Monogenic Causation in Chronic Kidney Disease

Total Page:16

File Type:pdf, Size:1020Kb

Monogenic Causation in Chronic Kidney Disease University of Dublin, Trinity College School of Medicine, Department of Medicine Investigation of the monogenic causes of chronic kidney disease PhD Thesis April 2020 Dervla Connaughton Supervisor: Professor Mark Little Co-Supervisors: Professor Friedhelm Hildebrandt and Professor Peter Conlon 1 DECLARATION I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work. This work was funding by the Health Research Board, Ireland (HPF-206-674), the International Pediatric Research Foundation Early Investigators’ Exchange Program and the Amgen® Irish Nephrology Society Specialist Registrar Bursary. I agree to deposit this thesis in the University’s open access institutional repository or allow the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement. I consent to the examiner retaining a copy of the thesis beyond the examining period, should they so wish (EU GDPR May 2018). _____________________ Dervla Connaughton 2 SUMMARY Chapter 1 provides an introduction to the topic while Chapter 2 provides details of the methods employed in this work. In Chapter 3 I provide an overview of the currently known monogenic causes for human chronic kidney disease (CKD). I also describe how next- generation sequencing can facilitate molecular genetic diagnostics in individuals with suspected genetic kidney disease. Chapter 4 details the findings of a multi-centre, cross-sectional study of patients with CKD in the Republic of Ireland. The primary aim of this study (the Irish Kidney Gene Project) was to describe the prevalence of reporting a positive family history of CKD among a representation sample of the CKD population. Of the 1,840 adult patients with CKD recruited, 629 (34%) reported a positive family history of CKD. Excluding autosomal dominant polycystic kidney disease (134 of 629), a positive family history was reported by 495 participants (27%). CKD of unknown aetiology was the commonest aetiology in the non-polycystic kidney disease group with a positive family history (67 of 629, 11%). Using family history of CKD as a surrogate marker of genetically inherited CKD, I then proceed to study the frequency of monogenic mutations in adults with CKD. In Chapter 5, I describe how whole exome sequencing (WES) was performed in a multi-centre, patient cohort of 114 families including 138 affected individuals with CKD. Following WES, I detected a mutation in a known CKD gene in 42 of 114 families (37%). Among the 42 families in whom a monogenic mutations in a gene known to cause CKD was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown aetiology (38%). Finally, in Chapter 6, I focus on the prevalence of monogenic mutations in a paediatric cohort with congenital anomalies of the kidney and urinary tract (CAKUT). Following WES analysis in 232 families with CAKUT, I identified monogenic mutations in known human CAKUT gene or CAKUT phenocopy gene in 14% of the families with CAKUT. Interestingly, an additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 24 of 232 families (10%). These findings demonstrate that WES can reveal monogenic mutations in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT. 3 Table of Contents DISSEMINATION OF THESIS ................................................................................... 12 ACKNOWLEDGEMENTS ......................................................................................... 14 ABBREVIATIONS ................................................................................................... 15 GLOSSARY OF TERMS ............................................................................................ 18 ABSTRACT ............................................................................................................. 21 CHAPTER 1 INTRODUCTION .................................................................................. 23 1.1 Chronic Kidney Disease (CKD) .................................................................................................. 23 1.2 Genetic Kidney Disease (GKD) ................................................................................................. 23 1.3 Whole Exome Sequencing (WES) ............................................................................................. 24 1.4 Familial Kidney Disease ............................................................................................................ 