Acidophilic Green Algal Genome Provides Insights Into Adaptation To

Total Page:16

File Type:pdf, Size:1020Kb

Acidophilic Green Algal Genome Provides Insights Into Adaptation To Acidophilic green algal genome provides insights into PNAS PLUS adaptation to an acidic environment Shunsuke Hirookaa,b,1, Yuu Hirosec, Yu Kanesakib,d, Sumio Higuchie, Takayuki Fujiwaraa,b,f, Ryo Onumaa, Atsuko Eraa,b, Ryudo Ohbayashia, Akihiro Uzukaa,f, Hisayoshi Nozakig, Hirofumi Yoshikawab,h, and Shin-ya Miyagishimaa,b,f,1 aDepartment of Cell Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan; bCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; dNODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan; eResearch Group for Aquatic Plants Restoration in Lake Nojiri, Nojiriko Museum, Nagano 389-1303, Japan; fDepartment of Genetics, Graduate University for Advanced Studies, Shizuoka 411-8540, Japan; gDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; and hDepartment of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan Edited by Krishna K. Niyogi, Howard Hughes Medical Institute, University of California, Berkeley, CA, and approved August 16, 2017 (received for review April 28, 2017) Some microalgae are adapted to extremely acidic environments in pumps that biotransform arsenic and archaeal ATPases, which which toxic metals are present at high levels. However, little is known probably contribute to the algal heat tolerance (8). In addition, the about how acidophilic algae evolved from their respective neutrophilic reduction in the number of genes encoding voltage-gated ion ancestors by adapting to particular acidic environments. To gain channels and the expansion of chloride channel and chloride car- insights into this issue, we determined the draft genome sequence rier/channel families in the genome has probably contributed to the of the acidophilic green alga Chlamydomonas eustigma and per- algal acid tolerance (8). Likewise, a study in the acidophilic green formed comparative genome and transcriptome analyses between alga Chlamydomonas acidophila showed that phytochelatin syn- C. eustigma and its neutrophilic relative Chlamydomonas reinhardtii. thase genes of bacterial HGT origin played an important role in The results revealed the following features in C. eustigma that prob- the tolerance to cadmium (10). ably contributed to the adaptation to an acidic environment. Genes + However, the genomes of acidophilic algae other than cyani- encoding heat-shock proteins and plasma membrane H -ATPase are dialean red algae have not been sequenced. The green and red highly expressed in C. eustigma. This species has also lost fermentation algae diverged relatively soon after the emergence of primitive PLANT BIOLOGY pathways that acidify the cytosol and has acquired an energy shuttle eukaryotic algae (11). In addition, comparisons with neutrophilic and buffering system and arsenic detoxification genes through hori- relatives are feasible in the case of acidophilic green algae but are zontal gene transfer. Moreover, the arsenic detoxification genes have difficult in the case of cyanidialean red algae because their last been multiplied in the genome. These features have also been found common acidophilic ancestor diverged from other neutrophilic red in other acidophilic green and red algae, suggesting the existence of algae 1.2–1.3 billion y ago (12). Thus, whole-genome comparisons common mechanisms in the adaptation to acidic environments. between evolutionarily related neutrophilic and acidophilic green algae will give insights into how acidophiles evolved from their environmental adaptation | acidic environment | acidophilic alga | neutrophilic ancestors. comparative genomics | comparative transcriptomics Significance everal eukaryotic microalgae have been identified in acidic environments (pH <4.0) such as acid mine drainage (AMD) S Extremely acidic environments are scattered worldwide, and and geothermal hot springs (1). In this pH range, cyanobacteria their ecosystems are supported by acidophilic microalgae as are not present, and only acidophilic eukaryotic phototrophs are primary producers. To understand how acidophilic algae capable of photosynthesis (Fig. 1) (2, 3). The extremely low pH evolved from their respective neutrophilic ancestors, we de- of these waters is due to the dissolution and oxidation of sulfur termined the draft genome sequence of the acidophilic green that is exposed to water and oxygen and produces sulfuric acid alga Chlamydomonas eustigma and performed comparative (4). The low pH facilitates metal solubility in water; therefore, genome analyses between C. eustigma and its neutrophilic acidic waters tend to have high concentrations of metals (5). relative Chlamydomonas reinhardtii. The results suggest that Thus, acidophilic eukaryotic algae usually possess the ability to + higher expression of heat-shock proteins and H -ATPase, loss cope with toxic heavy metals in addition to low pH, both of which of some metabolic pathways that acidify cytosol, and acquisi- are lethal to most