<<

Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

FIELD MEASUREMENTS OF INORGANIC NITROGEN UPTAKE BY EPIFLORA COMPONENTS OF THE OCEANICA (, POSIDONIACEAE) GillesLepoint Laboratoired'Océanologie,MARECentre,InstitutdeChimie,Bât.B6,UniversitédeLiège,4000Liège, Belgique JulienJacquemart MARECentre,Algologie,MycologieetSystématiqueExpérimentale,Bât.B22,BoulevardduRectorat27,4000 Liège,Belgique JeanMarieBouquegneau Laboratoired'Océanologie,MARECentre,InstitutdeChimie,Bât.B6,UniversitédeLiège,4000Liège, Belgique VincentDemoulin MARECentre,Algologie,MycologieetSystématiqueExpérimentale,Bât.B22,BoulevardduRectorat27,4000 Liège,Belgique andSylvieGobert Laboratoired'Océanologie,MARECentre,InstitutdeChimie,Bât.B6,UniversitédeLiège,4000Liège, Belgique Abstract

Crustosecorallines,crustoseanderectbrownalgae,andsessileanimalsaremajorcomponentsoftheepiphytic communityoftheMediterraneanseagrass Posidoniaoceanica (L.)Delile.Production,biomass,andspecific compositionofthisepiphyteseagrassassociationareimpactedbyanthropogenicincreaseofnutrientloadinthis oligotrophicarea.Inthiscontext,nitrogenuptakeby P.oceanica anditsepiflorawasmeasuredusingtheisotope 15 Nata10mdepthintheRevellataBay(Corsica,MediterraneanSea).Epifloracomponentsshowedvarious seasonalpatternsofbiomassandabundance.Theepiphyticbrownalgaeappearedattheendofspring,laterthan thecrustosecorallines,andafterthenitratepeakinthebay.Becauseoftheirlaterdevelopmentintheseason, epiphyticbrownalgaemostlyrelyonammoniumfortheirNneeds.Wehypothesizethatthetemporalsuccession ofepiphyticorganismsplaysacrucialroleintheNdynamicsofthiscommunityundernaturalconditions.The epiphyticbrownalgae,whichhaveagrowthrateoneorderofmagnitudegreaterthanthatofcrustosecorallines, showedlowerNuptakerates.ThegreaterNuptakeratesofcrustosecorallinesprobablyreflectthegreaterN requirements(i.e.,lowerC/Nratios)ofredalgae.Wedeterminedthattheepifloraincorporatedammoniumand nitratemorerapidlythantheirhost.Nevertheless,whenbiomasswastakenintoaccount, P.oceanica wasthe mostimportantcontributortoNuptakefromthewatercolumnbybenthicmacrophytesinthisseagrassbed.

Key words: 15 Ntracer;corallines;eutrophication;Mediterraneansea;nitrogen;seagrass;stableisotopes

Eutrophicationofcoastalwatershascomplexconsequencesonbenthicandpelagicecosystems(Cloern2001). Eutrophicationpressureinvolveschangesinprimaryproduction,speciescomposition,and,moregenerally, ecosystemprocesses.Classically,eutrophicationeffectsonbenthicecosystemsaredescribedassequentialevents wheretheoriginalmacrophytecommunities(i.e.,marinephanerogamsandperennialmacroalgae),whichare adaptedtolowdissolvednutrientconcentrations,aregraduallyreplacedbymoreephemeralmacrophytesor planktonicalgae(Munda1993,Duarte1995,Pedersen1995,MacClellandetal.1997,Cloern2001).

Innutrientpoorareas,suchastheMediterraneanSea,climaxmacrophyteslikethemarine Posidoniaoceanica arewelladaptedtolowambientconcentrationsofnutrients.Directeffectsofanthropogenic nutrientenrichmentonthisspeciesareassumedtobenegativebecauseitisnotprimarilylimitedbynutrient availabilityinmostofitsrepartitionarea(Alcoverroetal.1995,1997b).

Seagrasseswithalonglifespan,suchas P.oceanica, supportacomplexcommunityofepiphyticorganisms. Epifloracomponentsoftheepiphyticcommunitymightbemorenutrientlimitedthantheirhostbecause Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion) theyhaveahighernutrientdemand(i.e.,lowerC/N/Pratio)(PedersenandBorum1997).Theyhaveless possibilityofmitigatingnutrientdepletionbecausetheyhaveaccesstowatercolumnnutrientsonly.Moreover, epiphyticmacroalgaearetoothintohavegreatamountsofnutrient,andsuchreservesmayalsobeoflimiteduse withthelifespanofepiphytesbeinglimitedto50200dbecauseoftheleafturnoveroftheirhost(Duarteand Chiscano1999).

Therefore,theyareassumedtoreactmorerapidlythantheirhosttoanincreaseinnutrientload.Theeffectsof increasednutrientloadonthediverseseagrassecosystemsintheworldcanaffectepiphytespatialheterogeneity, increaseepiphyticbiomass,andleadtoepiphyticspeciesshifts(Borum1985,Silbersteinetal.1986,Shortetal. 1995,Tomaskoetal.1996,FrankovichandFourqurean1997,Wearetal.1999,Leonietal.2006).These differenteffectshavebeenshownfor P.oceanica meadowssubjecttomaricultureloadings(Ruizetal.2001, Dimechetal.2002,Holmeretal.2003)orexposedtourbanandindustrialsewage(Piazzietal.2004). Nevertheless,eutrophicationisacomplexphenomenon,andtheeffectsdescribedabovemaybemaskedby alterationofotherecosystemprocessesorcharacteristics,suchasthedistributionofmacroinvertebrates(Dimech etal.2002)oranincreaseinherbivores(Ruizetal.2001).

Biomassincreaseoraspeciesshiftinanepiphyticcommunitymayhavedramaticeffectsonthehostplantby reducingtheamountoflightreachingthehost(Drakeetal.2003).Therefore,epiphyticcommunitychangesare oftenthoughttobeoneofthefactorsresponsibleforseagrassdeclineundereutrophicationpressure(Wearetal. 1999,Hauxwelletal.2003).However,theepiphyticcommunitycanplaymultiplerolesinseagrassecosystems byconstitutingapelagicbenthiccoupling(Lemmensetal.1996),contributingtosedimentdynamics(Perryand BeavingtonPenney2005),orsupportingmostofthetrophicwebassociatedwiththe P.oceanica meadow community(Mazzellaetal.1992,Lepointetal.2000).

Epiphyticcommunitiesonseagrassleavesareverycomplexcomponentsoftheecosystem,involvingnumerous species,especiallyinthecaseofwithlonglifespans,suchas P.oceanica (Kerneis1960,VanderBen 1971,Boeroetal.1985,Mazzellaetal.1989).Seagrassepifloracommunitiesareoftendominatedbyred crustosecorallines(calcareousredalgae)orredfilamentousalgae(TrautmanandBorowitzka1999,Leliaertet al.2001,LaveryandVanderklift2002,Borowitzkaetal.2006).Thesegroupsarealsopresenton P.oceanica leaves,butithasbeenrecognizedthatacharacteristicassemblageofbrownalgaecolonizesitsleaves(Péresand Picard1964).IntheCalviarea,thesebrownalgaecanrepresentanimportantbiomass,especiallyinthelate springandsummerandwhenanthropogenousnutrientsarepresent.Theepiphytesof P.oceanica constitutea multistratifiedcommunity,resultingfromsequentialcolonizationsongrowing P.oceanica leaves(VanderBen 1971).Diatomsandothermicroorganismsareepiphyticpioneersbutalsooccurassecondaryepiphytes (MazzellaandRusso1989).Crustosecorallinesorthecrustosebrownalga Myrionemaorbiculare J.Agardh,a characteristicspeciesof P.oceanica epiflora,formafirstlayerofmacroepiphytes.Thislayeriscomplemented bysessileanimals,suchasthemonolayeredbryozoan Electraposidoniae (Gautier),andhighlycharacteristic erectphotophilousbrownalgae,suchas Cladosiphon spp.and Giraudyasphacelarioides DerbèsetSolier(Van derBen1971).Thefilamentousredalgaeappeargenerallylaterinsummer,atwhichtimetheycanconstitutethe highestnumberofspecies;however,theyaremostlyverythin,smallalgaerepresentingalimitedbiomassand cover(VanderBen1971,fig.17).