24 1.5 The Genetic Basis of CKD ......................................................................................................... 25 1.6 Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) ............................................. 25 1.7 STUDY HYPOTHESES ............................................................................................... 26 1.8 AIMS ...................................................................................................................... 26 CHAPTER 2 METHODS ........................................................................................... 27 2.1 Isolation of genomic DNA From biological specimens ............................................................. 27 2.2 Whole Exome Sequencing ....................................................................................................... 29 2.3 Web Resources ........................................................................................................................ 35 CHAPTER 3 Personalized medicine in chronic kidney disease by detection of monogenic mutations ........................................................................................... 36 3.0 SUMMARY .............................................................................................................. 36 3.1 INTRODUCTION ...................................................................................................... 37 3.11 Chronic Kidney Disease (CKD) ................................................................................................ 37 3.12 Genetic Kidney Disease (GKD) ............................................................................................... 37 3.13 Monogenic kidney disease ..................................................................................................... 40 3.14 Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) ........................................... 43 3.15 Steroid Resistant Nephrotic Syndrome (SRNS) ...................................................................... 43 3.16 Chronic glomerulopathies ...................................................................................................... 44 3.17 Cystic kidney disease ............................................................................................................. 45 3.18 Autosomal Dominant Tubulo-Interstitial Kidney Disease (ADTKD) ........................................ 46 4 3.19 Nephrolithiasis and Nephrocalcinosis (NLNC) ....................................................................... 46 3.20 Renal tubulopathies ............................................................................................................... 47 3.21 CKD of unknown aetiology (CKDu) ........................................................................................ 47 CHAPTER 4 The Irish Kidney Gene Project - Prevalence of Family History in Patients with Chronic Kidney Disease in Ireland ................................................................. 49 4.0 SUMMARY .............................................................................................................. 49 4.1 INTRODUCTION ....................................................................................................... 50 4.2 METHODS ............................................................................................................... 51 4.21 Human subjects ..................................................................................................................... 51 4.22 Data collection ....................................................................................................................... 52 4.23 Establishing the aetiology of CKD .......................................................................................... 53 4.24 Statistical analysis .................................................................................................................. 54 4.3 RESULTS .................................................................................................................. 55 4.31 Baseline demographics .......................................................................................................... 55 4.32 Prevalence oF Familial CKD ..................................................................................................... 56 4.33 Characteristic of patients With Familial CKD .......................................................................... 56 4.34 Factors associated With Familial CKD ..................................................................................... 58 4.4 DISCUSSION ...........................................................................................................
