UNIVERSITY of CALIFORNIA, SAN DIEGO Plasmodium Sexual

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO Plasmodium Sexual UNIVERSITY OF CALIFORNIA, SAN DIEGO Plasmodium Sexual Development and the Role of Plasmepsin X in Plasmodium falciparum transmission to Anopheles gambiae A Dissertation submitted in partial satisfaction of the Requirements for the Degree of Doctor of Philosophy in Biomedical Sciences by Viengngeun Bounkeua Committee in charge: Professor Joseph M. Vinetz, Chair Professor James R. Feramisco Professor Frances D. Gillin Professor Victor Nizet Professor Sharon L. Reed Professor Elizabeth A. Winzeler 2010 © Viengngeun Bounkeua, 2010 All rights reserved. The Dissertation of Viengngeun Bounkeua is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2010 iii DEDICATION In recognition of all those who have believed in me and helped me to reach this day: - my parents, Kingngeun Bounkeua and Dara Strong, who taught me to be compassionate, dedicated and hardworking through their own example - all of my family, especially my sister, Kay Bounkeua who lent countless hours of early-morning and late-night support, and my step-father, Jeffrey Strong - my research mentors: Dr. Jeffrey Griffith from the University of New Mexico; Phil Rodacy, Pamela Walker and Susan Bender from Sandia National Laboratories; Dr. Michael Lenardo from the National Institutes of Health, and Dr. Joseph Vinetz, my thesis advisor - my thesis committee, for their enthusiastic and thoughtful scientific input - members of the Vinetz lab, for their teachings and for creating an engaging learning environment for the past 4 years, especially Dr. Fengwu Li and Dr. Michael Matthias, Kenny Pettersen, Paula Maguina, Dr. Christian Ganoza and Dr. Shira Abeles - my graduate colleagues, for their technical help, moral encouragement and friendship, especially Neekesh Dharia, Jennifer Aron and Joshua Theisen - my dear friends, who loved and supported me during this time: Emily Mathews, Sherry He, Ilya Gertsman, Caleb Stokes, and Tara Herrmann iv TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication ...................................................................................................................... iv Table of Contents ........................................................................................................... v List of Abbreviations .................................................................................................... vii List of Figures ............................................................................................................... xii List of Tables ............................................................................................................... xiv Acknowledgements ...................................................................................................... xv Vita .............................................................................................................................. xvi Abstract of the Dissertation ......................................................................................... xix Chapter 1 Introduction .................................................................................................... 1 Works cited ........................................................................................................... 9 Chapter 2 Biological features of in vitro-generated Plasmodium falciparum sexual stage parasites ............................................................................................................... 12 Abstract ............................................................................................................... 13 Introduction. ........................................................................................................ 13 Methods ............................................................................................................... 14 Results and Discussion. ....................................................................................... 20 Conclusion ........................................................................................................... 37 Works cited ......................................................................................................... 41 Chapter 3 Ex vivo-cultivation of Plasmodium vivax ookinetes .................................... 46 Abstract ............................................................................................................... 47 Introduction. ........................................................................................................ 47 Methods ............................................................................................................... 48 Results and Discussion. ....................................................................................... 52 Conclusion ........................................................................................................... 61 Works cited ......................................................................................................... 64 Chapter 4 The role of Plasmepsin X in Plasmodium transmission to mosquitos ......... 67 Abstract ............................................................................................................... 68 Introduction. ........................................................................................................ 68 Methods ............................................................................................................... 70 v Results and Discussion. ....................................................................................... 79 Conclusion ......................................................................................................... 101 Works cited ....................................................................................................... 105 Chapter 5 Proteomic analysis of Plasmodium falciparum sexual stage parasites and Plasmodium vivax macrogametes ........................................................................ 112 Abstract ............................................................................................................. 113 Introduction. ...................................................................................................... 