Thespatialstructureofthe P.oceanica epiphyticcommunityoccursatdifferentscalesinrelationtobathymetry (10mscale),meadowpatchiness(mscale),patchstructure(10cmscale),and,finally,theshootitself(cmscale) (VanderBen1971,Mazzellaetal.1989,DallaViaetal.1998,Cebrianetal.1999).Lightplaysastrongrolein thispattern(DallaViaetal.1998),restrictingepiphyticbrownalgaeintheirspreadbothspatiallyand seasonally.Asaresultoftheirphotophilouscharacter,thedepthrangewherethesebrownalgaeoccurisoften morelimitedthanthatofcrustosecorallines(VanderBen1971,Mazzellaetal.1989).Moreover,theyoften occurontheapexof P.oceanica leavesoronleavesexposedtogreaterlight(Mazzellaetal.1989,DallaViaet al.1998,Cebrianetal.1999).Incontrast,thetoleranceofcrustosecorallinestolightlevelvariabilityiswell known(Figueiredoetal.2000,Ichikietal.2000),andthesespeciesmaycolonizetheentirelengthof P. oceanica leavesacrossthecompletedepthrangeofthemeadow(Mazzellaetal.1989,DallaViaetal.1998, Cebrianetal.1999).Onapexorlightexposedleaffaces,photophilousbrownalgaecansometimesovergrowthe crustosecorallinesandtheanimalsastheyhaveagrowthrateofaboutoneorderofmagnitudegreaterthanthat ofcrustosecorallines(Cebrianetal.1999).

Wehypothesizethatthevariouscomponentsoftheepiphyticcommunityof P.oceanica reactdifferentlytoa moderateincreaseinnutrientloadbasedontheirdifferentgrowthandnutrientuptakerates.Therelativelyfast growingbrownalgalspeciescouldhaveanadvantagerelativetotheotherfunctionalcomponentsofthe epiphyticcommunity.Thefirststeptotestthishypothesisistoassess insitu, atambientnutrientconcentrations, Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion) theNuptakeoftheepifloracomponentsof P.oceanica andoftheirhost.Toourknowledge,fieldmeasurements ofepiphyticNuptakearerestrictedtomeasurementatthecommunitylevelof Thalassiatestudinum BanksexK. D.Königor P.oceanica (CornelisenandThomas2002,2006,Lepointetal.2004b)anddonottakeplaceonthe differentcomponentsofthiscomplexassociation.

MATERIALS AND METHODS

Studysite. AllsamplingandmeasurementswereperformedintheRevellataBay(GulfofCalvi,Western Corsica,France),nearthemarineresearchcentreSTARESO(42°35'N,8°43'E)(Fig.1). AP.oceanica seagrass meadowgrowshereto40mdepth,whichisclosetothedeepestlimitrecordedforthisspeciesinthewestern Mediterranean.Thismeadow,whichisoneofthemostproductive P.oceanica bedsoftheNWMediterranean (PergentMartinietal.1994),covers70%oftheseaflooroftheRevellataBay.CurrentspeedsinRevellataBay varybetween1and25cm.s 1at10mdepthabovethe P.oceanica canopy(Norro1995).Intheabsenceof significanttide,waterflowabovethecanopyisdrivenbylocalwindconditionsandwatercirculationoutsidethe bay(Sklirisetal.2001).Foraveragewindconditions,waterspeedat10mdepthabovethe P.oceanica canopy isabout5cm.s 1atourstudysite(Norro1995).

FIG . 1.Experimentalsite(1)waslocatedinfrontofSTARESOintheRevellataBay(GulfofCalvi,Western Corsica,France)at10mdepth.

Specificcompositionandtemporalevolutionofepiflora. Inordertoassessthetemporalevolutionofthe epiphyticfloracomposition,samplesweretakenbyscubadivingat15mdepth,betweenApril2001andApril 2002.Thesamplingsitewasvisitedtwiceamonthonaverage,butnosamplesweretakeninSeptemberand October2001,orinFebruaryandMarch2002.Oneachvisit,fiveexternalPosidonia leavesweresampledfrom randomlyselectedshootstoexaminetheepiphyticassemblages.Weselectedtheoldestleaves,asapilotstudy hadshownthatyoungerleavesusuallydidnotpresentcharacteristictaxa.Thispilotstudy,followingKendrick andLavery's(2001)specifications,andbasedonspeciesareacurves,alsoshowedthattheapicalpartsofthe oldestleavesarethemostappropriatetopresentmatureepiphyticassemblages.Forthisreason,onlytheapical parts(thefirst5cmfromthetips)andtheexternalfaceofeachleafwereobserved,usingastereomicroscope (Stemi200,Zeiss,Zurich,Switzerland).Epiphytetaxawereidentifiedtospecieslevelwherepossibleandwere counted.Scoresobtainedforfiveleaveswereobtainedforeachsample.Species,likethebrownalga M.orbiculare andcorallinesthatformcrustsonleaves,werequantifiedusingpercentagecoverestimates.Inthis paper,wepresentthetemporalcompositionofdominantepiphyticspeciesinrelationto 15 Nuptake measurements.AmorecompletedescriptionofepifloraassemblageintheRevellataBayisavailablein Jacquemart(2003).

Experimentaldesignandprotocol. Allexperimentswereconductedintheseagrassmeadowata10mdepthby scubadiving.Nitrateandammoniumuptakeweremeasuredforthe P.oceanica leavesandtheiralgalepiphytes. Theepiflorawasseparatedaccordingtotheecologicalcharacteristicsofthedifferentassemblages(i.e.,erectand crustosephotophilousbrownalgaeorcrustosecorallines).Experimentswereperformedin2003and2004during themonthsofMarch,June,andNovember.Between12and16incorporationexperimentswereperformedfor eachexperimentalperiod( ntot =68).

ThecustommadeexperimentaldevicewascomposedofonetransparentPlexiglascylinderandasubmerged pumpusedtoensurethehomogenizationofwatercontent(~4L)(Fig.2)andflowof~2cms 1,avalue commonlyencounteredinthe P.oceanica canopyofRevellataBay(VanKeulenandBorowitzka,2002). Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

Nevertheless,imposedwaterflowhadaverticalcomponent,whichwasprobablygreaterthanthenaturalmean secondaryverticalflow,althoughitispossibletoobservesuchflowsinaseagrasscanopy(NepfandKoch 1999).APVCbasewasdrivenintothesediment(25cmdepth)24hbeforetheexperiment,isolatingoneshoot of P.oceanica (Fig.1).APlexiglascylinderwasplacedverticallyontothePVCbase.Arubbermembrane separatedthecylinderandthePVCbase,isolatingaleafandarootchamber.

