Carcinoid Syndrome and Perioperative Anesthetic Considerations Kenneth Mancuso MD (Assistant Professor)A, Alan D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carcinoid) Tumours Gastroenteropancreatic
Downloaded from gut.bmjjournals.com on 8 September 2005 Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours J K Ramage, A H G Davies, J Ardill, N Bax, M Caplin, A Grossman, R Hawkins, A M McNicol, N Reed, R Sutton, R Thakker, S Aylwin, D Breen, K Britton, K Buchanan, P Corrie, A Gillams, V Lewington, D McCance, K Meeran, A Watkinson and on behalf of UKNETwork for neuroendocrine tumours Gut 2005;54;1-16 doi:10.1136/gut.2004.053314 Updated information and services can be found at: http://gut.bmjjournals.com/cgi/content/full/54/suppl_4/iv1 These include: References This article cites 201 articles, 41 of which can be accessed free at: http://gut.bmjjournals.com/cgi/content/full/54/suppl_4/iv1#BIBL Rapid responses You can respond to this article at: http://gut.bmjjournals.com/cgi/eletter-submit/54/suppl_4/iv1 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article Topic collections Articles on similar topics can be found in the following collections Stomach and duodenum (510 articles) Pancreas and biliary tract (332 articles) Guidelines (374 articles) Cancer: gastroenterological (1043 articles) Liver, including hepatitis (800 articles) Notes To order reprints of this article go to: http://www.bmjjournals.com/cgi/reprintform To subscribe to Gut go to: http://www.bmjjournals.com/subscriptions/ Downloaded from gut.bmjjournals.com on 8 September 2005 iv1 GUIDELINES Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours J K Ramage*, A H G Davies*, J ArdillÀ, N BaxÀ, M CaplinÀ, A GrossmanÀ, R HawkinsÀ, A M McNicolÀ, N ReedÀ, R Sutton`, R ThakkerÀ, S Aylwin`, D Breen`, K Britton`, K Buchanan`, P Corrie`, A Gillams`, V Lewington`, D McCance`, K Meeran`, A Watkinson`, on behalf of UKNETwork for neuroendocrine tumours .............................................................................................................................. -
Hallucinogens - LSD, Peyote, Psilocybin, and PCP
Information for Behavioral Health Providers in Primary Care Hallucinogens - LSD, Peyote, Psilocybin, and PCP What are Hallucinogens? Hallucinogenic compounds found in some plants and mushrooms (or their extracts) have been used— mostly during religious rituals—for centuries. Almost all hallucinogens contain nitrogen and are classified as alkaloids. Many hallucinogens have chemical structures similar to those of natural neurotransmitters (e.g., acetylcholine-, serotonin-, or catecholamine-like). While the exact mechanisms by which hallucinogens exert their effects remain unclear, research suggests that these drugs work, at least partially, by temporarily interfering with neurotransmitter action or by binding to their receptor sites. This InfoFacts will discuss four common types of hallucinogens: LSD (d-lysergic acid diethylamide) is one of the most potent mood-changing chemicals. It was discovered in 1938 and is manufactured from lysergic acid, which is found in ergot, a fungus that grows on rye and other grains. Peyote is a small, spineless cactus in which the principal active ingredient is mescaline. This plant has been used by natives in northern Mexico and the southwestern United States as a part of religious ceremonies. Mescaline can also be produced through chemical synthesis. Psilocybin (4-phosphoryloxy-N, N-dimethyltryptamine) is obtained from certain types of mushrooms that are indigenous to tropical and subtropical regions of South America, Mexico, and the United States. These mushrooms typically contain less than 0.5 percent psilocybin plus trace amounts of psilocin, another hallucinogenic substance. PCP (phencyclidine) was developed in the 1950s as an intravenous anesthetic. Its use has since been discontinued due to serious adverse effects. How Are Hallucinogens Abused? The very same characteristics that led to the incorporation of hallucinogens into ritualistic or spiritual traditions have also led to their propagation as drugs of abuse. -
Local Anesthetic Half Life (In Hours) Lidocaine 1.6 Mepivacaine 1.9 Bupivacaine 353.5 Prilocaine 1.6 Articaine 0.5
Local Anesthetics • The first local anesthetics History were cocaine and procaine (Novacain) developed in ltlate 1800’s • They were called “esters” because of their chemical composition • Esters had a slow onset and short half life so they did not last long History • Derivatives of esters called “amides” were developed in the 1930’s • Amides had a faster onset and a longer half life so they lasted longer • AidAmides quiklickly repldlaced esters • In dentistry today, esters are only found in topical anesthetics Generic Local Anesthetics • There are five amide anesthetics used in dentistry today. Their generic names are; – lidocaine – mepivocaine – bupivacaine – prilocaine – artica ine • Each is known by at least one brand name Brand Names • lidocaine : Xylocaine, Lignospan, Alphacaine, Octocaine • mepivocaine: Carbocaine, Arestocaine, Isocaine, Polocaine, Scandonest • prilocaine : Citanest, Citanest Forte • bibupivaca ine: MiMarcaine • articaine: Septocaine, Zorcaine About Local Anesthetic (LA) • Local anesthetic (LA) works by binding with sodium channels in neurons preventing depolarization • LA is inactivated at the injection site when it is absorbed into the blood stream and redistributed throughout the body • If enough LA is absorbed, sodium channels in other parts of the body will be blocked, causing systemic side effects About LA • A clinical effect of LAs is dilation blood vessels, speeding up absorption and distribution • To counteract this dilation so anesthesia is prolonged, , a vasoconstrictor is often added to LAs • However, vasoconstrictors have side effects also Metabolism and Excretion • Most amide LAs are metabolized (inactivated) by the liver and excreted by the kidneys. • Prilocaine is partially metabolized by the lungs • Articaine is partially metabolized by enzymes in the bloo d as well as the liver. -
Monitoring Anesthetic Depth
ANESTHETIC MONITORING Lyon Lee DVM PhD DACVA MONITORING ANESTHETIC DEPTH • The central nervous system is progressively depressed under general anesthesia. • Different stages of anesthesia will accompany different physiological reflexes and responses (see table below, Guedel’s signs and stages). Table 1. Guedel’s (1937) Signs and Stages of Anesthesia based on ‘Ether’ anesthesia in cats. Stages Description 1 Inducement, excitement, pupils constricted, voluntary struggling Obtunded reflexes, pupil diameters start to dilate, still excited, 2 involuntary struggling 3 Planes There are three planes- light, medium, and deep More decreased reflexes, pupils constricted, brisk palpebral reflex, Light corneal reflex, absence of swallowing reflex, lacrimation still present, no involuntary muscle movement. Ideal plane for most invasive procedures, pupils dilated, loss of pain, Medium loss of palpebral reflex, corneal reflexes present. Respiratory depression, severe muscle relaxation, bradycardia, no Deep (early overdose) reflexes (palpebral, corneal), pupils dilated Very deep anesthesia. Respiration ceases, cardiovascular function 4 depresses and death ensues immediately. • Due to arrival of newer inhalation anesthetics and concurrent use of injectable anesthetics and neuromuscular blockers the above classic signs do not fit well in most circumstances. • Modern concept has two stages simply dividing it into ‘awake’ and ‘unconscious’. • One should recognize and familiarize the reflexes with different physiologic signs to avoid any untoward side effects and complications • The system must be continuously monitored, and not neglected in favor of other signs of anesthesia. • Take all the information into account, not just one sign of anesthetic depth. • A major problem faced by all anesthetists is to avoid both ‘too light’ anesthesia with the risk of sudden violent movement and the dangerous ‘too deep’ anesthesia stage. -
Hallucinogens
Hallucinogens What Are Hallucinogens? Hallucinogens are a diverse group of drugs that alter a person’s awareness of their surroundings as well as their thoughts and feelings. They are commonly split into two categories: classic hallucinogens (such as LSD) and dissociative drugs (such as PCP). Both types of hallucinogens can cause hallucinations, or sensations and images that seem real though they are not. Additionally, dissociative drugs can cause users to feel out of control or disconnected from their body and environment. Some hallucinogens are extracted from plants or mushrooms, and others are synthetic (human-made). Historically, people have used hallucinogens for religious or healing rituals. More recently, people report using these drugs for social or recreational purposes. Hallucinogens are a Types of Hallucinogens diverse group of drugs Classic Hallucinogens that alter perception, LSD (D-lysergic acid diethylamide) is one of the most powerful mind- thoughts, and feelings. altering chemicals. It is a clear or white odorless material made from lysergic acid, which is found in a fungus that grows on rye and other Hallucinogens are split grains. into two categories: Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) comes from certain classic hallucinogens and types of mushrooms found in tropical and subtropical regions of South dissociative drugs. America, Mexico, and the United States. Peyote (mescaline) is a small, spineless cactus with mescaline as its main People use hallucinogens ingredient. Peyote can also be synthetic. in a wide variety of ways DMT (N,N-dimethyltryptamine) is a powerful chemical found naturally in some Amazonian plants. People can also make DMT in a lab. -
Pharmacology – Inhalant Anesthetics
Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers. -
Calcium-Channel Blockers and Anaesthesia
