Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells

Total Page:16

File Type:pdf, Size:1020Kb

Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells fmolb-08-660072 April 30, 2021 Time: 20:29 # 1 ORIGINAL RESEARCH published: 07 May 2021 doi: 10.3389/fmolb.2021.660072 Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells Bowen Chang1†, Haochen Guan2†, Xueyi Wang1, Zheng Chen1, Wanchun Zhu1, Xiangyu Wei1 and Shiting Li1* 1 Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China, 2 Department of Nephrology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China Emerging evidence suggests that reactive oxygen species (ROS) play a significant role in the pathogenesis of peripheral nerve damage. Our previous study indicated that human herpesvirus 7 (HHV7) induces Bell’s palsy. However, the specific mechanism underlying Edited by: the effects of ROS in HHV7 infection-induced facial nerve damage is unknown. In Fernando Antunes, this study, we established a rat FN model by inoculating an HHV7 virus solution. University of Lisbon, Portugal The facial grading score and LuxolFastBlue (LFB) staining were used to assess the Reviewed by: Ana Cipak Gasparovic, success of the model. Using mRNA-sequencing analysis, we found that the expression Rudjer Boskovic Institute, Croatia of Complex IV Subunit 4 Isoform 2 (Cox4i2) increased in infected Schwann cells (SCs). Ana Sofia Fernandes, CBIOS, Universidade Lusófona Cox4i2 was suggested to increase COX activity, thereby promoting ROS production. Research Center for Biosciences The changes in the endogenous oxidant and antioxidant system were assessed, and and Health Technologies, Portugal the results showed that oxidative stress increased after HHV7 infection in vivo and *Correspondence: in vitro. However, we found that oxidative injury was relieved after the transfection Shiting Li [email protected] of shCox4i2 in HHV7-treated SCs by evaluating cell death, cell proliferation, and the †These authors have contributed ROS level as well as the levels of malondialdehyde (MDA), superoxide dismutase (SOD), equally to this work and glutathione (GSH). Furthermore, we hypothesised that Cox4i2 loss would attenuate HHV7-induced ferroptosis and apoptosis, which are closely related to ROS in SCs. Our Specialty section: This article was submitted to research illustrated that the knockdown of Cox4i2 suppresses HHV7-induced RSC96 Cellular Biochemistry, cell ferroptosis as well as apoptosis via the ERK signalling pathway. Overall, several a section of the journal Frontiers in Molecular Biosciences in vitro and in vivo methods were adopted in this study to reveal the new mechanism of Received: 28 January 2021 ROS-induced and Cox4i2-mediated apoptosis and ferroptosis in HHV7 infected SCs. Accepted: 14 April 2021 Keywords: COX4I2, HHV7, Schwann cells, ferroptosis, apoptosis Published: 07 May 2021 Citation: Chang B, Guan H, Wang X, INTRODUCTION Chen Z, Zhu W, Wei X and Li S (2021) Cox4i2 Triggers an Increase Bell’s palsy is characterised by acute facial nerve paralysis, which frequently leads to peripheral in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 facial palsy, with a morbidity of 11.5–40.2/100 000 persons every year (Eviston et al., 2015). Infected Schwann Cells. Previous studies have suggested that human herpesvirus 7 (HHV7) infection may contribute to Front. Mol. Biosci. 8:660072. peripheral nerve damage (Wakisaka et al., 2001; Kanerva et al., 2008). In our previous study, doi: 10.3389/fmolb.2021.660072 HHV-7 was found in the epineurium of the facial nerve in patients with Bell’s palsy using Frontiers in Molecular Biosciences| www.frontiersin.org 1 May 2021| Volume 8| Article 660072 fmolb-08-660072 April 30, 2021 Time: 20:29 # 2 Chang et al. Cox4i2 Leading to Ferroptosis metagenomic next-generation sequencing (Chang et al., 2020). no significant difference in bilateral vibrissae movement; 1, the Typically, the reactivated hidden HHV7 infection within the vibrissae movement for the affected side was weaker than that facial nerve has been recognised as the cause of Bell’s palsy. The of the contralateral side; 2, the vibrissae movement disappeared). study of the pathogenesis of HHV7-induced peripheral nerve The position of the apex nasi was observed and scored on a 0– injury is particularly important for the treatment and prevention 1 scale (0, the position of the apex nasi is in the middle; 1, the of Bell’s facial paralysis. position of the apex nasi is tilted to the opposite side). Facial nerve Human herpesvirus 7 belongs to the Herpesviridae family, palsy was represented by a total score of 3 or 