Allexperimentshadadurationof1handwerebegunbetween9:00and10:00a.m.Alongertimewouldhave ledtonutrientdepletioneffects,duetothelowconcentrationspresent(generally<0.5M).The 15 Ntracerswere solutionsofammoniumsulfate(99.0% 15 N)ornitratesodium(99.0% 15 N)(Eurisotop,SaintAubin,France). Watersamplingsweredoneinthecylinderbeforeand5minafterthetraceradditionandattheendofthe experimentfornutrientconcentrationmeasurements.Traceradditionsrepresentedonaverage0.15±0.14M (n =31)forammoniumand0.09±0.06M(n =33)fornitrates(Fig.3).Attheendoftheexperiment,benthic primaryproducerswerecollectedinplasticbags.

FIG . 2. Experimentaldeviceusedfor 15 Ntracerexperiment.

Sampletreatmentandmeasurements.Posidoniaoceanica leaveswerescrapedunderastereomicroscopewitha razorbladetoseparatelyremovedifferentcomponentsoftheepiphytecommunity:first,fixedanimals(mainly thebryozoan E.posidoniae); second,crustosecorallines;andthird,brownphotophilousalgae,botherect [Cladosiphon spp., G.sphacelarioides ,and Sphacelariacirrosa (Roth)C.Agardh.]andcrustose(e.g., M. orbiculare ). Leavesandepiphyteswereovendriedat60°Cfor48handthenweighed.

Allsampleswerefinelygroundusingmortarandpestleoramicrogrindingdevice(MM301,Retch,Haan, Germany)forspectrometricandelementalanalysis.Isotopicandelementalmeasurementswereperformedwith anisotopicratiomassspectrometer(Optima,GVInstruments,Manchester,UK)coupledtoaCNSelemental analyzer(NA1500,CarloErba,Milan,Italy).Elementalresultswereexpressedasapercentageoftheconsidered elementrelativetothetotaldwt(%dwt).Thesedatawereusedtocalculatespecificuptakeratesanduptake fluxes.

Nitrateandammoniumconcentrationsinwatersamplesweremeasuredwithananalyticalautomatedchain (Skalar,Breda,theNetherlands),usingamethodadaptedforoligotrophicwateranalysis.Analyticalprecision, basedonrepetitivemeasurementofanaturalsample(n= l2), was0.02and0.1Mfornitrateandammonium, respectively.Thedetectionlimit,measuredasthedifferencebetweenmilliQwaterandnutrientexhausted seawater,was~0.002and0.01Mfornitrateandammonium,respectively.

Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

FIG . 3. Comparisonofammoniumandnitrateconcentrationsbefore(blacksymbols)andafter(opensymbols) the 15 Ntraceradditionsatthebeginningofuptakeexperiments.

Nitrogenuptakecalculations. Specificuptakerates(V)(gNgN1h 1)werecalculatedaccordingtothe followingequation(adaptedfromCollos1987):

15 15 whereA fisthefinal Nabundancemeasuredintheplant, A0 istheinitial(natural) Nabundanceintheplant, 15 Adisthe Nabundanceinthedissolvedphaseatthebeginningoftheexperiment,and t isthedurationofthe 1 1 experiment.Tofacilitatecomparisonwithdataintheliterature, VwasconvertedintogNg ashfreedwt h using Nconcentrationineachsample(measuredsimultaneouslywithisotopicabundance)andmeanashfreecontent. Ashfreecontentsof P.oceanica leaves,crustosecorallines,andepiphyticbrownalgaeweremeasuredby combustingrandomsubsamples(n =12foreach)at450°Cfor48h.Ashfreecontentswere87±5,48±5,and 27±2%dwtfor P.oceanica leaves,brownepiflora,andcrustosecorallines,respectively.

Uptakefluxes (R) (gNm2h1)werecalculatedforeachexperimentaccordingtothefollowingequation:

R=VxbiomassN (2)

Foreachexperiment,thebiomassNwascalculatedfollowingtheequation:

BiomassN sample =%Nsample xshootdwt xaverageshootdensity (3) Themeanshootdensitywasmeasured(259counts)usingacirclewithadiameterof40cmrandomlylaunched inthemeadow.WeobservednosignificantseasonalchangeofdensityinourstudyoftheRevellataBayover10 Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

2 years(S.Gobert,personalobservation)(402±140shootm ).TheNconcentration(%Nsample )ofeachsample wasmeasuredsimultaneouslywithisotopicabundance.

15 15 In P.oceanica shoots,thenaturalabundanceof N(A0)was0.3673±0.0005% N(i.e.,+2.6‰inδnotation) (Lepointetal.2000).The 15 Nnaturalabundanceforepiphyteswaswithinthesamerange.Wedidnotfindany seasonalvariationofthisvalueintheRevellataBay(Lepointetal.2003),butVizzinietal.(2003)detecteda variationof±2‰intheirstudy.Toencompassthenaturalvariationof A0, theexperimentalparticulatematerial 15 15 15 wasconsideredasenrichedin Nrelativeto Nnaturalabundance whenA fA0was>0.001% N.Thisnatural variation ofA0leadstopossibleuncertaintyinuptakeratecalculations.

Adwasconsideredtobeconstantduringtheexperimentduration(1h)andwascalculatedaccordingtothe isotopicmixingequation:

CdxA d=A d0 xC d0 +A txC t (4)

15 Cdistheconcentrationofammoniumornitrateinthedissolvedphaseaftertheadditionof Ntracer. Ad0 andC d0 are,respectively,thenatural 15 Nabundanceandtheinitialconcentrationofnitrateorammoniuminthedissolved 15 15 phase. Atand Ctare,respectively,the Nabundance(99.0% N)andtheconcentrationoftheaddedtracer. Ad0 wasfixedat0.37% 15 N,astheimportanceofthenaturalvariationofthistermissmallcomparedwiththe 15 variationsofthetracerterms.Calculated Ad variedbetween42.6%and99% N.

For Adcalculationwheninitialnutrientconcentrationswereundetectable,weconsideredC d0 tobeequaltothe analyticalquantificationlimit.Thequantificationlimitwasestimatedtobe0.01and0.05Mfornitrateand ammonium,respectively(i.e.,fivetimesthevalueoftherespectiveanalyticaldetectionlimits).

RESULTS

NutrientconcentrationsintheRevellataBayrangedbetweennondetectableand2Mforammonium,and betweennondetectableand3.5Mfornitrate(Fig.4).Therewasnoclearseasonalityofammonium concentrations.Bycontrast,nitrateconcentrationsshowedastrongseasonalpattern,beingatamaximumduring afewweeksinearlyspring.

Thetemporalevolutionsofthepercentageofleafsurfacecoveredbythebrownalgae M.orbiculare andthe crustosecorallinesareshowninFig.5a.Thesetwomajorcomponentsofthe P.oceanica leafepiflorashoweda strongseasonalpattern.MaximumcovervalueswerereachedinMayandJune.InMay,percentagecovers reached33%and60%for M.orbiculare andforthecrustosecorallines,respectively.Insummer,thevalueswere 15%and30%,respectively.J.Jacquemart'sunpublisheddataalsoshowthatsummer(JulyandAugust)wasthe periodofmaximalepiphyticdiversitywiththedevelopmentofseveralspeciesoferectredalgae,mostly Ceramiales.Thesealgaeare,however,usuallysmallandlessimportantthanbrownalgaeintermsofcoverand biomass.Nonetheless,itwouldbeinterestingtoincludetheminafuturestudyofthepeculiarsummersituation (averylownaturallevelofnutrients,butwiththepossibilityoflocaleutrophicationlinkedtotourism).The lattergroupiswellrepresentedbetweenAprilandAugust,butalmostcompletelylackingfromNovemberto February.Thepercentagecovervaluesreachedbythecrustosecorallinesduringthisperiodwereverylow, rangingfrom0.1%to1%.

