CMU-CS-05-132.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measuring an IP Network in Situ
Measuring an IP Network in situ Hal Burch May 6, 2005 CMU-CS-05-132 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Committee Bruce Maggs Gary L. Miller Srinivasan Seshan Steven Bellovin !c 2005, Hal Burch Some of this material is based upon work funded under a National Science Foundation Graduate Research Fellowship. Also partially funded by NSF Nets Grant CNF-0435382, ARPA Contract N00014-95-1-1246, and NSF NYI Award CCR-94-57766, with matching funds provided by NEC Research Institute and Sun Microsystems. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of any funding agency or organization. Keywords: networking measurement,network topology,graph drawing,tomography,traceback,IP aliasing,reverse traceroute,anonymous DNS Abstract The Internet, and IP networking in general, have become vital to the scientific community and the global economy. This growth has increased the importance of measuring and monitoring the Internet to ensure that it runs smoothly and to aid the design of future protocols and networks. To simplify network growth, IP networking is designed to be decentralized. This means that each router and each network needs and has only limited information about the Internet. One disadvantage of this design is that measurement systems are required in order to determine the behavior of the Internet as a whole. This thesis explores ways to measure five different aspects of the Internet. The first aspect considered is the Internet’s topology, the inter-connectivity of the Internet. -
Protocol Design in an Uncooperative Internet
Protocol Design in an Uncooperative Internet Stefan R. Savage A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2002 Program Authorized to Offer Degree: Computer Science and Engineering University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Stefan R. Savage and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Co-Chairs of Supervisory Committee: Thomas E. Anderson Brian N. Bershad Reading Committee: Thomas E. Anderson Brian N. Bershad David J. Wetherall Date: c Copyright 2002 Stefan R. Savage In presenting this dissertation in partial fulfillment of the requirements for the Doctorial degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholary purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, to whom the author has granted “the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the manuscript made from microform.” Signature Date University of Washington Abstract Protocol Design in an Uncooperative Internet by Stefan R. Savage Co-Chairs of Supervisory Committee Associate Professor Thomas E. Anderson Computer Science and Engineering Associate Professor Brian N. -
Networks.Pdf
25 Computer Networks 25.1 Introduction::::::::::::::::::::::::::::::::::::::::::::::::: 763 Benefits of Visualizing Computer Networks 25.2 The Very Basics of Computer Networking :::::::::::::: 764 A Network Model • Interconnection Technologies • Routing and Routing Protocols • The Internet Structure • The User's Point of View 25.3 A Taxonomy of Visualization Methods and Tools ::::: 766 Visualized Data • Graph Drawing Conventions and Methodologies • Visualization Tools 25.4 Data Sources :::::::::::::::::::::::::::::::::::::::::::::::: 775 25.5 Visualization of the Internet :::::::::::::::::::::::::::::: 779 Giuseppe Di Battista 25.6 Visualization of an Internet Service Provider Network 785 Roma Tre University 25.7 Visualization of Local Networks:::::::::::::::::::::::::: 789 25.8 Visualization of Basic Internet Services and Specific Massimo Rimondini Network Contexts :::::::::::::::::::::::::::::::::::::::::: 792 Roma Tre University References :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 795 25.1 Introduction Communication systems are nowadays fundamental to support various applications, and this is especially true for computer networks as their utmost expression. Some examples include information interchange for critical operations, such as bank transfers or military data, as well as commonly used services such as the web, email, or streaming of multimedia contents. It is therefore essential to be able to ensure an uninterrupted and efficient operation of a computer network. However, the task of maintaining a computer network -
Visualisation of Networks 3Rd Year Software Engineering Project by David Gilbert Department of Computer Science, University of Durham 2005
Visualisation of Networks 3rd Year Software Engineering Project by David Gilbert Department of Computer Science, University of Durham 2005 www.randomwire.com No part of the material offered has previously been submitted by the author for a degree in the University of Durham or in any other university. All the work presented here is the sole work of the author and no one else. 18,000 words approximately. 1 Abstract In this report we aim to explore the field of 'Information Visualisation' in relation to mapping interconnected structures (networks). We investigate the effectiveness of current methods and theories that guide the construction of visualisations. A review of the TCP/IP network protocol and possible topologies demonstrates the type and range of information available to be mapped. The prototype process model is followed to produce a design which is implemented to form a tool capable of connecting together multiple Linux tools for the purpose of collecting and visualising network data. Methods for evaluating visualisations are discussed to realise a set of evaluation criteria which are then set against a number of visualisation tools. Graphic output from these tools are discussed with relation to the knowledge we can gain from them. The OSI model is compared to our findings showing a clear relationship. Tools using external data sources are then evaluated to converge our knowledge of the domain. A static conceptual map of Durham is also created to demonstrate alternate forms of visualisation and in particular quasi geographic layout.