4. the Betaherpesvirinae superfamily, and the Roseolovirus genus. Similar to other human herpesviruses, HHV-7 is omnipresent, Cell Culture and HHV7 Infection which leads to a persistent hidden infection that may trigger The Rat Schwann cell line RSC96 was obtained from the additional reactivation or reinfection (Pohl-Koppe et al., American Type Culture Collection (ATCC). The cells were 2001; Agut et al., 2016). Several questions about HHV7 cultured in Dulbecco’s modified Eagle’s medium (DMEM) remain unanswered, especially the mechanism underlying its (Gibco, United States) supplemented with 10% foetal bovine disease causation. serum (Gibco, United States) and 1% penicillin/streptomycin Due to lack of research on HHV7 in peripheral nerve disease, (Sigma-Aldrich, United States) in an incubator at 37◦C in a the pathogenesis of HHV7 in peripheral nerve damage remains humidified 5% CO2 atmosphere. The cells were cultured in six- largely unknown. Peripheral facial paralysis usually results from well plates at a density of 5 × 105 per well. A normal culture damage to the myelin sheath of the facial nerve, which has various medium was used for the control group. For viral infections, causes. Schwann cells (SCs), the main components of the myelin HHV7 was added at a multiplicity of infection (MOI) of 10 until sheath, have been considered principal targets of viruses. In this obvious lesions appeared. All the cells were collected after 72 h study, we established for the first time an animal model of facial for subsequent experiments. paralysis caused by HHV7 and investigated the effects of HHV7 infection on rat SCs. HHV7 mediated increased production LuxolFastBlue Staining of reactive oxygen species (ROS) by upregulating Complex IV LuxolFastBlue (LFB) staining was used to observe the Subunit 4 Isoform 2 (Cox4i2), which resulted in SCs apoptosis demyelination of the nerve tracts, and it was performed and ferroptosis and led to myelin injury of the facial nerve. according to standard techniques (Fujiwara et al., 2017). Briefly, paraffin sections were immersed in a 0.1% LFB reagent for 8–16 h at 60◦C. After this, 0.05% lithium carbonate aqueous solution MATERIALS AND METHODS and 70% alcohol, 0.25% tar violet solution, and glacial acetic acid dyeing solution were used to redye all specimens for 10 min. Animals and Virus Inoculation After rinsing, the sections were observed as dehydrated and Twenty three-weeks-old female Wistar rats weighing 60–80 g transparent under a light microscope. were randomly divided into control and experimental groups after adaptive feeding for 7 days. The rats were treated by Immunofluorescent Staining of Facial scratching the unilateral auricular surface with needle 27 after Nerve Nuclei 3% halothane anaesthesia. The scratching side of auricular On the seventh day after the inoculation of HHV7 infection, surface was inoculated with 0.1 mL HHV7 virus solution [titer the brainstem of rats were collected to evaluate the facial of 1.0 × 106 plaque-forming units (PFU) per mL] in the nerve nucleus. Immunofluorescent staining of the brainstem experimental group, whereas PBS was used in the control group. was performed as described previously (Yokoyama et al., 2006). The blink reflex and vibrissae movement were evaluated after The brain sections were incubated with the primary antibodies 7 days of inoculation. The rats were sacrificed at the end of against anti-Neun (#ab177487, Abcam, United States) and the seventh day. All animal procedures in this study were Anti-CD11b (#66519-1-Ig, Proteintech, United States) at 4◦C reviewed and approved by the Institutional Animal Care and Use overnight followed by incubation with DyLight 488-and DyLight Committee of Xinhua Hospital Affiliated to Shanghai Jiao Tong 649-labelled secondary antibodies. NeuN, which is a marker University School of Medicine. for neurons, was labelled with DyLight 488 to label the facial The Evaluation of Facial Nerve Palsy nucleus. CD11b, a microglial marker that is also expressed by leukocytes, including monocytes, neutrophils, natural killer The model was evaluated by scores of the blink reflex, vibrissae cells, and granulocytes, was labelled with DyLight 649; 40,6- movement, and the position of the apex nasi after the virus diamidino-2-phenylindole (DAPI, Beyotime, China) was used for inoculation. Blink reflex was performed using a 5-mL syringe nuclear staining. equipped with an 18G needle to blow air into the eye at a distance of 2 cm. We observed the movement and closure of the rats’ RNA Extraction, Library Preparation, and eyelids and the degree was graded on a 0–2 