ThetemporalevolutionofthetotalnumberofthemainepiphyticerectbrownalgaeisshowninFig.5b.This groupincludedthefollowingspecies: Dictyotadichotoma (Huds.)J.V.Lamour., Cladosiphon spp., G. sphacelarioides, and S.cirrosa. Thesetaxa,consideredhereasawhole,showedstrongquantitativeseasonal variations.Inspring,betweenAprilandJune,thevaluesappearedtobelargelyvariable,rangingfromeightto 58individualspersample.Thenumberofindividualsreachedtheirmaximuminlatesummer,with103counted inAugust.BetweenNovemberandFebruary,erectbrownalgaewerevirtuallyabsent.Thisgroupcontinuedto bepoorlyrepresenteduntilApril.

LeafdwtwasminimalinDecember2003andmaximalinJune2004(Fig.6a),astypicallyobservedforthis species(Gobertetal.2006).EpiphytedwtalsopresentedminimalvaluesinDecember2003andmaximalvalues inJune2003.Oursamplingdidnotincludethesummermaximumofepiphytediversityon P.oceanica leaves, whichoccursduringJulyorAugust.

Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

FIG . 4. Nitrateandammoniumconcentrationsinthewatercolumnat10mdepthintheRevellataBaybetween March2003andMarch2005.Blackarrowsindicateexperimentalcampaigns(n=5).

TotaldwtwasminimalinDecemberforthethreeepiphyticcomponents(Fig.6b).Epifaunawasmainly representedby E.posidoniae, aslightlycalcifiedbryozoan,whichisalmostrestrictedto P.oceanica leaves (Gautier1954).Faunarepresentedonaverage39%oftotalepiphyteweight,withacontributionrangingbetween 16%and63%inDecember2003andMarch2003,respectively.Crustosecorallinescontributedonaverage49% oftotalepiphyteweight,rangingfrom30%(March2003)to84%(December2003).Photophilousalgaewere almostcompletelyabsentinDecember2003.Otherpotentialmacroepiphyticgroups(mainlyCeramiales)were almostabsentfromoursamples,astheymostlydevelopduringthesummermonths.

Meannitrogenconcentrationsofflorashowedthat P.oceanica hadthehighestNconcentrationwhenexpressed relativetototaldwt(Table1).However,whendatawereexpressedrelativetoashfreedwt,Nconcentrationin crustosecorallineswashigherthanthatofbrownalgae,andbothwerehigherthantheNconcentrationin Posidonia leaves.

Averageandmedianvaluesofammoniumandnitratebiomassspecificuptake,respectively VNH4 and VNO 3,by P. oceanica leavesanddifferentcomponentsoftheepiphyticcommunityarepresentedinTable1.For P.oceanica leavesorcrustosecorallines, VNO 3didnotsignificantlydifferfrom VNH 4(P>0.1,ttest ). Bycontrast,the VNO 3and

VNH 4ofbrownalgaedifferedsignificantly(P= 0.0123, ttest ).

Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

FIG . 5. Temporalevolutionofmeancoverofcrustosecorallineandcrustosebrown(Myrionemaorbiculare) epiphytes(upper)andofthenumberoferectbrownepifloraontheseagrassPosidoniaoceanicaat15mdepth (lower)infrontofSTARESOintheRevellataBay.

The VNO 3and VNH 4ofbothepifloracomponentswerenevercloseto0,exceptinDecemberwhenbrownalgae wereabsent(Fig.7).Bycontrast,the VNH 4of P.oceanica wassometimesclosetothedetectionlimitinJuneand March.NoclearseasonalpatternemergedfromNH 4uptakemeasurements.TheANOVAtestsshoweda significanteffectoffloratypeon VNH 4(Table2),butnotofsamplingdate.The VNH 4of P.oceanica was significantlylowerthanthatofepifloracomponents(posthoc Tukey'stest,P<0.001).The VNH 4ofbrown epiphyticalgaewassignificantlylowerthanthatofcrustosecorallines (posthoc Tukey'stest,P<0.001).

Nocleartemporalpatternwasevidentfornitrateuptakebytheepiphytes,exceptforamaximum VNO 3measured forcrustosecorallinesinDecember2003(Fig.7).Despitegreatvariation,the VNO 3oftheepiflorawasnever equalto0,exceptinDecember2003forbrownalgae.Bycontrast,the VNO 3of P.oceanica wasoftennot detectableinJunewhenN0 3concentrationswereclosetothedetectionlimit.Analysisofvariance(ANOVA) testsshowedasignificanteffectoffloratypeonVNO 3(Table2),butnotofsamplingdate.The VNO 3of P.oceanica leaveswassignificantlylowerthanthatofcrustosecorallines (posthoc Tukey'stest, P< 0.005)andbrownalgae

(posthoc Tukey'stest,P<0.005).The VNO 3ofthetwoepiphyticcomponentsalsodifferedsignificantly(posthoc Tukey'stest,P<0.005).

Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

FIG . 6. Temporalevolutionofaverage(±SD)weightsofPosidoniaoceanicaleaves,oftotalepiphytes(a)and ofsessileepifauna,crustosecoralline,andbrownphotophilous(erectandcrustose)epiflora(b)at10mdepth, betweenMarch2003andJune2004infrontofSTARESOintheRevellataBay.

Averageuptakefluxesofnitrate(gNm2h1) bythedifferentprimaryproducersdidnotdiffersignificantly fromtheammoniumuptakefluxesofeachproducer(Table1).Nitrateuptakefluxesof P.oceanica leaveswere veryvariableandshowedminimalvaluesinJune2003(Fig.8).Thesenitrateuptakefluxesweregenerally greaterthanthoseoftheepiflora,exceptinJune.Uptakefluxesbycrustosecorallinesexhibitedminimalvalues inDecemberbutweregenerallygreaterthanthoseofbrownalgae.Nitrateuptakefluxbythislastgroupwas onlysignificantinMarchandJune2004.TheANOVAtestsshowedasignificanteffectoffloratypeon NO 3uptakefluxes(Table3). Posidoniaoceanica uptakewassignificantlyhigherthanthatofepiphyticflora components(posthoc Tukey'stest,P<0.01and<0.001forcrustosecorallinesandepiphyticbrownalgae, respectively).TherewasnosignificantdifferencebetweentheNO 3uptakefluxesofthetwoepiphytic components.

Therewasnoapparentseasonalvariationinammoniumuptakefluxes(Fig.8),butmeasurementsshowed importantvariability,forboth Posidonia leavesandcrustosecorallines.Uptakefluxesbybrownalgaewereonly significantinJune2004.TheANOVAtestsshowedasignificanteffectoffloratypeonNH 4uptakefluxes (Table3). Posidoniaoceanica uptakewassignificantlyhigherthanthatofepiphyticfloracomponents(posthoc Tukey'stest,P<0.05and P< 0.001forcrustosecorallinesandepiphyticbrownalgae,respectively). Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

TherewasnosignificantdifferencebetweentheNH 4uptakefluxesofthetwoepiphyticcomponents.