Recommended publications
  • Educational Paper Ciliopathies
    Eur J Pediatr (2012) 171:1285–1300 DOI 10.1007/s00431-011-1553-z REVIEW Educational paper Ciliopathies Carsten Bergmann Received: 11 June 2011 /Accepted: 3 August 2011 /Published online: 7 September 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Cilia are antenna-like organelles found on the (NPHP) . Ivemark syndrome . Meckel syndrome (MKS) . surface of most cells. They transduce molecular signals Joubert syndrome (JBTS) . Bardet–Biedl syndrome (BBS) . and facilitate interactions between cells and their Alstrom syndrome . Short-rib polydactyly syndromes . environment. Ciliary dysfunction has been shown to Jeune syndrome (ATD) . Ellis-van Crefeld syndrome (EVC) . underlie a broad range of overlapping, clinically and Sensenbrenner syndrome . Primary ciliary dyskinesia genetically heterogeneous phenotypes, collectively (Kartagener syndrome) . von Hippel-Lindau (VHL) . termed ciliopathies. Literally, all organs can be affected. Tuberous sclerosis (TSC) . Oligogenic inheritance . Modifier. Frequent cilia-related manifestations are (poly)cystic Mutational load kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous Introduction system, occurring either isolated or as part of syn- dromes. Characterization of ciliopathies and the decisive Defective cellular organelles such as mitochondria, perox- role of primary cilia in signal transduction and cell isomes, and lysosomes are well-known
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Oegtp - Epilepsy Test Requisition Lab Use Only: Patient Information
    OEGTP - EPILEPSY TEST REQUISITION LAB USE ONLY: PATIENT INFORMATION: Received date: Name: Notes: Address: Date of Birth: YY/MM/DD Sex: M F Health Card No: TEST REQUEST: See page 2 for gene list for each of the panels below Epilepsy Comprehensive panel: 167 genes Childhood Onset Epilepsy panel: 45 genes Focal Epilepsy panel: 14 genes Brain Malformation Epilepsy panel: 44 genes London Health Sciences Centre – (Molecular Genetics) London Health Sciences Centre Progressive Myoclonic Epilepsy panel: 20 genes Actionable Gene Epilepsy panel: 22 genes Early Infantile Epilepsy panel: 51 genes Single gene test: Carrier Testing/ KnownFamily Mutation SAMPLE COLLECTION: Name of index case in the family (include copy of report) Date drawn: YY/MM/DD EDTA blood (lavender top) (5ml at room temp) Affected Unaffected Date of Birth: Relationship to patient: REFERRING PHYSICIAN: Authorized Signature is Required Gene: RefSeq:NM Physician Name (print): Mutation: Signature: Email: REASON FOR REFERRAL: Clinic/Hospital: Diagnostic Testing Address: Clinical Diagnosis: Telephone: Fax: CC report to: Name: Clinical Presentation: Address: Telephone: Fax: Molecular Genetics Laboratory Victoria Hospital, Room B10-123A 800 Commissioners Rd. E. London, Ontario | N6A 5W9 Pathology and Laboratory Medicine Ph: 519-685-8122 | Fax: 519-685-8279 Page 1 of 6 Page OEGTP (2021/05/28) OEGTP - EPILEPSY TEST PANELS Patient Identifier: COMPREHENSIVE EPILEPSY PANEL: 167 Genes ACTB, ACTG1, ADSL, AKT3, ALDH7A1, AMT, AP3B2, ARFGEF2, ARHGEF9, ARV1, ARX, ASAH1, ASNS, ATP1A3, ATP6V0A2, ATP7A,
    [Show full text]
  • Diagnostic Test: OBESITÀ GENETICHE MENDELIANE
    Diagnostic test: OBESITÀ GENETICHE MENDELIANE MENDELIAN OBESITY Panel / Illumina Custom panel, Nextera Enrichment Technology / Coding exons and flanking regions of genes List of gene(s) and disease(s) tested: ALMS1, ARL6, BBIP1, BBS1, BBS10, BBS12, BBS2, BBS4, BBS5, BBS7, BBS9, C8orf37, CARTPT, CEP19, CEP290, DYRK1B, GNAS, HDAC8, IFT172, IFT27, INPP5E, INSR, KSR2, LEP, LEPR, LZTFL1, MC3R, MC4R, MCHR1, MEGF8, MKKS, MKS1, NR0B2, PCSK1, PHF6, POMC, PPARG, PPP1R3A, RAB23, SDCCAG8, SH2B1, SIM1, TRIM32, TTC8, UCP3, VPS13B, WDPCP ORPHA:98267 Obesità non sindromica genetica Obesità sindromica Tabella Elenco delle forme di OBESITÀ GENETICHE MENDELIANE e la loro eziologia genetica Phenotype OMIM# Gene OMIM# Phenotype Gene Alstrom syndrome 203800 ALMS1 606844 Bardet-Biedl syndrome 3 600151 ARL6 608845 Bardet-Biedl syndrome 18 615995 BBIP1 613605 Bardet-Biedl syndrome 1 209900 BBS1 209901 Bardet-Biedl syndrome 10 615987 BBS10 610148 Bardet-Biedl syndrome 12 615989 BBS12 610683 Bardet-Biedl syndrome 2 615981 BBS2 606151 Bardet-Biedl syndrome 4 615982 BBS4 600374 Bardet-Biedl syndrome 5 615983 BBS5 603650 Bardet-Biedl syndrome 7 615984 BBS7 607590 Bardet-Biedl syndrome 21 617406 C8orf37 614477 Obesity, severe HGMD CARTPT 602606 Morbid obesity and spermatogenic failure; Bardet-Biedl syndrome; Morbid obesity 615703; HGMD CEP19 615586 Bardet-Biedl syndrome 14 615991 CEP290 610142 Abdominal obesity-metabolic syndrome 3 615812 DYRK1B 604556 Pseudohypoparathyroidism Ia; Pseudohypoparathyroidism Ic 103580; 612462 GNAS 139320 Cornelia de Lange syndrome 5 300882