75 Review Article Calcium-channel blockers and Pierre-Georges Durand MD,* Jean-Jacques Lehot MD,* Pierre Fo~x D I)l'h~" anaesthesia Verapamil was the first calcium-channel blocker (CCB). It has Contents been used since 1962 in Europe then in Japan for its anti- Comparative pharmacology of calcium-channel blockers arrhythmic and coronary vasodilator effects/ The CCB have (CCB) become prominant cardiovascular drugs during the last 15 - Classification and chemical characteristics ),ears. Many experimental and clinical studies ha ve defined their - Mechanism of action mechanism of action, the effects of new drugs in this therapeutic - Pharmacokinetics class, and their indications and interactions with other drugs. - Interactions Due to the large number of patients treated with CCB it is - Pharmacodynamic effects important for the anaesthetist to know the general and specific Indications not related to anaesthesia problems involved during the perioperative period, the interac- - Confirmed indications tions with anaesthetics and the practical use of these drugs. - Possible indications Pharmacological interactions in anaesthesia Le verapamil a dtd initialement utilis6 comme un bloqueur des - Halogenated anaesthetics canaux calciques (CCB). 11 a ~t~ utilis6 depuis 1962 eta Europe - Other anaesthetics puis au Japon pour ses propri~tds anti-arythmiques et ses - Neuromuscular relaxants effets vaso-dilatateurs coronariens, i Les CCB sont devenus des Perioperative use drogues cardiovasculaires de choix depuis les 15 dernikres - Myocardial ischaemia -
Carcinoid Case Presentation and Discussion: the American Perspective
Endocrine-Related Cancer (2003) 10 489–496 NEUROENDOCRINE TUMOURS Carcinoid case presentation and discussion: the American perspective R R P Warner Department of Medicine, Gastrointestinal Division, The Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, USA (Requests for offprints should be addressed toRRPWarner; Email: rwarner—[email protected]) Abstract The rationale underlying an aggressive approach in the management of some carcinoid patients is explained and illustrated by the presented case of a middle-aged man with advanced classic typical midgut carcinoid. The patient exhibited somatostatin receptor scintigraphy-positive massive liver metastases, carcinoid syndrome, severe tricuspid and pulmonic cardiac valve disease with congestive heart failure, ascites and malnutrition. He had been treated for several years with supportive medications and biotherapy including octreotide and alpha interferon but his tumor eventually progressed and his overall condition was markedly deteriorated when he first sought more aggressive treatment. This consisted of prompt replacement of both tricuspid and pulmonic valves, followed by hepatic artery chemoembolus (HACE) injection and then surgical tumor debulking including excision of the primary tumor in the small intestine. In addition, radiofrequency ablation was utilized to reduce the volume of metastases in the liver. Prophylactic cholecystectomy was also performed and a biopsy of tumor was submitted for cell culture drug resistance testing. This was followed by systemic chemotherapy utilizing the drug (docetaxel) which the in vitro studies suggested as most likely to be effective. His excellent response to this succession of treatments exemplifies the successful application of aggressive sequential multi-modality therapy. Endocrine-Related Cancer (2003) 10 489–496 Introduction and sometimes aggressive treatment (O¨ berg 1998). -
Hallucinogens
Hallucinogens What are hallucinogens? Hallucinogens are a diverse group of drugs that alter a person’s awareness of their surroundings as well as their own thoughts and feelings. They are commonly split into two categories: classic hallucinogens (such as LSD) and dissociative drugs (such as PCP). Both types of hallucinogens can cause hallucinations, or sensations and images that seem real though they are not. Additionally, dissociative drugs can cause users to feel out of control or disconnected from their body and environment. Some hallucinogens are extracted from plants or mushrooms, and some are synthetic (human- made). Historically, people have used hallucinogens for religious or healing rituals. More recently, people report using these drugs for social or recreational purposes, including to have fun, deal with stress, have spiritual experiences, or just to feel different. Common classic hallucinogens include the following: • LSD (D-lysergic acid diethylamide) is one of the most powerful mind-altering chemicals. It is a clear or white odorless material made from lysergic acid, which is found in a fungus that grows on rye and other grains. LSD has many other street names, including acid, blotter acid, dots, and mellow yellow. • Psilocybin (4-phosphoryloxy-N,N- dimethyltryptamine) comes from certain types of mushrooms found in tropical and subtropical regions of South America, Mexico, and the United States. Some common names for Blotter sheet of LSD-soaked paper squares that users psilocybin include little smoke, magic put in their mouths. mushrooms, and shrooms. Photo by © DEA • Peyote (mescaline) is a small, spineless cactus with mescaline as its main ingredient. Peyote can also be synthetic. -
What Is a Gastrointestinal Carcinoid Tumor?