1 1 FIG . 7. Nitrateandammoniumspecificuptakerates(gN g ashfreedwt h )bycrustosecorallines,brown photophilousepiflora,andPosidoniaoceanicaleavesat10mdepth,betweenMarch2003andJune2004in frontofSTARESOintheRevellataBay. Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

TABLE 1.Meanvalues±SD(median)ofNconcentrations(%dwtand%ashfreedwt),specificuptakerate(V),anduptakefluxes(R)forammoniumandnitrate incorporationbyPosidoniaoceanicaanditsepiphytesat10mdepthintheRevellataBay(Calvi,Corsica) 1. 1 1 1 1 1 1 1 2 1 2 1 %Ndwt %Nashfree dwt VNH4gN gN h VNH4gNg ashfreedwt h VNO3 gN gN h VNO3 gNg ashfreedwt h RNO4 gN.m .h RNO3 gN m h Posidonia 1.4±0.3 1.6±0.3 7.1±11.6(2.5) 0.72±1.1(0.12) 5.5±8.1(2.1) 0.09±0.11(0.03) 51.3±65(23.6) 38.2±47.9(15.5) leaves n=68 n=31 n=31 n=33 n=33 n=31 n=33 Crustose 0.9±0.2 3.5±0.8 86.9±101.8(55.2) 1.91±0.91(1.73) 55.8±59.3(34.4) 1.72±1.32(1.35) 27.6±31.2(20.4) 15.7±11.8(12.1) corallines n=31 n=31 n=33 n=33 n=31 n=33 Brown 1.05±0.3 2.1±0.7 38.3±3.0(38.1) 0.70±0.3(0.68) 28.7±12.0(26.8) 0.54±0.30(0.57) 6.4±8.7(3.8) 4.2±5.0(2.9) epiphytic n=49 n=49 n=23 n=23 n=23 n=23 n=23 n=23 algae Ashfreedwthasbeenmeasuredon12samplesbyfirelossat450°C. n =numberofsamples. TABLE 2. SummaryofANOVAresults.

VNH4 VNO3 Sourceofvariation MS F P MS F P

Dates 0.58 F3,90 =1.93 NS 0.39 F3,89 =1.23 NS Floratypes 49.11 F1,90 =163.05 <0.001 45.59 F1,89 =142.27 <0.00l Floratypesxdates 0.58 F7,90 =0.35 NS 6.08 F7,89 =6.52 <0.00l MS,meansquare; F, Snedecor's F;P, significancelevel;NS,nonsignificantdifference(P>0.05).Floratypes: Posidoniaoceanica leaves,epiphyticcrustosecorallines,epiphyticbrownalgae.

TABLE 3. SummaryofANOVAresults.

RNH4 RNO3 Sourceofvariation MS F P MS F P

Dates 1231.2 F3,90 =0.68 NS 1584. F3,89 =2.17 NS Floratypes 1256.1 F1,90 =6.91 <0.0l 9265.3 F1,89 =12.68 <0.00l Floratypexdates 254.35 F7,90 =0.14 NS 2489.5 F7,89 =3.41 <0.005 MS,meansquare; F, Snedecor's F;P, significancelevel;NS,nonsignificantdifference(P>0.05).Floratypes: Posidoniaoceanica leaves,epiphyticcrustosecorallines,epiphyticbrownalgae. Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

DISCUSSION

1 1 1 1 Wemeasuredsimultaneously insitu theNuptakerates(gNgN h orgNg ashfreedwth )andcalculatedfluxes (gNm2h1)of Posidonia leavesandofitsdifferentepifloracomponents.Ourmeasurementsweremadeat ambientnutrientconcentrations,which,beingclosetoouranalyticallimit,resultedinasignificantvariabilityin thecalculateduptakerates.Thisvariabilitywasgreaterforammoniumuptakethanfornitrateuptakeduetoa higherlimitofdetectionandalowermeasurementprecisionofammoniumconcentrations.Nevertheless,we estimatethatourmeasurementsprovideagoodestimateofNuptakebyfloraatnaturalnutrientconcentrations. Uptakerateswerenotcorrelatedtoexternalnutrientconcentrations.However,ourexperimentswereperformed inarelativelynarrowrangeofconcentrations(00.5and01M,fornitrateandammonium,respectively), representativeofnaturalnutrientoccurrence,butfarbelowconcentrationsgenerallyusedtoassesskinetic parameters(010mM).Itispossiblethatthisrelationshipwasencompassedbyexperimentalvariability,as describedabove.

Anothercauseofnaturalvariabilityforammoniumuptakeisthevariabilityofwaterflowspeed.Generally, uptakeratesforammoniumbyseagrassesandtheirepifloraincreasewithanincreaseinwaterflow(Cornelisen andThomas2002,2006).Thisincreaseinrelationtowaterflowisalsoobservedinseaweedecosystems (Wheeler1988,Hurdetal.1996)andislinkedtotheinfluenceofwaterflowonthethicknessofthediffusion boundarylayer.Instudiedseagrasssystems,nitrateuptakeseemstobelessaffectedbywaterflowbecauseitis morebiologicallylimitedbythenitratereductaseactivity.Inourexperiment,waterflowwasnotresponsiblefor uptakevariabilitybecausethiswasaninvariantfactorinourexperimentalsetting.Itwasrepresentativeofwater flowspeedoccurringinthe P.oceanica canopyofRevellataBayinmeanconditionofwind(i.e.,awaterflowof about2cms1). Attenuationofwatercurrentbyaseagrasscanopy,suchas P.oceanica, isawellestablished process(VanKeulenandBorowitzka2002,Kochetal.2006).Thisattenuationmayleadtoalocalandtransient nutrientgradientin P.oceanica canopywaterfromsedimenttooverlyingwater(Gobertetal.2003).Inthe RevellataBay,thisoccursparticularlyoncalmdaysinlatespringandsummer,aperiodofnutrientexhaustionin thewater.Allinvestigatedfloratookupbothnitrateandammoniumatconcentrationsclosetoouranalytical limit(i.e.,0.002and0.01Mfornitrateandammonium,respectively).Therefore,wecanstatethat P.oceanica anditsnaturalepifloraassemblagearewelladaptedtotheverylownutrientconcentrationsoftheirenvironment. Epiphyticcolonizationon P.oceanica leavesisstructured,bothspatiallyandtemporally(Mazzellaetal.1989, DallaViaetal.1998).InagreementwithMazzellaetal.(1989),weobservedthatcrustosecorallinesarepresent earlyintheseasononthe Posidonia leafsurface,formingafirstlayerofmacroepiphytes.Therefore,crustose corallinemightbenefitfromthegreaternitrateconcentrationsinthewatercolumnduringwinterandspring. Theyalsotakeupammoniumthroughouttheyear.Bycontrast,thebrownalgaeoftheepifloragenerally developedattheendofspring,laterthanthecrustosecorallinesandafterthepeakinnitrateconcentrations. Becauseofthattimingofevents,epiphyticbrownalgaeandalsoerectredalgae,whichdevelopinsummer, woulddependmoreonammoniumtoensuretheirNneedsthanwouldcrustosecorallines.Thetemporalpattern ofepiphyticcolonizationanditscorrelation(orlackthereof)withnitratepeakoccurrencestronglydeterminethe potentialNsourcesthatthedifferentepifloracomponentsmaytakeup.