    [Show full text]
  • Anticancer Drug Oxaliplatin Induces Acute Cooling-Aggravated
    Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype NaV1.6-resurgent and persistent current Ruth Sittla,1, Angelika Lampertb,1, Tobias Huthb, E. Theresa Schuyb, Andrea S. Linkb, Johannes Fleckensteinc, Christian Alzheimerb, Peter Grafea, and Richard W. Carra,d,2 aInstitute of Physiology and cDepartment of Anesthesiology, Ludwig-Maximilians University, 80336 Munich, Germany; bInstitute of Physiology and Pathophysiology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; and dDepartment of Anesthesia and Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany Edited by Richard W. Aldrich, University of Texas, Austin, TX, and approved March 8, 2012 (received for review November 2, 2011) Infusion of the chemotherapeutic agent oxaliplatin leads to an arrhythmia (NaV1.5) (14), paramyotonia congenita (Nav1.4) (15, acute and a chronic form of peripheral neuropathy. Acute oxaliplatin 16), and pain (Nav1.7) (15, 17). INaR was first described in cerebellar neuropathy is characterized by sensory paresthesias and muscle Purkinje neurons and refers to a transient surge of inward sodium cramps that are notably exacerbated by cooling. Painful dysesthesias current occurring upon repolarization from a preceding period of are rarely reported for acute oxaliplatin neuropathy, whereas a strong depolarization (18). Because of its unorthodox activation common symptom of chronic oxaliplatin neuropathy is pain. Here profile, INaR is thought to promote burst discharge (11, 12). we examine the role of the sodium channel isoform NaV1.6 in medi- Pain associated with paroxysmal extreme pain disorder (17) and ating the symptoms of acute oxaliplatin neuropathy. Compound and muscle cramps experienced by paramyotonia patients (16) are of- single-action potential recordings from human and mouse peripheral ten exacerbated or triggered by cooling, similar to the symptoms of axons showed that cooling in the presence of oxaliplatin (30–100 μM; acute oxaliplatin neuropathy.
    [Show full text]
  • Dominant-Negative Calcium Channel Suppression by Truncated Constructs Involves a Kinase Implicated in the Unfolded Protein Response
    5400 • The Journal of Neuroscience, June 9, 2004 • 24(23):5400–5409 Cellular/Molecular Dominant-Negative Calcium Channel Suppression by Truncated Constructs Involves a Kinase Implicated in the Unfolded Protein Response Karen M. Page,* Fay Heblich,* Anthony Davies,* Adrian J. Butcher,* Jeroˆme Leroy, Federica Bertaso, Wendy S. Pratt, and Annette C. Dolphin Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom Expression of the calcium channel CaV2.2 is markedly suppressed by coexpression with truncated constructs of CaV2.2. Furthermore, a two-domain construct of CaV2.1 mimicking an episodic ataxia-2 mutation strongly inhibited CaV2.1 currents. We have now determined the specificity of this effect, identified a potential mechanism, and have shown that such constructs also inhibit endogenous calcium currents when transfected into neuronal cell lines. Suppression of calcium channel expression requires interaction between truncated and full-length channels, because there is inter-subfamily specificity. Although there is marked cross-suppression within the CaV2 calcium channel family, there is no cross-suppression between CaV2 and CaV3 channels. The mechanism involves activation of a compo- nent of the unfolded protein response, the endoplasmic reticulum resident RNA-dependent kinase (PERK), because it is inhibited by expression of dominant-negative constructs of this kinase. Activation of PERK has been shown previously to cause translational arrest, which has the potential to result in a generalized effect on protein synthesis. In agreement with this, coexpression of the truncated domain ␣ ␦ IofCaV2.2, together with full-length CaV2.2, reduced the level not only of CaV2.2 protein but also the coexpressed 2 -2.