cancer.org | 1.800.227.2345 About Gastrointestinal Carcinoid Tumors Overview and Types If you have been diagnosed with a gastrointestinal carcinoid tumor or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is a Gastrointestinal Carcinoid Tumor? Research and Statistics See the latest estimates for new cases of gastrointestinal carcinoid tumor in the US and what research is currently being done. ● Key Statistics About Gastrointestinal Carcinoid Tumors ● What’s New in Gastrointestinal Carcinoid Tumor Research? What Is a Gastrointestinal Carcinoid Tumor? Gastrointestinal carcinoid tumors are a type of cancer that forms in the lining of the gastrointestinal (GI) tract. Cancer starts when cells begin to grow out of control. To learn more about what cancer is and how it can grow and spread, see What Is Cancer?1 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 To understand gastrointestinal carcinoid tumors, it helps to know about the gastrointestinal system, as well as the neuroendocrine system. The gastrointestinal system The gastrointestinal (GI) system, also known as the digestive system, processes food for energy and rids the body of solid waste. After food is chewed and swallowed, it enters the esophagus. This tube carries food through the neck and chest to the stomach. The esophagus joins the stomachjust beneath the diaphragm (the breathing muscle under the lungs). The stomach is a sac that holds food and begins the digestive process by secreting gastric juice. The food and gastric juices are mixed into a thick fluid, which then empties into the small intestine. -
Familial Occurrence of Carcinoid Tumors and Association with Other Malignant Neoplasms1
Vol. 8, 715–719, August 1999 Cancer Epidemiology, Biomarkers & Prevention 715 Familial Occurrence of Carcinoid Tumors and Association with Other Malignant Neoplasms1 Dusica Babovic-Vuksanovic, Costas L. Constantinou, tomies (3). The most frequent sites for carcinoid tumors are the Joseph Rubin, Charles M. Rowland, Daniel J. Schaid, gastrointestinal tract (73–85%) and the bronchopulmonary sys- and Pamela S. Karnes2 tem (10–28.7%). Carcinoids are occasionally found in the Departments of Medical Genetics [D. B-V., P. S. K.] and Medical Oncology larynx, thymus, kidney, ovary, prostate, and skin (4, 5). Ade- [C. L. C., J. R.] and Section of Biostatistics [C. M. R., D. J. S.], Mayo Clinic nocarcinomas and carcinoids are the most common malignan- and Mayo Foundation, Rochester, Minnesota 55905 cies in the small intestine in adults (6, 7). In children, they rank second behind lymphoma among alimentary tract malignancies (8). Carcinoids appear to have increased in incidence during the Abstract past 20 years (5). Carcinoid tumors are generally thought to be sporadic, Carcinoid tumors were originally thought to possess a very except for a small proportion that occur as a part of low metastatic potential. In recent years, their natural history multiple endocrine neoplasia syndromes. Data regarding and malignant potential have become better understood (9). In the familial occurrence of carcinoid as well as its ;40% of patients, metastases are already evident at the time of potential association with other neoplasms are limited. A diagnosis. The overall 5-year survival rate of all carcinoid chart review was conducted on patients indexed for tumors, regardless of site, is ;50% (5). -
Carcinoid Syndrome Caused by a Serotonin-Secreting Pituitary Tumour
L A Lyngga˚ rd and others Carcinoid syndrome from 170:2 K5–K9 Case Report pituitary tumour Carcinoid syndrome caused by a serotonin-secreting pituitary tumour Correspondence ˚ Louise A Lynggard, Eigil Husted Nielsen and Peter Laurberg should be addressed Department of Endocrinology, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark to P Laurberg Email [email protected] Abstract Background: Neuroendocrine tumours are most frequently located in the gastrointestinal organ system or in the lungs, but they may occasionally be found in other organs. Case: We describe a 56-year-old woman suffering from a carcinoid syndrome caused by a large serotonin-secreting pituitary tumour. She had suffered for years from episodes of palpitations, dyspnoea and flushing. Cardiac disease had been suspected, which delayed the diagnosis, until blood tests revealed elevated serotonin and chromogranin A in plasma. The somatostatin receptor (SSR) scintigraphy showed a single-positive focus in the region of the pituitary gland and MRI showed a corresponding intra- and suprasellar heterogeneous mass. After pre-treatment with octreotide leading to symptomatic improvement, the patient underwent trans-cranial surgery with removal of the tumour. This led to a clinical improvement and to a normalisation of SSR scintigraphy, as well as serotonin and chromogranin A levels. Conclusion: To our knowledge, this is the first reported case of a serotonin-secreting tumour with a primary location in the pituitary. European Journal of Endocrinology (2014) 170, K5–K9 European Journal of Endocrinology Introduction The carcinoid syndrome consists of a variety of symptoms neuroendocrine tumour (NET), most often located in the which typically include episodes of dry flushing with or gut or in the lungs.