eukaryotes (2). Acidophilic algae are distrib- tion of metal-detoxifying genes by horizontal gene transfer uted throughout different branches of the eukaryotes, such as in have played important roles in the adaptation to acidic envi- red and green algae, stramenopiles, and euglenids. In most cases, ronments. These features are also found in other acidophilic neutrophilic relatives have been identified, suggesting that aci- green and red algae, suggesting the existence of common dophilic algae evolved from their respective neutrophilic ances- mechanisms in the adaptation to acidic environments. tors multiple times independently (6). However, it is largely unknown how several lineages of algae have successfully adapted Author contributions: S. Hirooka and S.-y.M. designed research; S. Hirooka, Y.H., Y.K., to their acidic environments. S. Higuchi, T.F., R. Onuma, A.E., and S.-y.M. performed research; R. Ohbayashi, A.U., Thus, far, the genomes of three related thermo-acidophilic red H.N., and H.Y. contributed new reagents/analytic tools; S. Hirooka, Y.H., Y.K., and S.-y.M. algae, Cyanidioschyzon merolae (7), Galdieria sulphuraria (8), and analyzed data; and S. Hirooka and S.-y.M. wrote the paper. Galdieria phlegrea (9), have been sequenced (all belong to the The authors declare no conflict of interest. cyanidialean red algae, which inhabit sulfuric hot springs worldwide This article is a PNAS Direct Submission. and grow optimally at 40–45 °C and pH 2–3). Genomic analyses Data deposition: The sequences reported in this paper have been deposited in DNA Data showed that horizontal gene transfer (HGT) from environmental Bank of Japan/European Molecular Biology Laboratory-European Bioinformatics Institute/ GenBank under the accession codes PRJDB5468, PRJDB6154, and PRJDB6155. prokaryotes, the expansion of gene families, and the loss of genes 1To whom correspondence may be addressed. Email: [email protected] or smiyagis@nig. have probably played important roles in the adaptation of Cyani- ac.jp. diales to acidic and high-temperature environments (8). Through This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. HGT, cyanidialean red algae acquired arsenical-resistance efflux 1073/pnas.1707072114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1707072114 PNAS Early Edition | 1of10 Downloaded by guest on September 28, 2021 A Acid mine drainage protonema of moss stramenopile green algae acidophilic moss euglenid bacteria amoeba 1 cm B concentrations (mg/L) pH Fe2+ Fe3+ Al3+ Mn2+ Cu2+ Zn2+ Na+ K+ 2.13 59.4 143.5 35.1 0.5 0.3 0.1 8.3 4.4 2+ 2+ 2- - + - 3- Fig. 1. Habitat, taxonomic position, and physiological temp. (°C) Mg Ca SO4 Cl NH4 NO3 PO4 H2SiO3 14.5 9.3 31.9 1155 3.4 0.4 0.08 1.6 90.6 features of the acidophilic green alga C. eustigma. (A) The algae inhabiting AMD in Yokote, Nagano Pre- CDML/BI fecture, Japan, and confirmation of the existence of C. eustigma C. reinhardtii 0.2 100/1.00 Volvox carteri C. eustigma. Algae were found predominantly in as- substitutions/site μ 100/1.00 Chlamydomonas reinhardtii sociation with acidophilic mosses. (Scale bars: 10 m.) 99/1.00 Chlamydomonas eustigma (B) pH, temperature, and concentrations of some ions in the AMD. (C)CellsofC. eustigma NIES-2499 (Left) 59/0.95 Stigeoclonium helveticum Chlorophyceae and C. reinhardtii 137c mt+ (Right). (Scale bar: 10 μm.) Pseudendoclonium akinetum 75/1.00 (D) A phylogenetic tree of green and red algae based Oltmannsiellopsis viridis -/0.95 on the concatenated datasets (21 taxa, 11,367 sites) of Chlorella valiaviris E -/- Ulvophyceae five chloroplast protein-coding genes (atpB, psaA, psaB, 1 2 3 4 5 6 7 8 (pH) Chlorella vulgaris psbC,andrbcL) and chloroplast ribosomal DNA se- C. eustigma 100/1.00 Chlorophyta quence (16S and 23S). The maximum likelihood (ML) 100/1.00 Coccomyxa subellipsoidea 99/1.00 Paradoxia multiseta (RaxML 8.0.0) and Bayesian (MrBayes 3.2.6) analyses C. reinhardtii 63/1.00 were calculated under separate model conditions. Nephroselmis olivacea Trebouxiophyceae Bootstrap values (BP) >50% obtained by ML and Nephroselmis astigmatica Bayesian posterior probabilities (BI) >0.95 obtained by F 100/1.00 73/1.00 Micromonas commoda 1.6 Bayesian analysis (MrBayes 3.2.6) are shown above the C. eustigma 100/1.00 Ostreococcus tauri ) 1.4 branches. The branch lengths reflect the evolutionary -1 C. reinhardtii 99/1.00 Prasinophyceae 1.2 Arabidopsis thaliana distances indicated by the scale bar. Filled red circles on 1.0 Klebsormidium flaccidum the right indicate organisms for which genomes have 0.8 Mesostigma viride been sequenced thus far. (E) C. eustigma and C. rein- 83/1.00 0.6 Streptophyta hardtii were cultured for 1 d in the same photoauto- 67/1.00 Cyanidium caldarium 0.4 Cyanidioschyzon merolae trophic medium at a series of pH. (F) Growth rates of Growth rate μ (d 100/1.00 C. eustigma and C. reinhardtii basedontheincreasein 0.2 Galdieria sulphuraria 0 Rhodophyta the cell number at the indicated pH. The error bars Cyanophora paradoxa 1 2 3 4 5 6 7 8 (pH) Glaucophyta represent the SD of three biological replicates.