scale (0, no significant difference between the two sides; 1, the blink reflex was delayed Quantitative Real-Time Polymerase compared to the unaffected side; 2, the eyelid of the affected Chain Reaction side cannot be closed). Counting the vibrissae movement on Total RNA of rats’ facial nerve tissues and RSC96 cells were both sides of the rats within 30 s and scored on a 0–2 scale (0, extracted per the manufacturer’s instructions (Life Science, Frontiers in Molecular Biosciences| www.frontiersin.org 2 May 2021| Volume 8| Article 660072 fmolb-08-660072 April 30, 2021 Time: 20:29 # 3 Chang et al. Cox4i2 Leading to Ferroptosis United States). The libraries were prepared from cDNA, which of 1 × 105 cells per well. When the cell density reached was established using a cDNA Synthesis Kit (Takara, Japan) approximately 70–80%, the plasmids were transfected into cells and sequenced on an Illumina Hiseq4000 (Illumina Inc., using Lipofectamine 3,000 (Invitrogen, United States) according United States).
Recommended publications
  • Use of Mathematical Modeling and Other Biophysical Methods For
    USE OF MATHEMATICAL MODELING AND OTHER BIOPHYSICAL METHODS FOR INSIGHTS INTO IRON-RELATED PHENOMENA OF BIOLOGICAL SYSTEMS A Dissertation by JOSHUA D. WOFFORD Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Paul A. Lindahl Committee Members, David P. Barondeau Simon W. North Vishal M. Gohil Head of Department, Simon W. North December 2018 Major Subject: Chemistry Copyright 2018 Joshua D. Wofford ABSTRACT Iron is a crucial nutrient in most living systems. It forms the active centers of many proteins that are critical for many cellular functions, either by themselves or as Fe-S clusters and hemes. However, Fe is potentially toxic to the cell in high concentrations and must be tightly regulated. There has been much work into understanding various pieces of Fe trafficking and regulation, but integrating all of this information into a coherent model has proven difficult. Past research has focused on different Fe species, including cytosolic labile Fe or mitochondrial Fe-S clusters, as being the main regulator of Fe trafficking in yeast. Our initial modeling efforts demonstrate that both cytosolic Fe and mitochondrial ISC assembly are required for proper regulation. More recent modeling efforts involved a more rigorous multi- tiered approach. Model simulations were optimized against experimental results involving respiring wild-type and Mrs3/4-deleted yeast. Simulations from both modeling studies suggest that mitochondria possess a “respiratory shield” that prevents a vicious cycle of nanoparticle formation, ISC loss, and subsequent loading of mitochondria with iron.
    [Show full text]
  • Studies of Iron Sulfur Cluster Maturation and Transport DISSERTATION Presented in Partial Fulfillment of the Requirements for Th
    Studies of Iron Sulfur Cluster Maturation and Transport DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jingwei Li Graduate Program in Chemistry The Ohio State University 2015 Dissertation Committee: Professor James A. Cowan, Advisor Professor Ross E. Dalbey Professor Claudia Turro Copyright by Jingwei Li 2015 Abstract Cellular iron homeostasis is critically dependent on sensory and regulatory mechanisms that maintain a balance of intracellular iron concentrations. Divergence from a healthy iron concentration can result in common disease states such as anemia and ataxia. With the goal of understanding the molecular basis for such health problems, and advancing the knowledge based toward potential remedies, an understanding of the molecular details of cellular iron transport and the biological chemistry of iron species is an essential prerequisite. In that regard, iron-sulfur clusters are ubiquitous iron-containing centers in a variety of proteins and serve a multitude of roles that include electron transfer, catalysis of reactions, and sensors of cellular oxygen and iron levels. Recently, a substantial body of evidence has suggested an essential role for cellular glutathione (a molecule normally implicated with eliminating reactive oxygen species from cells) in the regulation, stabilization and biosynthesis of cellular iron-sulfur clusters in humans and other complex organisms. We have demonstrated that glutathione can naturally bind to iron-sulfur cluster precursors and have isolated and characterized this species and shown it to be stable under physiological conditions. More importantly, we have demonstrated that the glutathione-bound iron-sulfur cluster can be transported by a ii critical export protein from the cellular mitochondrion.