ThebiomassdynamicsofP.oceanica andepiphytesareprimarilydeterminedbysolarcyclethroughlight availabilityandtemperatureevolution(Alcoverroetal.1995,1997a).Nutrientavailabilityorgrazingisthought toexplainlocalvariabilityinbiomassdynamics(Alcoverroetal.1997b). Posidoniaoceanica, likemanyother seagrasses,hasaverycomplexnutrientbudget,whichenablesittomeetitsnutrientrequirementsinnutrient poorconditions(Gobertetal.2006).Epiphyticmacroalgaeprobablyhavelesspossibilityofmitigatingthe seasonalnutrientpovertyinthewatercolumnofthisnutrientpoorcoastalarea.Owingtotherenewalofhost leaves,thelifespanofepifloraontheirhostisdefacto limitedtoatimerangingbetween50and200daccording toleafturnover(Cebrianetal.1999).Thisleafturnoverisanimportantfactorforepiphytedynamics(Mazzella etal.1989).Becauseoftheirshortlifetimeandthetemporalstructureofepiphyticcolonization,nutrientstorage strategiesareprobablylimitedforepiflora.Moreover,theycannottakeupnutrientsdirectlyfromthesedimentas cantheirhost,andtheyareincompetitionwithboththeirhostandotherepiphytesandphytoplanktonforwater columnnutrients.Forthesereasonsand,althoughcrustosecorallinesandepiphyticbrownalgaetakeupnutrients atverylowconcentrations,epifloramightbemorelimitedthantheirhostbynutrientavailability.Inthiscontext, asinothermacrophyteepiphyticcommunities(Hurdetal.2000,Bracken2004),therearepossibleinteractions betweenepifaunaandepiflora.Indeed,consideringthehighNcontentofepiphyticanimalscomparedwith epiphyticalgae(about10%dwtvs.l%5%dwt),Nexcretionbyepifauna,whichrepresentsbetween16%and 63%(mean39%)ofepiphytebiomass,couldconstituteanimportantNsourceforepiphyticalgae.

Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

FIG . 8. Meanvalues(±SD)ofnitrateandammoniumuptakefluxes(gN.m 2.h 1)bycrustosecorallines,by brownphotophilousepifloraandbyPosidoniaoceanicaleavesat10mdepth,betweenMarch2003andJune 2004infrontofSTARESOintheRevellataBay.

Photophilousbrownalgaegrowingon P.oceanica leaveshaveagrowthrate(intermsofbiomassincrease)one orderofmagnitudegreaterthanthatofcrustosecorallines(0.120vs.0.017d 1)(Cebrianetal.1999).According toPedersenandBorum(1997),photophilousbrownalgaeepifloracomponentswoulddisplayhigherNuptake ratescomparedwithcrustosecorallinesinordertomatchtheNneedsrequiredfortheirhighergrowthrate. Nonetheless,ourfieldmeasurementsdemonstratedthatcrustosecorallineshadahigheraverageNuptakerate 1 1 thandidepiphyticbrownalgae(0.0021vs.0.0009d and0.0013vs.0.0007d forNH 4andNO 3uptake, respectively).PedersenandBorum(1997)basedtheirconclusiononthefactthatephemeralalgaehaveahigher growthrateandhigherNconcentrationsintheirtissuesthandoslowgrowingalgae.Inourstudy,crustose corallinesdisplayedhigherNconcentrationsintheirtissuesthandidfastgrowingbrownalgae(3.5%vs.2.1%of ashfreedwt)(Table1).ThishigherNcontentwasprobablyduetotheuseofphycobiliproteinsasmajor pigmentsbyredalgae(RicoandFernandez1996).Nevertheless,itdoesnotexplainentirelythedifference observedbetweengrowthratesandNuptakerates.

Fertilizationexperimentsorstudiesontheimpactofaquacultureon P.oceanica meadowshaveshownthat epiphytebiomassincreaseswithnutrientincrease(Cancemietal.2003,Holmeretal.2003,Leonietal.2006),a potentialcauseofseagrassdecline(Kemp2000),thoughinsomecircumstancestheepiphyteloadcanbe mitigatedbyherbivory(Ruizetal.2001).Atambientconcentrations,crustosecorallinestakeupbothnitrateand ammoniummorequicklythanerectphotophilousalgae.Theonlypublishedvaluewefoundforacrustose corallinewasforonefromJapan(Ichikietal.2000)witha Kmfornitrateuptakeofabout4M,while Kmfor ratesofammoniumuptakebyalgaearegenerallyhigherthan10M(Rees2003).Itisthusprobablethat nutrientuptakebytheepifloraisbelowthesaturationpoint,butitisdifficulttopredictwhichecologicalgroup wouldbefavoredbyamoderatenutrientincrease.Wearetal.(1999)observedduringtheirfertilization experimentondifferentmonospecificseagrassbedsfromFloridathatanincreaseinepiphytebiomasswasdueto thedevelopmentoftwofilamentousspecies(abrownandared),alreadypresentinthecontrolgroup,butno Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion) increaseofcrustosecorallines.Asimilarsituationmayapplyinourarea,becausehighernitrogenuptakemay onlybeusedforphycoerythrinsynthesisandcrustosecorallinegrowthislimitedbysubstrateavailability(i.e., seagrassleafarea).Ontheotherhand,erectphotophilousbrownalgae,andpossiblyredfilamentousalgaeinthe summer,mayincreaseinsizewithoutmuchextensionoftheoccupiedleafsurface.

Theaveragecontributionsofepiphytesand Posidonia leavestoNfluxes(NH 4+NO 3uptakefluxes)calculated fromouruptakemeasurementswere30%and70%,respectively.Thesecontributionsshowedgreatseasonal variations,andepiphytescontributedbetween8%and51%oftheleafcommunity(i.e.,epiphytesplus Posidonia leaves)uptake,respectively,inDecember2003andinJune2003and2004.Relativebiomassofepiphytesand Posidonia leavesisdeterminantforthisseasonalvariationandfortherelativeimportanceofuptakefluxes.The contributionofepiphytesmaythusappearrelativelymodestatthescaleofa Posidonia shoot,butitrepresentsa significanttransferofnitrogenfromthewatercolumntothebenthiccompartment.

Acknowledgments

TheauthorsaregratefultoRenzoBiondoandAlainDernierfortheirtechnicalhelpinthedesignand constructionofexperimentaldevices.WethanksincerelythestaffoftheoceanographicstationSTARESO (Calvi,Corsica)fortheirwelcomeandtheirlogisticalhelp.Wearealsoverygratefultothethreereviewerswho greatlyimprovedthequalityofthispaperbytheircomments.J.J.andG.L.arefundedbyadoctoralfellowship fromtheFondspourlaFormationàlaRecherchedansl'Industrieetl'Agriculture(FRIA)andapostdoctoral fellowshipfromtheFondNationalpourlaRechercheScientifique(FNRS),respectively.Thisstudywas financedbyanFNRScontract(contractFRFC2.45.69.03).ThispublicationisMAREpapernumber102.

References

Alcoverro,T.,Duarte,C.M.&Romero,J.1995.Annualgrowthdynamics ofPosidoniaoceanica: contributionoflargescaleversuslocal factorstoseasonality. Mar.Ecol.Prog.Ser 120:20310.

Alcoverro,T.,Duarte,C.M.&Romero,J.1997a.Theinfluenceofherbivoreson Posidoniaoceanica epiphytes. Aquat.Bot. 56:93104.

Alcoverro,T.,Romero,J.,Duarte,C.M.&Lopez,N.I.1997b.Spatialandtemporalvariationsinnutrientlimitationofseagrass Posidonia oceanica growthintheNWMediterranean. Mar.Ecol.Prog.Ser. 146:15561.

Boero,F.,Chessa,L.,Chimenz,C.&Fresi,E.1985.Thezonationofepiphytichydroidsontheleavesofsome Posidoniaoceanica (L.) DelilebedsinthecentralMediterranean. PSZNI:Mar.Ecol. 6:2733.

Borowitzka,M.A.,Lavery,P.S.&VanKeulen,M.2006.Epiphytesofseagrasses. In Larkum,A.W.D.,Orth,R.J.&Duarte,C.M.[Eds.] Seagrasses:Biology,EcologyandConservation. Springer,Dordrecht,theNetherlands,pp.44161.

Borum,J.1985.Developmentofepiphyticcommunitiesoneelgrass (Zosteramarina) alonganutrientgradientinaDanishestuary. Mar. Biol. 87:2118.