Recommended publications
  • Volvox Carteri Benjamin Klein1, Daniel Wibberg2 and Armin Hallmann1*
    Klein et al. BMC Biology (2017) 15:111 DOI 10.1186/s12915-017-0450-y RESEARCH ARTICLE Open Access Whole transcriptome RNA-Seq analysis reveals extensive cell type-specific compartmentalization in Volvox carteri Benjamin Klein1, Daniel Wibberg2 and Armin Hallmann1* Abstract Background: One of evolution’s most important achievements is the development and radiation of multicellular organisms with different types of cells. Complex multicellularity has evolved several times in eukaryotes; yet, in most lineages, an investigation of its molecular background is considerably challenging since the transition occurred too far in the past and, in addition, these lineages evolved a large number of cell types. However, for volvocine green algae, such as Volvox carteri, multicellularity is a relatively recent innovation. Furthermore, V. carteri shows a complete division of labor between only two cell types – small, flagellated somatic cells and large, immotile reproductive cells. Thus, V. carteri provides a unique opportunity to study multicellularity and cellular differentiation at the molecular level. Results: This study provides a whole transcriptome RNA-Seq analysis of separated cell types of the multicellular green alga V. carteri f. nagariensis to reveal cell type-specific components and functions. To this end, 246 million quality filtered reads were mapped to the genome and valid expression data were obtained for 93% of the 14,247 gene loci. In the subsequent search for protein domains with assigned molecular function, we identified 9435 previously classified domains in 44% of all gene loci. Furthermore, in 43% of all gene loci we identified 15,254 domains that are involved in biological processes. All identified domains were investigated regarding cell type-specific expression.
    [Show full text]
  • Flagellar, Cellular and Organismal Polarity in Volvox Carteri
    SUNY Geneseo KnightScholar Biology Faculty/Staff Works Department of Biology 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops SUNY Geneseo Follow this and additional works at: https://knightscholar.geneseo.edu/biology Recommended Citation Hoops H.J. (1993) Flagellar, cellular and organismal polarity in Volvox carteri. Journal of Cell Science 104: 105-117. doi: This Article is brought to you for free and open access by the Department of Biology at KnightScholar. It has been accepted for inclusion in Biology Faculty/Staff Works by an authorized administrator of KnightScholar. For more information, please contact [email protected]. Journal of Cell Science 104, 105-117 (1993) 105 Printed in Great Britain © The Company of Biologists Limited 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops Department of Biology, 1 Circle Drive, SUNY-Genesco, Genesco, NY 14454, USA SUMMARY It has previously been shown that the flagellar appara- reorientation of flagellar apparatus components. This tus of the mature Volvox carteri somatic cell lacks the reorientation also results in the movement of the eye- 180˚ rotational symmetry typical of most unicellular spot from a position nearer one of the flagellar bases to green algae. This asymmetry has been postulated to be a position approximately equidistant between them. By the result of rotation of each half of the flagellar appa- analogy to Chlamydomonas, the anti side of the V. car - ratus. Here it is shown that V. carteri axonemes contain teri somatic cell faces the spheroid anterior, the syn side polarity markers that are similar to those found in faces the spheroid posterior.
