AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 61(3) (2015), Pages 210{226 Edge decompositions of hypercubes by paths David Anick Laboratory for Water and Surface Studies Tufts University, Department of Chemistry 62 Pearson Rd., Medford, MA 02155 U.S.A.
[email protected] Mark Ramras∗ Department of Mathematics Northeastern University Boston, MA 02115 U.S.A.
[email protected] Abstract Many authors have investigated edge decompositions of graphs by the edge sets of isomorphic copies of special subgraphs. For q-dimensional hypercubes Qq various researchers have done this for certain trees, paths and cycles. In this paper we shall say that \H divides G" if E(G) is the disjoint union of fE(Hi) j Hi ' Hg. Our main result is that for q odd, q−1 the path of length m, Pm, divides Qq if and only if m ≤ q and m j q · 2 . 1 Introduction Edge decompositions of graphs by subgraphs have a long history. For example, there is a Steiner triple system of order n if and only if the complete graph Kn has an edge-decomposition by K3. In 1847 Kirkman [9] proved that for a Steiner triple system to exist it is necessary that n ≡ 1 (mod 6) or n ≡ 3 (mod 6). In 1850 [10] he proved the converse holds also. Theorem 1 A Steiner system of order n ≥ 3 exists if and only if n ≡ 1 (mod 6) or n ≡ 3 (mod 6). ∗ Corresponding author. D. ANICK AND M. RAMRAS / AUSTRALAS. J. COMBIN. 61 (2) (2015), 210{226 211 In more modern times (1964) Ringel [17] stated the following conjecture, which is still open.