    [Show full text]
  • COX4I2 Antibody (Aa31-80) Rabbit Polyclonal Antibody Catalog # ALS15898
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 COX4I2 Antibody (aa31-80) Rabbit Polyclonal Antibody Catalog # ALS15898 Specification COX4I2 Antibody (aa31-80) - Product Information Application IHC, IF, WB Primary Accession Q96KJ9 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Calculated MW 20kDa KDa COX4I2 Antibody (aa31-80) - Additional Information Gene ID 84701 Anti-COX4I2 antibody IHC staining of human kidney. Other Names Cytochrome c oxidase subunit 4 isoform 2, mitochondrial, Cytochrome c oxidase subunit IV isoform 2, COX IV-2, COX4I2, COX4L2 Target/Specificity COX42 Antibody detects endogenous levels Immunofluorescence of COS7 cells, using of total COX42 protein. COX42 Antibody. Reconstitution & Storage Store at -20°C for up to one year. Precautions COX4I2 Antibody (aa31-80) is for research use only and not for use in diagnostic or therapeutic procedures. COX4I2 Antibody (aa31-80) - Protein Information Western blot of extracts from K562 cells, Name COX4I2 treated with insulin 0.01U/ml 15', using COX42 Antibody. Synonyms COX4L2 Function COX4I2 Antibody (aa31-80) - Background Component of the cytochrome c oxidase, the last enzyme in the mitochondrial This protein is one of the nuclear-coded electron transport chain which drives polypeptide chains of cytochrome c oxidase, oxidative phosphorylation. The respiratory the terminal oxidase in mitochondrial electron chain contains 3 multisubunit complexes transport. Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 succinate dehydrogenase (complex II, CII), COX4I2 Antibody (aa31-80) - References ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) Huettemann M.,et al.Gene and cytochrome c oxidase (complex IV, 267:111-123(2001).
    [Show full text]
  • Mutation in the COX4I1 Gene Is Associated with Short Stature, Poor Weight Gain and Increased Chromosomal Breaks, Simulating Fanconi Anemia
    European Journal of Human Genetics (2017) 25, 1142–1146 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia Bassam Abu-Libdeh*,1,4, Liza Douiev2,3,4, Sarah Amro1, Maher Shahrour1, Asaf Ta-Shma2, Chaya Miller2,3, Orly Elpeleg2 and Ann Saada*,2,3 We describe a novel autosomal recessive form of mitochondrial disease in a child with short stature, poor weight gain, and mild dysmorphic features with highly suspected Fanconi anemia due to a mutation in COX4I1 gene. Whole Exome Sequencing was performed then followed by Sanger confirmation, identified a K101N mutation in COX4I1, segregating with the disease. This nuclear gene encodes the common isoform of cytochrome c oxidase (COX) subunit 4 (COX 4-1), an integral regulatory part of COX (respiratory chain complex IV) the terminal electron acceptor of the mitochondrial respiratory chain. The patient’s fibroblasts disclosed decreased COX activity, impaired ATP production, elevated ROS production, decreased expression of COX4I1 mRNA and undetectable (COX4) protein. COX activity and ATP production were restored by lentiviral transfection with the wild-type gene. Our results demonstrate the first human mutation in the COX4I1 gene linked to diseases and confirm its role in the pathogenesis. Thus COX4I1 mutations should be considered in any patient with features suggestive of this diagnosis. European Journal of Human Genetics (2017) 25, 1142–1146; doi:10.1038/ejhg.2017.112; published online 2 August 2017 INTRODUCTION normal vaginal delivery with birth weight of 2.8 kg after an uneventful Mitochondrial cytochrome c oxidase (COX, complex IV) is the terminal pregnancy.
