eyes + pineal eye - present in a few living fish and reptiles - regulates circadian rhythms Nine - seven gill pouches No paired appendages, medial nosril ORDER CYCLOSTOMATA (60 spp) Last living representatives - lampreys & hagfish Notochord not replaced by vertebrae Cartilaginous cranium, scaleless body Sea lamprey predaceous - horny teeth in buccal cavity & on tongue - secretes anti-coaggulant Lateral Line System No stomach or spleen 5 - 7 year life span - adults move into freshwater streams, spawn, & die. -
Anatomy and Go Fish! Background
Anatomy and Go Fish! Background Introduction It is important to properly identify fi sh for many reasons: to follow the rules and regulations, for protection against sharp teeth or protruding spines, for the safety of the fi sh, and for consumption or eating purposes. When identifying fi sh, scientists and anglers use specifi c vocabulary to describe external or outside body parts. These body parts are common to most fi sh. The difference in the body parts is what helps distinguish one fi sh from another, while their similarities are used to classify them into groups. There are approximately 29,000 fi sh species in the world. In order to identify each type of fi sh, scientists have grouped them according to their outside body parts, specifi cally the number and location of fi ns, and body shape. Classifi cation Using a system of classifi cation, scientists arrange all organisms into groups based on their similarities. The fi rst system of classifi cation was proposed in 1753 by Carolus Linnaeus. Linnaeus believed that each organism should have a binomial name, genus and species, with species being the smallest organization unit of life. Using Linnaeus’ system as a guide, scientists created a hierarchical system known as taxonomic classifi cation, in which organisms are classifi ed into groups based on their similarities. This hierarchical system moves from largest and most general to smallest and most specifi c: kingdom, phylum, class, order, family, genus, and species. {See Figure 1. Taxonomic Classifi cation Pyramid}. For example, fi sh belong to the kingdom Animalia, the phylum Chordata, and from there are grouped more specifi cally into several classes, orders, families, and thousands of genus and species. -
Venom of the Annulated Sea Snake Hydrophis Cyanocinctus: a Biochemically Simple but Genetically Complex Weapon
toxins Article Venom of the Annulated Sea Snake Hydrophis cyanocinctus: A Biochemically Simple but Genetically Complex Weapon Hong-Yan Zhao 1, Yan Sun 1, Yu Du 2,3,4, Jia-Qi Li 4, Jin-Geng Lv 2,3, Yan-Fu Qu 4, Long-Hui Lin 1, Chi-Xian Lin 2,3,*, Xiang Ji 3,4,5,* and Jian-Fang Gao 1,* 1 Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; [email protected] (H.-Y.Z.); [email protected] (Y.S.); [email protected] (L.-H.L.) 2 Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China; [email protected] (Y.D.); [email protected] (J.-G.L.) 3 MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, China 4 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; [email protected] (J.-Q.L.); [email protected] (Y.-F.Q.) 5 College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China * Correspondence: [email protected] (C.-X.L.); [email protected] (X.J.); [email protected] (J.-F.G.) Abstract: Given that the venom system in sea snakes has a role in enhancing their secondary adaption to the marine environment, it follows that elucidating the diversity and function of venom toxins will help to understand the adaptive radiation of sea snakes. -
Morphology, Reproduction and Diet of the Greater Sea Snake, Hydrophis Major (Elapidae, Hydrophiinae)
Coral Reefs https://doi.org/10.1007/s00338-019-01833-5 REPORT Morphology, reproduction and diet of the greater sea snake, Hydrophis major (Elapidae, Hydrophiinae) 1 1 2 R. Shine • T. Shine • C. Goiran Received: 5 January 2019 / Accepted: 9 June 2019 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Although widespread, the large Hydrophiinae relatives in some respects, other characteristics (such as sea snake Hydrophis major is poorly known ecologically. scale rugosity, low proportion of juveniles in collections, We dissected 119 preserved specimens in museum col- frequent production of small litters of large offspring) may lections to quantify body sizes and proportions, sexual reflect adaptation to marine habitats. dimorphism, reproductive biology and diet. The sexes mature at similar snout–vent lengths (SVLs, about 75 cm) Keywords Dietary specialisation Á Disteira major Á and attain similar maximum sizes (females 123 cm vs. Elapidae Á Life-history Á Olive-headed sea snake Á Trophic males 122 cm SVL), but females in our sample exhibited ecology larger mean sizes than did males (means 98.8 vs. 93.1 cm SVL). The adult sex ratio in museum specimens was highly female-biased (64:30), and the high proportion of repro- Introduction ductive females during the austral summer suggests annual reproduction. At the same SVL, females had shorter tails Rates of speciation are higher in the viviparous sea snakes and wider bodies than did males, but sex differences in (Hydrophiinae) than in any other extant group of reptiles. other body proportions (e.g. tail shape, head dimensions, In particular, one clade of sea snakes—the Hydrophis eye diameter) were minimal. -
Explorer Research Article [Tripathi Et Al., 6(3): March, 2015:4304-4316] CODEN (USA): IJPLCP ISSN: 0976-7126 INTERNATIONAL JOURNAL of PHARMACY & LIFE SCIENCES (Int
Explorer Research Article [Tripathi et al., 6(3): March, 2015:4304-4316] CODEN (USA): IJPLCP ISSN: 0976-7126 INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES (Int. J. of Pharm. Life Sci.) Study on Bird Diversity of Chuhiya Forest, District Rewa, Madhya Pradesh, India Praneeta Tripathi1*, Amit Tiwari2, Shivesh Pratap Singh1 and Shirish Agnihotri3 1, Department of Zoology, Govt. P.G. College, Satna, (MP) - India 2, Department of Zoology, Govt. T.R.S. College, Rewa, (MP) - India 3, Research Officer, Fishermen Welfare and Fisheries Development Department, Bhopal, (MP) - India Abstract One hundred and twenty two species of birds belonging to 19 orders, 53 families and 101 genera were recorded at Chuhiya Forest, Rewa, Madhya Pradesh, India from all the three seasons. Out of these as per IUCN red list status 1 species is Critically Endangered, 3 each are Vulnerable and Near Threatened and rest are under Least concern category. Bird species, Gyps bengalensis, which is comes under Falconiformes order and Accipitridae family are critically endangered. The study area provide diverse habitat in the form of dense forest and agricultural land. Rose- ringed Parakeets, Alexandrine Parakeets, Common Babblers, Common Myna, Jungle Myna, Baya Weavers, House Sparrows, Paddyfield Pipit, White-throated Munia, White-bellied Drongo, House crows, Philippine Crows, Paddyfield Warbler etc. were prominent bird species of the study area, which are adapted to diversified habitat of Chuhiya Forest. Human impacts such as Installation of industrial units, cutting of trees, use of insecticides in agricultural practices are major threats to bird communities. Key-Words: Bird, Chuhiya Forest, IUCN, Endangered Introduction Birds (class-Aves) are feathered, winged, two-legged, Birds are ideal bio-indicators and useful models for warm-blooded, egg-laying vertebrates.