    [Show full text]
  • Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes
    Current Biology 21, 328–333, February 22, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.01.037 Report Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes Cheong Xin Chan,1,5 Eun Chan Yang,2,5 Titas Banerjee,1 sequences in our local database, in which we included the Hwan Su Yoon,2,* Patrick T. Martone,3 Jose´ M. Estevez,4 23,961 predicted proteins from C. tuberculosum (see Table and Debashish Bhattacharya1,* S1 available online). Of these hits, 9,822 proteins (72.1%, 1Department of Ecology, Evolution, and Natural Resources including many P. cruentum paralogs) were present in C. tuber- and Institute of Marine and Coastal Sciences, Rutgers culosum and/or other red algae, 6,392 (46.9%) were shared University, New Brunswick, NJ 08901, USA with C. merolae, and 1,609 were found only in red algae. A total 2Bigelow Laboratory for Ocean Sciences, West Boothbay of 1,409 proteins had hits only to red algae and one other Harbor, ME 04575, USA phylum. Using this repertoire, we adopted a simplified recip- 3Department of Botany, University of British Columbia, 6270 rocal BLAST best-hits approach to study the pattern of exclu- University Boulevard, Vancouver, BC V6T 1Z4, Canada sive gene sharing between red algae and other phyla (see 4Instituto de Fisiologı´a, Biologı´a Molecular y Neurociencias Experimental Procedures). We found that 644 proteins showed (IFIBYNE UBA-CONICET), Facultad de Ciencias Exactas y evidence of exclusive gene sharing with red algae. Of these, Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, 145 (23%) were found only in red + green algae (hereafter, Argentina RG) and 139 (22%) only in red + Alveolata (Figure 1A).
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Algae of the Genus Volvox (Chlorophyta) in Sub-Extreme Habitats T A.G
    Short Communication T REPRO N DU The International Journal of Plant Reproductive Biology 12(2) July, 2020, pp.156-158 LA C P T I F V O E B Y T I DOI 10.14787/ijprb.2020 12.2. O E I L O C G O S I S T E S H Algae of the genus Volvox (Chlorophyta) in sub-extreme habitats T A.G. Desnitskiy Department of Embryology, Saint-Petersburg State University, Saint-Petersburg, 199034, Universitetskaya nab. 7/9, Russia e-mail: [email protected]; [email protected] Received: 18. 05. 2020; Revised: 08. 06. 2020; Accepted and Published online: 15. 06. 2020 ABSTRACT Literature data on the life of green colonial algae of the genus Volvox (Chlorophyta) in sub-extreme habitats (polar, sub-polar and mountain regions) are critically considered. Very few species (primarily homothallic Volvox aureus) are able to thrive in such conditions. Keywords : Geographical distribution, reproduction, sub-extreme habitats, Volvox. The genus Volvox Linnaeus (Volvocaceae, Chlorophyta) Peru (South America) at the elevation of more than five includes more than 20 species of freshwater flagellate algae thousand meters above sea level seems to be doubtful. The (Nozaki et al. 2015), providing an opportunity to study the illustration from this article (which focuses mainly on developmental mechanisms in a relatively simple system diatoms) shows a spherical colony with a diameter of about 14 consisting of two cellular types (somatic and reproductive). μm, consisting of several hundred very small cells (Fritz et al. Volvox carteri f. nagariensis Iyengar is a valuable model of 2015, p.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • MITOCHONDRIAL CREATINE KINASE Some Clinical, Biochemical and Morphological Aspects
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/114105 Please be advised that this information was generated on 2021-10-11 and may be subject to change. MITOCHONDRIAL CREATINE KINASE some clinical, biochemical and morphological aspects Jan A.M. Smeitink MITOCHONDRIAL CREATINE KINASE some clinical, biochemical and morphological aspects Jan A.M. Smeitink MITOCHONDRIAL CREATINE KINASE SOME CLINICAL, BIOCHEMICAL AND MORPHOLOGICAL ASPECTS EEN WETENSCHAPPELIJKE PROEVE OP HET GEBIED VAN DE MEDISCHE WETENSCHAPPEN, IN HET BIJZONDER DE GENEESKUNDE PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE KATHOLIEKE UNIVERSITEIT NIJMEGEN VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP DINSDAG 6 OKTOBER 1992, DES NAMIDDAGS TE 1.30 UUR PRECIES DOOR JOHANNES ALBERTUS MARIA SMEITINK GEBOREN OP 21 JUNI 1956 TE ARNHEM IV Promotores : Prof. Dr. R.C.A. Sengers Prof. Dr. J.M.F. Trijbels Co-Promotores : Dr. W. Ruitenbeek Dr. R.A. Wevers Aan mijn ouders AanWillemien en Mark CONTEN CHAPTER 1 Introduction and aim of the study CHAPTER 2 Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism Biochimica et Biophysica Acta (Reviews on Bioenergetics): in press I. Introduction II. Biochemical studies of Mi-CK ΠΙ. Functional studies of Mi-CK IV. Integration of Mi-CK in cellular energy metabolism V. Perspectives CHAPTER 3 A method for quantitative measurement