    [Show full text]
  • Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency And
    cells Article Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis Kristýna Cunˇ átová 1,2, David Pajuelo Reguera 1 , Marek Vrbacký 1, Erika Fernández-Vizarra 3 , Shujing Ding 3, Ian M. Fearnley 3, Massimo Zeviani 3 , Josef Houštˇek 1 , Tomáš Mráˇcek 1,* and Petr Pecina 1,* 1 Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; [email protected] (K.C.);ˇ [email protected] (D.P.R.); [email protected] (M.V.); [email protected] (J.H.) 2 Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic 3 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; [email protected] (E.F.-V.); [email protected] (S.D.); [email protected] (I.M.F.); [email protected] (M.Z.) * Correspondence: [email protected] (T.M.); [email protected] (P.P.) Abstract: The oxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes form supramolecular assemblies termed supercomplexes. The complexes are linked not only by their function but also by interdependency of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomeric as well as supercomplex forms. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance.
    [Show full text]
  • Role of Rim101p in the Ph Response in Candida Albicans Michael Weyler
    Role of Rim101p in the pH response in Candida albicans Michael Weyler To cite this version: Michael Weyler. Role of Rim101p in the pH response in Candida albicans. Biomolecules [q-bio.BM]. Université Paris Sud - Paris XI, 2007. English. tel-00165802 HAL Id: tel-00165802 https://tel.archives-ouvertes.fr/tel-00165802 Submitted on 27 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARISXI UFR SCIENTIFIQUE D’ORSAY THESE présentée par Michael Weyler pour obtenir le grade de DOCTEUR EN SCIENCES DE L’UNIVERSITE PARISXI-ORSAY LE RÔLE DE RIM101p DANS LA RÉPONSE AU pH CHEZ CANDIDA ALBICANS Soutenance prévue le 6 juillet 2007 devant le jury composé de: Pr. Dr. H. Delacroix Président Dr. J-M. Camadro Rapporteur Pr. Dr. F. M. Klis Rapporteur Dr. G. Janbon Examinateur Dr. M. Lavie-Richard Examinateur Pr. Dr. C. Gaillardin Examinateur Remerciements Tout d’abord je voudrais remercier vivement mon directeur de thèse, Prof. Claude Gaillardin, pour m’avoir permis d’effectuer ce travail au sein de son laboratoire, pour ses conseils et sa disponibilité malgré son calendrier bien remplis. Je lui remercie également pour m’avoir laissé beaucoup de liberté dans mon travail, et pour la possibilité de participer aux différents congrès au cours de ma formation de thèse.
    [Show full text]
  • Programmed Cell-Death by Ferroptosis: Antioxidants As Mitigators
    International Journal of Molecular Sciences Review Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators Naroa Kajarabille 1 and Gladys O. Latunde-Dada 2,* 1 Nutrition and Obesity Group, Department of Nutrition and Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain; [email protected] 2 King’s College London, Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK * Correspondence: [email protected] Received: 9 September 2019; Accepted: 2 October 2019; Published: 8 October 2019 Abstract: Iron, the fourth most abundant element in the Earth’s crust, is vital in living organisms because of its diverse ligand-binding and electron-transfer properties. This ability of iron in the redox cycle as a ferrous ion enables it to react with H2O2, in the Fenton reaction, to produce a hydroxyl radical ( OH)—one of the reactive oxygen species (ROS) that cause deleterious oxidative damage • to DNA, proteins, and membrane lipids. Ferroptosis is a non-apoptotic regulated cell death that is dependent on iron and reactive oxygen species (ROS) and is characterized by lipid peroxidation. It is triggered when the endogenous antioxidant status of the cell is compromised, leading to lipid ROS accumulation that is toxic and damaging to the membrane structure. Consequently, oxidative stress and the antioxidant levels of the cells are important modulators of lipid peroxidation that induce this novel form of cell death. Remedies capable of averting iron-dependent lipid peroxidation, therefore, are lipophilic antioxidants, including vitamin E, ferrostatin-1 (Fer-1), liproxstatin-1 (Lip-1) and possibly potent bioactive polyphenols.