    [Show full text]
  • Renal Cystic Disorders Infosheet 6-14-19
    Next Generation Sequencing Panel for Renal Cystic Disorders Clinical Features: Renal cystic diseases are a genetically heterogeneous group of conditions characterized By isolated renal disease or renal cysts in conjunction with extrarenal features (1). Age of onset of renal cystic disease ranges from neonatal to adult onset. Common features of renal cystic diseases include renal insufficiency and progression to end stage renal disease (ESRD). Identification of the genetic etiology of renal cystic disease can aid in appropriate clinical management of the affected patient. Our Renal Cystic Disorders Panel includes sequence and deletion/duplicaton analysis of all 79 genes listed below. Renal Cystic Disorders Sequencing Panel AHI1 BMPER HNF1B NEK8 TCTN3 WDPCP ANKS6 C5orf42 IFT27 NOTCH2 TFAP2A WDR19 ARL13B CC2D2A IFT140 NPHP1 TMEM107 XPNPEP3 ARL6 CDC73 IFT172 NPHP3 TMEM138 ZNF423 B9D1 CEP104 INPP5E NPHP4 TMEM216 B9D2 CEP120 INVS OFD1 TMEM231 BBIP1 CEP164 IQCB1 PDE6D TMEM237 BBS1 CEP290 JAG1 PKD2 TMEM67 BBS10 CEP41 KIAA0556 PKHD1 TRIM32 BBS12 CEP83 KIAA0586 REN TSC1 BBS2 CRB2 KIF14 RPGRIP1L TSC2 BBS4 CSPP1 KIF7 SALL1 TTC21B BBS5 DCDC2 LZTFL1 SDCCAG8 TTC8 BBS7 GLIS2 MKKS TCTN1 UMOD BBS9 GLIS3 MKS1 TCTN2 VHL Disorder Genes Inheritance Clinical features/molecular genetics Bardet Biedl ARL6 AR Bardet-Biedl syndrome (BBS) is an autosomal syndrome BBS1 recessive multi-systemic ciliopathy characterized By BBS10 retinal dystrophy, oBesity, postaxial polydactyly, BBS12 leaning difficulties, renal involvement and BBS2 genitourinary abnormalities (2). Visual prognosis is BBS4 poor, and the mean age of legal Blindness is 15.5 BBS5 years. Birth weight is typically normal But significant BBS7 weight gain Begins within the first year. Renal BBS9 disease is a major cause of morBidity and mortality.
    [Show full text]
  • Inhibition of Radiation and Temozolomide-Induced Glioblastoma Invadopodia Activity Using Ion Channel Drugs
    cancers Article Inhibition of Radiation and Temozolomide-Induced Glioblastoma Invadopodia Activity Using Ion Channel Drugs Marija Dinevska 1 , Natalia Gazibegovic 2 , Andrew P. Morokoff 1,3, Andrew H. Kaye 1,4, Katharine J. Drummond 1,3, Theo Mantamadiotis 1,5 and Stanley S. Stylli 1,3,* 1 Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; [email protected] (M.D.); morokoff@unimelb.edu.au (A.P.M.); [email protected] (A.H.K.); [email protected] (K.J.D.); [email protected] (T.M.) 2 Victoria University, St. Albans 3021, Victoria, Australia; [email protected] 3 Department of Neurosurgery, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia 4 Hadassah University Medical Centre, Jerusalem 91120, Israel 5 Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville 3010, Victoria, Australia * Correspondence: [email protected] or [email protected] Received: 8 September 2020; Accepted: 30 September 2020; Published: 8 October 2020 Simple Summary: Glioblastoma accounts for approximately 40–50% of all primary brain cancers and is a highly aggressive cancer that rapidly disseminates within the surrounding normal brain. Dynamic actin-rich protrusions known as invadopodia facilitate this invasive process. Ion channels have also been linked to a pro-invasive phenotype and may contribute to facilitating invadopodia activity in cancer cells. The aim of our study was to screen ion channel-targeting drugs for their cytotoxic efficacy and potential anti-invadopodia properties in glioblastoma cells. We demonstrated that the targeting of ion channels in glioblastoma cells can lead to a reduction in invadopodia activity and protease secretion.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Spatial Distribution of Leading Pacemaker Sites in the Normal, Intact Rat Sinoa