Bracken,M.E.S.2004.Invertebratemediatednutrientloadingincreasesgrowthofanintertidalmacroalga. J.Phycol. 40:103241.

Cancemi,G.,DeFalco,G&Pergent,G2003.Effectsoforganicmatterinputfromafishfarmingfacilityona Posidoniaoceanica meadow. EstuarCoast.ShelfRes. 56:9618.

Cebrian,J.,Enriquez,S.,Fortes,M.,Agawin,N.,Vermaat,J.E.&Duarte,C.M.1999.Epiphytesaccrualon Posidoniaoceanica (L.)Delile leaves:implicationsforlightabsorption. Bot.Mar. 42:1238.

Cloern,J.E.2001.Ourevolvingconceptualmodelofthecoastaleutrophicationproblem. Mar.Ecol.Prog.Ser. 210:22353.

Collos,Y.1987.Calculationof15 Nuptakeratesbyphytoplanktonassimilatingoneorseveralnitrogensources. Appl.Radiot.hot. 38:27582.

Cornelisen,C.D.&Thomas,EI.M.2002.Ammoniumuptakebyseagrassepiphytes:isolationoftheeffectsofwatervelocityusingan isotopelabel. Limnol.Oceanogr. 47:12239.

Cornelisen,C.D.&Thomas,EI.M.2006.Waterflowenhancesammoniumandnitrateuptakeinaseagrasscommunity. Mar.Ecol.Prog. Ser. 312:113.

DallaVia,J.,Sturmbauer,G,Schönweger,G,Sδtz,E.,Mathekowitsch,S.,Stifter,M.&Rieger,R.1998.Lightgradientsandmeadow structurein Posidoniaoceanica: ecomorphologicalandfunctionalcorrelates. Mar.Ecol.Prog.Ser. 163:26778. Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

Dimech,M.,Borg,J.A.&Schembri,P.J.2002.Changesinthestructureofa Posidoniaoceanica meadowandinthediversityofassociated decapod,molluscandechinodermassemblages,resultingfrominputsofwastefromamarinefishfarm(Malta,CentralMediterranean). Bull. Mar.Sci. 71:130921.

Drake,L.A.,Dobbs,FG&Zimmerman,R.G2003.Effectsofepiphyteloadonopticalpropertiesandphotosyntheticpotentialofthe seagrasses Thalassiatestudinum BanksexKδnigand Zosteramarina L. Limnol.Oceanogr. 48:45663.

Duarte,GM.1995.Submergedaquaticvegetationinrelationtodifferentnutrientregimes. Ophelia 41:87112.

Duarte,GM.&Chiscano,GL.1999.Seagrassbiomassandproduction:areassessment. Aquat.Bot. 65:15974.

Dugdale,R.G&Goering,J.J.1967.Uptakeofnewandregeneratedformsofnitrogeninprimaryproductivity. Limnol.Oceanogr. 12:196 206.

Figueiredo,M.A.O.,Kain,J.M.&Norton,T.A.2000.Responsesofcrustosecorallinestoepiphyteandcanopycover. J.Phycol. 36:1724.

Frankovich,T.A.&Fourqurean,J.W.1997.Seagrassepiphyteloadsalonganutrientavailabilitygradient,FloridaBay,USA. Mar.Ecol. Prog.Ser. 159:3750.

Gautier,Y.1954.Sur YElectrapilosa desfeuillesdeposidonies. VieMilieu 5:6670.

Gobert,S.,Cambridge,M.L.,Velimirov,B.,Pergent,G,Lepoint,G,Bouquegneau,J.M.,Dauby,P.,PergentMartini,C.&Walker,D.I. 2006.Biology ofPosidonia.In Larkum,A.W.D.,Orth,R.J.&Duarte,C.M.[Eds.] Seagrasses:Biology,EcologyandConservation. Springer,Dordrecht,theNetherlands,pp.387108.

Gobert,S.,Laumont,N.&Bouquegneau,J.M.2003. Posidoniaoceanica meadow:alownutrienthighchlorophyll(LNHC)system? B.M. C.Ecology 2:9.

Hauxwell,J.,Cebrian,J.&Valiela,I.2003.Eelgrass Zosteramarina lossintemperateestuaries:relationshiptolandderivednitrogenloads andeffectoflightlimitationimposedbyalgae. Mar.Ecol.Prog.Ser. 247:5973.

Holmer,M.,Perez,M.&Duarte,GM.2003.Benthicprimaryproducers:aneglectedenvironmentalprobleminMediterraneanmaricultures? Mar.Pollut.Bull. 46:13726.

Hurd,GL.,Durante,M.M.&Harrison,P.J.2000.Influenceofbryozoancolonisationonthephysiologyofthekelp Macrocystisintegrifolia (Laminariales,Phaeophyta)fromnitrogenrichandpoorsitesinBarkleySound,BritishColumbia,Canada. Phycologia 39:43540.

Hurd,C.L.,Harrison,P.J.&Druehl,L.D.1996.Effectofseawatervelocityoninorganicnitrogenuptakebymorphologicallydistinctforms of Macrocystisintegrifolia fromwaveshelteredandexposedsites. Mar.Biol. 126:20514.

Ichiki,S.,Mizuta,H.&Yamamoto,H.2000.Effectsofirradiance,watertemperatureandnutrientsonthegrowthofsporelingsofthe crustosecorallinealga Lithophyllumyessoense Foslie(Corallinales,Rhodophyceae). Phycol.Res. 48:11520.

Jacquemart,J.2003.Influenced'unpetitportetd'unrécifartificielsurlesmacroalguesepiphytesde Posidoniaoceanica (L.)Delileenbaie delaRevellata(Calvi,Corse).MSthesis,UniversityofLiège,Belgium,77pp.

Kemp,W.M.2000.Seagrassecologyandmanagement:anintroduction. In Bortone,S.A.[Ed.] Seagrasses:Monitoring,Ecology, Physiology,andManagement. CRCPress,BocaRaton,FL,USA,pp.16.

Kendrick,G.A.&Lavery,P.S.2001.Assessingbiomass,assemblagestructureandproductivityofalgalepiphytesonseagrasses. In Short, F.T.&Coles,R.G.[Eds.] GlobalSeagrassMethods. Elsevier,Amsterdam,pp.199222.

Kerneis,A.1960.Contributionàl'étudefaunistiqueetécologiquedesherbiersdePosidoniesdelarégiondeBanyuls. VieMilieu 11:14587.

Koch,E.W.,Ackerman.J.D.,Verduin,J.&VanKeulen,M.2006.Fluiddynamicsinseagrassecology—frommoleculestoecosystems. In Larkum,A.W.D.,Orth,R.J.&Duarte,C.M.[Eds] Seagrasses:Biology,EcologyandConservation. Springer,Dordrecht,theNetherlands, pp.193225.

Lavery,P.S.&Vanderklift,M.A.2002.Acomparisonofspatialandtemporalpatternsinepiphyticmacroalgalassemblagesofthe seagrasses Amphibolisgriffithii and Posidoniacoriacea.Mar.Ecol.Prog.Ser. 236:99112.

Leliaert,F,Vanreusel,W.,DeClerck,O.&Coppejans,E.2001.EpiphytesontheseagrassesofZanzibarIsland(Tanzania),floristicand ecologicalaspects. Belg.J.Bot. 134:320.

Lemmens,J.W.T.,Clapin,G.,Lavery,P.&Cary,J.1996.FilteringcapacityofseagrassmeadowsandotherhabitatsofCockburnSound, Western. Mar.Ecol.Prog.Ser. 143:187200.