    [Show full text]
  • Hypoxia Inducible Factors Modulate Mitochondrial Oxygen Consumption and Transcriptional Regulation of Nuclear-Encoded Electron T
    Article pubs.acs.org/biochemistry Hypoxia Inducible Factors Modulate Mitochondrial Oxygen Consumption and Transcriptional Regulation of Nuclear-Encoded Electron Transport Chain Genes † § † ‡ ∥ † † ‡ † Hye Jin Hwang, , Scott G. Lynn, , , Ajith Vengellur, Yogesh Saini, , Elizabeth A. Grier, † § † § ‡ Shelagh M. Ferguson-Miller, , and John J. LaPres*, , , † ‡ § Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States *S Supporting Information ABSTRACT: Hypoxia inducible factor-1 (HIF1) is a stress-responsive nuclear transcription factor that is activated with a decrease in oxygen availability. HIF1 regulates the expression of genes involved in a cell’s adaptation to hypoxic stress, including those with mitochondrial specific function. To gain a more comprehensive understanding of the role of HIF1 in mitochondrial homeostasis, we studied the link between hypoxia, HIF1 transactivation, and electron transport chain (ETC) function. We established immortalized mouse embryonic fibroblasts (MEFs) for HIF1α wild-type (WT) and null cells and tested whether HIF1α regulates mitochondrial respiration by modulating gene expressions of nuclear-encoded ETC components. High- throughput quantitative real-time polymerase chain reaction was performed to screen nuclear- encoded mitochondrial genes related to the ETC to identify those whose regulation was HIF1α- dependent. Our data suggest that HIF1α regulates transcription of cytochrome c oxidase (CcO) heart/muscle isoform 7a1 (Cox7a1) under hypoxia, where it is induced 1.5−2.5-fold, whereas Cox4i2 hypoxic induction was HIF1α-independent. We propose that adaptation to hypoxic stress of CcO as the main cellular oxygen consumer is mediated by induction of hypoxia-sensitive tissue-specific isoforms.
    [Show full text]
  • Single-Cell RNA-Seq Analysis of the Brainstem of Mutant SOD1 Mice Reveals Perturbed Cell Types and Pathways of Amyotrophic Lateral Sclerosis
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Neurobiol Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 September 26. Published in final edited form as: Neurobiol Dis. 2020 July ; 141: 104877. doi:10.1016/j.nbd.2020.104877. Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis Wenting Liua, Sharmila Venugopala, Sana Majida, In Sook Ahna, Graciel Diamantea, Jason Honga, Xia Yanga,b,c,*, Scott H. Chandlera,b,* aDepartment of Integrative Biology & Physiology, University of California, 2024 Terasaki Bld, 610 Charles E. Young Dr. East, Los Angeles, USA bBrain Research Institute, University of California, Los Angeles, USA cInstitute for Quantitative and Computational Biosciences, University of California, Los Angeles, USA Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons throughout the brain and spinal cord progressively degenerate resulting in muscle atrophy, paralysis and death. Recent studies using animal models of ALS implicate multiple cell-types (e.g., astrocytes and microglia) in ALS pathogenesis in the spinal motor systems. To ascertain cellular vulnerability and cell-type specific mechanisms of ALS in the brainstem that orchestrates oral-motor functions, we conducted parallel single cell RNA sequencing (scRNA-seq) analysis using the high-throughput Drop-seq method. We isolated 1894 and 3199 cells from the brainstem of wildtype and mutant SOD1 symptomatic mice respectively, at postnatal day 100. We recovered major known cell types and neuronal subpopulations, such as interneurons and motor neurons, and trigeminal ganglion (TG) peripheral sensory neurons, as well as, previously uncharacterized interneuron subtypes.