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Lombricine Kinase Structure and Substrate Specificity: a Paradigm for Elucidation of Substrate Specificity in Phosphagen Kinases D
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Lombricine Kinase Structure and Substrate Specificity: A Paradigm for Elucidation of Substrate Specificity in Phosphagen Kinases D. Jeffrey. Bush Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES LOMBRICINE KINASE STRUCTURE AND SUBSTRATE SPECIFICITY: A PARADIGM FOR ELUCIDATION OF SUBSTRATE SPECIFICITY IN PHOSPHAGEN KINASES By D. JEFFREY BUSH A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2007 The members of the Committee approve the Dissertation of D. Jeffrey Bush defended on February 20, 2007. Michael S. Chapman Professor Co-Directing Dissertation John Dorsey Professor Co-Directing Dissertation W. Ross Ellington Outside Committee Member Michael Blaber Committee Member Approved: ____________________________________________ Joseph Schlenoff, Department Chair, Department of Chemistry & Biochemistry ____________________________________________ Joseph Travis, Dean, College of Arts & Sciences The Office of Graduate Studies has verified and approved the above named committee members. ii To the late Clifford M. Bush, who with statements such as “A heterogeneous compound of two or more substances whose ray through certain limits is confined to a specific area…” fostered a strong interest of the author in science at a very young age, if only just to know more about what he spoke. iii ACKNOWLEDGEMENTS I wish to first convey my sincere gratitude to my parents, Donald and Roberta for raising me in the nurture and admonition of the Almighty God.
    [Show full text]
  • Acidophilic Green Algal Genome Provides Insights Into Adaptation to an Acidic Environment
    Acidophilic green algal genome provides insights into adaptation to an acidic environment Shunsuke Hirookaa,b,1, Yuu Hirosec, Yu Kanesakib,d, Sumio Higuchie, Takayuki Fujiwaraa,b,f, Ryo Onumaa, Atsuko Eraa,b, Ryudo Ohbayashia, Akihiro Uzukaa,f, Hisayoshi Nozakig, Hirofumi Yoshikawab,h, and Shin-ya Miyagishimaa,b,f,1 aDepartment of Cell Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan; bCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; dNODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan; eResearch Group for Aquatic Plants Restoration in Lake Nojiri, Nojiriko Museum, Nagano 389-1303, Japan; fDepartment of Genetics, Graduate University for Advanced Studies, Shizuoka 411-8540, Japan; gDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; and hDepartment of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan Edited by Krishna K. Niyogi, Howard Hughes Medical Institute, University of California, Berkeley, CA, and approved August 16, 2017 (received for review April 28, 2017) Some microalgae are adapted to extremely acidic environments in pumps that biotransform arsenic and archaeal ATPases, which which toxic metals are present at high levels. However, little is known probably contribute to the algal heat tolerance (8). In addition, the about how acidophilic algae evolved from their respective neutrophilic reduction in the number of genes encoding voltage-gated ion ancestors by adapting to particular acidic environments. To gain channels and the expansion of chloride channel and chloride car- insights into this issue, we determined the draft genome sequence rier/channel families in the genome has probably contributed to the of the acidophilic green alga Chlamydomonas eustigma and per- algal acid tolerance (8).
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox Carteri
    RESEARCH ARTICLE Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri Adam J. Cornish1¤a, Robin Green1¤b¤c, Katrin Gärtner1, Saundra Mason1, Eric L. Hegg1* 1 Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America ¤a Current address: Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America ¤b Current address: Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America ¤c Current address: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America * [email protected] Abstract Hydrogen gas functions as a key component in the metabolism of a wide variety of microor- ganisms, often acting as either a fermentative end-product or an energy source. The number OPEN ACCESS of organisms reported to utilize hydrogen continues to grow, contributing to and expanding Citation: Cornish AJ, Green R, Gärtner K, Mason S, our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. Hegg EL (2015) Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied carteri. PLoS ONE 10(4): e0125324. doi:10.1371/ with an abiotic electron donor and under physiological conditions. The genome of Volvox car- journal.pone.0125324 teri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and Academic Editor: James G. Umen, Donald Danforth the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and Plant Science Center, UNITED STATES HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]- Received: September 15, 2014 hydrogenases.
    [Show full text]