Leoni,V,Pasqualini,V.,PergentMartini,C,Vela,A.&Pergent,G.2006.Morphologicalresponses ofPosidoniaoceanka toexperimental nutrientenrichmentofthecanopywater. J.Exp.Mar.Biol.Ecol. 339:114. Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

Lepoint,G.,Dauby,P.&Gobert,S.2004a.Applicationofstableisotopestoseagrassecology. Mar.Pollut.Bull. 49:88791.

Lepoint,G.,Fontaine,M.,Dauby,P.,Gobert,S.&Bouquegneau,J.M.2003.Carbonandnitrogenisotopicratiosoftheseagrass Posidonia oceanka: depthrelatedvariations. Bot.Mar. 46:55561.

Lepoint,G.,Gobert,S.,Dauby,P.&Bouquegneau,J.M.2004b.Uptakeofinorganicnitrogenbythebenthicandplanktonicprimary primaryproducersofanutrientpoorcoastalarea.J.Exp.Mar.Biol.Ecol. 302:10722.

Lepoint,G.,Nyssen,F,Gobert,S.,Dauby,P.&Bouquegneau,J.M.2000.Relativeimpactofa Posidonia seagrassbedanditsadjacent epilithicalgalcommunityinconsumerdiet. Mar.Biol. 136:5138.

MacClelland,J.W.,Valiela,I.&Michener,R.H.1997.Nitrogenstableisotopesignaturesinestuarinefoodwebs:arecordofincreasing urbanizationincoastalwatersheds. Limnol.Oceanogr 42:9307.

Mazzella,L.,Buia,M.C,Gambi,M.C,Lorenti,M.,Russo,G.F,Scipione,M.B.&Zupo,V.1992.Plantanimaltrophicrelationshipsinthe Posidonia ecosystemoftheMediterraneanSea:areview. In John,D.M.,Hawkins,S.J.&Price,J.H.[Eds.] PlantanimalInteractionsin theMarineBenthos.SystematicAssociationSpecialVolume4. ClarendonPress,Oxford,UK,pp.16587.

Mazzella,L.&Russo,G.E1989.Grazingeffectoftwo Gibbula species(Mollusca,Archeogasteropoda)ontheepiphyticcommunityof Posidoniaoceanka leaves. Aquat.Bot. 35:35773.

Mazzella,L.,Scipione,M.C.&Buia,M.C.1989.Spatiotemporaldistributionofalgalandanimalcommunitiesina Posidoniaoceanka meadows. Mar.Ecol.PSZNI 10:10729.

Munda,I.M.1993.ChangesanddegradationofseaweedstandsintheNorthernAdriatic. Hydrobiologia 260/261:23953.

Nepf,H.M.&Koch,E.W.1999.Verticalsecondaryflowsinsubmergedplantlikearrays. Limnol.Oceanogr. 44:107280.

Norro,A.1995.Etudepluridisplinaired'unmilieucôtier.ApprochesexpérimentaleetmodélisationdelaBaiedeCalvi(Corse).Ph.D.thesis, UniversitédeLiège,Belgium,258pp.

Pedersen,M.F.1995.Nitrogenlimitationofphotosynthesisandgrowth:comparisonacrossaquaticplantcommunitiesinaDanishestuary (RoskildeFjord). Ophelia 41:26172.

Pedersen,M.F&Borum,J.1997.Nutrientcontrolofestuarinemacroalgae:growthstrategyandthebalancebetweennitrogenrequirements anduptake. Mar.Ecol.Prog.Ser. 161:15563.

Péres,J.M.&Picard,J.1964.Nouveaumanueldebionomiebenthiquedelamerméditerranée. RecueildesTravauxdelaStationMarine d'Endoume 31:1137.

PergentMartini,C,RicoRaimondino,V&Pergent,G.1994.Primaryproductionof Posidoniaoceanka intheMediterraneanbasin. Mar. Biol. 120:915.

Perry,C.T.&BeavingtonPenney,S.J.2005.Epiphyticcalciumcarbonateproductionandfaciesdevelopmentwithinsubtropicalseagrass beds,InhacaIsland,Mozambique. Sediment.Geol. 174:16176.

Piazzi,L.,Balata,D.,Cinelli,F&BenedettiCecchi,L.2004.Patternsofspatialvariabilityinepiphytesof Posidoniaoceanka. Differences betweenadisturbedandtworeferencelocations. Aquat.Bot. 79:34556.

Rees,T.A.V2003.Safetyfactorsandnutrientuptakebyseaweeds. Mar.Ecol.Prog.Ser. 263:2942.

Rico,J.M.&Fernandez,C.1996.Seasonalnitrogenmetabolisminanintertidalpopulationof Gelidiumlatifolifium (Gelidae,Rhodophyta). Eur.J.Phycol. 31:14955.

Ruiz,J.M.,Pérez,M.&Romero,J.2001.Effectsoffishfarmloadingsonseagrass (Posidoniaoceanka) distribution,growthand photosynthesis. Mar.Pollut.Bull. 42:74960.

Short,FT.,Burdick,D.M.&Kaldy,J.E.1995.Mesocosmexperimentsquantifytheeffectsofeutrophicationoneelgrass, Zosteramarina. Limnol.Oceanogr. 40:7409.

Silberstein,K.,Chiffings,A.W.&McComb,A.J.1986.ThelossofseagrassinCockburnSound,WesternAustraliaIII.Theeffectof epiphytesonproductivityof Posidoniaaustralia HookF Aquat.Bot. 24:35571.

Skliris,N.,Goffart,A.,Hecq,J.H.&Djenidi,S.2001.ShelfslopeexchangesassociatedwithasteepsubmarinecanyonoffCalvi(Corsica, NWMediterraneanSea):amodellingapproach. J.Geophys.Res. 106:19883901.

Tomasko,T.A.,Dawes,C.J.&Hall,M.O.1996.Theeffectofanthropogenicnutrientenrichmentonturtlegrass (Thalassiatestudinum) in SarasotaBay,Florida. Estuaries 19:44856. Publishedin:JournalofPhycology(2007),vol.4,iss.2,pp.208218 Status:Postprint(Author’sversion)

Trautman,D.A.&Borowitzka,M.A.1999.Distributionoftheepiphyticorganismson Posidoniaaustralis and Posidoniasinuosa, two seagrasseswithdifferingleafmorphology. Mar.Ecol.Prog.Ser. 179:21529.

VanderBen,D.1971.Lesépiphytesdesfeuillesde Posidoniaoceanka (L.)DelilesurlescôtesfrançaisesdelaMéditerranée. Mem.Inst.R. Sci.Nat.Belg. 168:1101.

VanKeulen,M.&Borowitzka,M.A.2002.Comparisonofwatervelocityprofilesthroughmorphologicallydissimilarseagrassesmeasured withasimpleandinexpensivecurrentmeter. B.Mar.Sci. 71:125767.

Vizzini,S.,Sarà,G.,Mateo,M.A.&Mazzola,A.2003.δ13 Candδ 15 Nvariabilityin Posidoniaoceanka associatedwithseasonalityandplant fraction. Aquat.Bot. 76:195202.

Wear,D.J.,Sullivan,M.J.,Moore,A.D.&Millie,D.F1999.Effectsofwatercolumnenrichmentontheproductiondynamicsofthree seagrassspeciesandtheirepiphyticalgae. Mar.Ecol.Prog.Ser. 179:20113.

Wheeler,W.N.1988.Algalproductivityandhydrodynamics—asynthesis. In Round,F.E.&Chapman,D.J.[Eds.] Progressin PhycologicalResearch. Vol.6.BiopressLtd,Bristol,UK,pp.2358.