    [Show full text]
  • COX4I2 Polyclonal Antibody
    For Research Use Only COX4I2 Polyclonal antibody Catalog Number:11463-1-AP Featured Product 12 Publications www.ptgcn.com Catalog Number: GenBank Accession Number: Recommended Dilutions: Basic Information 11463-1-AP BC057779 WB 1:500-1:3000 Size: GeneID (NCBI): IP 0.5-4.0 ug for IP and 1:500-1:2000 850 μg/ml 84701 for WB IHC 1:20-1:200 Source: Full Name: IF 1:20-1:200 Rabbit cytochrome c oxidase subunit IV Isotype: isoform 2 (lung) IgG Calculated MW: Purification Method: 171 aa, 20 kDa Antigen affinity purification Observed MW: Immunogen Catalog Number: 17-18 kDa AG1987 Applications Tested Applications: Positive Controls: IF, IHC, IP, WB,ELISA WB : HepG2 cells; human brain tissue, MCF-7 cells, Cited Applications: human heart tissue, human lung tissue, A375 cells IF, IHC, WB IP : HepG2 cells; Species Specificity: IHC : human ovary tumor tissue; human, mouse, rat Cited Species: IF : Hela cells; human, mouse, rat Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0 COX4I2, also named as COX4L2 and COXIV-2, belongs to the cytochrome c oxidase IV family. It is one of the Background Information nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. COXIV(cytochrome c oxidase IV) has two isoforms (isoform 1 and 2). Isoform 1(COX4I1) is ubiquitously expressed and isoform 2 is highly expressed in lung tissues. This antibody was generated against full length COX4I2 protein. Notable Publications Author Pubmed ID Journal Application Siddhesh Aras 27913209 Biochim Biophys Acta WB Guy Keller 30423473 Neurobiol Dis IF Theodoros Karampelas 24661240 Bioconjug Chem WB Storage: Storage Store at -20ºC.
    [Show full text]
  • Blueprint Genetics COX4I2 Single Gene Test
    COX4I2 single gene test Test code: S02924 Phenotype information Exocrine pancreatic insufficiency, dyserythropoietic anemia, and calvarial hyperostosis Alternative gene names COX4-2, COX4B, COXIV-2, dJ857M17.2 Test Strengths The strengths of this test include: CAP accredited laboratory CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance Careful construction of clinically effective and scientifically justified gene panels Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level Our publicly available analytic validation demonstrating complete details of test performance ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this test’) Our rigorous variant classification scheme Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data Our comprehensive clinical statements Test Limitations This test does not detect the following: Complex inversions Gene conversions Balanced translocations Mitochondrial DNA variants Repeat expansion disorders unless specifically mentioned Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above non-coding variants covered by the test). This test may not reliably detect the following: Low level mosaicism (variant with a minor allele fraction of 14.6% is detected with 90% probability) Stretches of mononucleotide repeats Indels larger than 50bp Single exon deletions or duplications Variants within pseudogene regions/duplicated segments The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.
    [Show full text]
  • Upregulation of COX4-2 Via HIF-1 in Mitochondrial COX4-1 Deficiency
    cells Article Upregulation of COX4-2 via HIF-1α in Mitochondrial COX4-1 Deficiency Liza Douiev 1,*, Chaya Miller 1, Shmuel Ruppo 2 , Hadar Benyamini 2, Bassam Abu-Libdeh 3 and Ann Saada 1,4,* 1 Department of Genetics, Hadassah Medical Center, Jerusalem 9112001, Israel; [email protected] 2 Info-CORE, I-CORE Bioinformatics Unit of the Hebrew, University of Jerusalem and Hadassah Medical Center, Jerusalem 91120011, Israel; [email protected] (S.R.); [email protected] (H.B.) 3 Department of Pediatrics and Genetics, Makassed Hospital and Al-Quds University, East Jerusalem 91220, Palestine; [email protected] 4 Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel * Correspondence: [email protected] (L.D.); [email protected] or [email protected] (A.S.) Abstract: Cytochrome-c-oxidase (COX) subunit 4 (COX4) plays important roles in the function, assembly and regulation of COX (mitochondrial respiratory complex 4), the terminal electron acceptor of the oxidative phosphorylation (OXPHOS) system. The principal COX4 isoform, COX4-1, is expressed in all tissues, whereas COX4-2 is mainly expressed in the lungs, or under hypoxia and other stress conditions. We have previously described a patient with a COX4-1 defect with a relatively mild presentation compared to other primary COX deficiencies, and hypothesized that this could be the result of a compensatory upregulation of COX4-2. To this end, COX4-1 was downregulated by shRNAs in human foreskin fibroblasts (HFF) and compared to the patient’s cells. COX4-1, COX4-2 and HIF-1α were detected by immunocytochemistry.
    [Show full text]