    Supplementary Material Supplementary Figure 1: Spatial distribution of leading pacemaker sites in the normal, intact rat sinoatrial 5 nodes (SAN) plotted along a normalized y-axis between the superior vena cava (SVC) and inferior vena 6 cava (IVC) and a scaled x-axis in millimeters (n = 8). Colors correspond to treatment condition (black: 7 baseline, blue: 100 µM Acetylcholine (ACh), red: 500 nM Isoproterenol (ISO)). 1 Supplementary Figure 2: Spatial distribution of leading pacemaker sites before and after surgical 3 separation of the rat SAN (n = 5). Top: Intact SAN preparations with leading pacemaker sites plotted during 4 baseline conditions. Bottom: Surgically cut SAN preparations with leading pacemaker sites plotted during 5 baseline conditions (black) and exposure to pharmacological stimulation (blue: 100 µM ACh, red: 500 nM 6 ISO). 2 a &DUGLDFIoQChDQQHOV .FQM FOXVWHU &DFQDG &DFQDK *MD &DFQJ .FQLS .FQG .FQK .FQM &DFQDF &DFQE .FQM í $WSD .FQD .FQM í .FQN &DVT 5\U .FQM &DFQJ &DFQDG ,WSU 6FQD &DFQDG .FQQ &DFQDJ &DFQDG .FQD .FQT 6FQD 3OQ 6FQD +FQ *MD ,WSU 6FQE +FQ *MG .FQN .FQQ .FQN .FQD .FQE .FQQ +FQ &DFQDD &DFQE &DOP .FQM .FQD .FQN .FQG .FQN &DOP 6FQD .FQD 6FQE 6FQD 6FQD ,WSU +FQ 6FQD 5\U 6FQD 6FQE 6FQD .FQQ .FQH 6FQD &DFQE 6FQE .FQM FOXVWHU V6$1 L6$1 5$ /$ 3 b &DUGLDFReFHSWRUV $GUDF FOXVWHU $GUDD &DY &KUQE &KUP &KJD 0\O 3GHG &KUQD $GUE $GUDG &KUQE 5JV í 9LS $GUDE 7SP í 5JV 7QQF 3GHE 0\K $GUE *QDL $QN $GUDD $QN $QN &KUP $GUDE $NDS $WSE 5DPS &KUP 0\O &KUQD 6UF &KUQH $GUE &KUQD FOXVWHU V6$1 L6$1 5$ /$ 4 c 1HXURQDOPURWHLQV
    [Show full text]
  • Modeling Ciliopathies: Primary Cilia in Development and Disease
    CHAPTER FIVE Modeling Ciliopathies: Primary Cilia in Development and Disease Robyn J. Quinlan, Jonathan L. Tobin, and Philip L. Beales Contents 1. The Human Ciliopathies 250 2. Bardet-Biedl Syndrome 251 3. Alstro¨m Syndrome 263 4. Polycystic Kidney Disease 264 5. Nephronophthisis 265 6. Meckel Syndrome 267 7. Joubert Syndrome 268 8. Jeune Syndrome 269 9. Oral–Facial–Digital Syndrome 269 10. The Structure and Function of the Cilium 270 10.1. The structure of primary cilia 270 10.2. Intraflagellar transport 272 10.3. IFT and ciliopathies 272 11. Cilia and Development 276 11.1. Left–right determination 276 11.2. Hedgehog signaling in ciliopathies 277 11.3. Cilia and polarity 280 11.4. Cilia and cystogenesis in mammals 283 11.5. Cilia and obesity 286 12. Therapies for Cystic Disease 287 13. Concluding Remarks 289 References 292 Abstract Primary (nonmotile) cilia are currently enjoying a renaissance in light of novel ascribed functions ranging from mechanosensory to signal transduction. Their importance for key developmental pathways such as Sonic Hedgehog (Shh) and Wnt is beginning to emerge. The function of nodal cilia, for example, is vital for Molecular Medicine Unit, Institute of Child Health, University College London, London, WC1N1EH, United Kingdom Current Topics in Developmental Biology, Volume 84 # 2008 Elsevier Inc. ISSN 0070-2153, DOI: 10.1016/S0070-2153(08)00605-4 All rights reserved. 249 250 Robyn J. Quinlan et al. breaking early embryonic symmetry, Shh signaling is important for tissue morphogenesis and successful Wnt signaling for organ growth and differentia- tion. When ciliary function is perturbed, photoreceptors may die, kidney tubules develop cysts, limb digits multiply and brains form improperly.
    [Show full text]