113 Methods ............................................................................................................. 114 Results and Discussion. ..................................................................................... 120 Conclusion ......................................................................................................... 141 Works cited ....................................................................................................... 163 vi LIST OF ABBREVIATIONS 2DGE – two-dimensional electrophoresis 6Fam – 6-carboxyfluorescein BHQ – black hole quencher bp – base pairs cap – central apical pore cry – crystalloid CTRP – circumsporozoite and TRAP related protein DAPI – 4’,6-diamidino-2-phenylindole DHFR – dihydrofolate reductase DIG – digoxigenin DMEM – Dulbecco’s modified eagle’s media DNA – deoxyribonucleic acid DOZI – development of zygote inhibited DTT – dithiothreitol dv – digestive vacuole e – erythrocyte EDTA – ethylenediaminetetraacetic acid EGTA – ethylene glycol tetraacetic acid ELISA – enzyme-linked immuno-sorbant assay EM – electron microscopy FCS – fetal calf serum FITC – fluorescein isothiocyanate vii FKBP – forkhead binding protein gc – gametocyte GEMS – gene-enrichment motif searching gm – macrogamete GO – gene ontology GS – gamete exflagellation/emergence solution h – hemozoin HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulufonic acid HS – heat inactivated human serum IACUC – Institutional Animal Care and Use Committee IFA – immunofluorescence assay IgG – immunoglobulin subtype G IgM – immunoglobulin subtype M IMC – inner membrane complex IP – immunoprecipitation IPTG – isopropyl β-D-1-thiogalactopyranoside kDa – kilodalton KO – knockout l – liter LB-amp – laurel broth with ampicillin LCCL – Limulus factor C, cochlear protein Coch-5b2, and late gestation lung protein Lgl1 viii Leukostat – modified Wright stain used to visualize Plasmodium parasites by light microscopy m – microneme M – molar, moles of reagent / liter of solution mAb – monoclonal antibody MALDI-TOF – matrix-assisted laser desorption/ionization time-of-flight MCB – master cell bank µF – microfarad µg – microgram ml – milliliter µm – micrometer mM – millimolar MS – mass spectrometry mt – mitochondria MudPIT – multidimensional protein identification technology n – nucleus N – normal, gram equivalents of H+ ions / liter of solution NF – Nijmegen Falciparum isolate nm – nanometer o – ookinete OPI – ontology-based pattern identification PAGE – polyacrylamide gel electrophoresis PBS – phosphate buffered saline ix pCAM-BSD – genetic integration construct containing blasticidin-S-deaminase PCR – polymerase chain reaction PFA – paraformaldehyde Pfs16 – Plasmodium falciparum surface protein 16 Pfs25 – Plasmodium falciparum surface protein 25 pI – isoelectric point pm – plasma membrane PM – plasmepsin pr – polar ring pRBC – packed red blood cells PRISMA – Projectos en informatica medicina salud y agricultura Puf – Pumilio in Drosophila melanogaster and fem-3 binding factor in Caenorhabditis elegans Pvg377 – Plasmodium vivax gamete protein 377 Pvs230 – Plasmodium vivax surface protein 230
Recommended publications
  • Plasmodium Evasion of Mosquito Immunity and Global Malaria Transmission: the Lock-And-Key Theory
    Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory Alvaro Molina-Cruz1,2, Gaspar E. Canepa1, Nitin Kamath, Noelle V. Pavlovic, Jianbing Mu, Urvashi N. Ramphul, Jose Luis Ramirez, and Carolina Barillas-Mury2 Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 Contributed by Carolina Barillas-Mury, October 15, 2015 (sent for review September 19, 2015; reviewed by Serap Aksoy and Daniel L. Hartl) Plasmodium falciparum malaria originated in Africa and became for the parasite to evade mosquito immunity. The implications global as humans migrated to other continents. During this jour- of P. falciparum selection by mosquitoes for global malaria ney, parasites encountered new mosquito species, some of them transmission are discussed. evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mos- Results quito immune system of Anopheles gambiae mosquitoes. Here, we Differences in Compatibility Between P. falciparum Isolates from investigated the role of Pfs47-mediated immune evasion in the Diverse Geographic Origin and Different Anopheline Species. The adaptation of P. falciparum to evolutionarily distant mosquito species. compatibility between P. falciparum isolates from different continents We found that P. falciparum isolates from Africa, Asia, or the Americas and mosquito vectors that are geographically and evolutionarily have low compatibility to malaria vectors from a different continent, distant was investigated by simultaneously infecting major malaria an effect that is mediated by the mosquito immune system. We iden- vectors from Africa (A. gambiae), Southeast Asia (Anopheles dirus), tified 42 different haplotypes of Pfs47 that have a strong geographic and the New World (A.
    [Show full text]
  • Cerebral and Plasmodium Ovale Malaria in Rhode Island
    CASE REPORT Cerebral and Plasmodium ovale Malaria in Rhode Island JOSHUA KAINE, MD; JOSEPH MORAN-GUIATI, MD; JAMES TANCH, MD; BRIAN CLYNE, MD 64 67 EN ABSTRACT mortality. While the CDC currently reports a stable inci- We report two cases of malaria diagnosed in Rhode Is- dence of malaria in the US, climate change is predicted to land. First, a 21-year-old female who presented with 5 affect disease dynamics, and it remains unclear how the US days of fevers, chills, headache, and myalgias after return- incidence will be affected by climate change in the future.2,3 ing from a trip to Liberia, found to have uncomplicated Given the potentially fatal consequences of a missed malaria due to P. ovale which was treated successfully diagnosis of malaria and the relative inexperience of US with atovaquone/proguanil and primaquine. Second, a clinicians with the disease, we review two cases of malaria chronically ill 55-year-old male presented with 3 days of recently diagnosed in Rhode Island that are representative of headache followed by altered mental status, fever, and the spectrum of the disease one could expect to encounter in new-onset seizures after a recent visit to Sierra Leone, the US. The first is a classic, uncomplicated presentation of found to have P. falciparum malaria requiring ICU ad- malaria in a 21-year-old female and the second is an example mission and IV artesunate treatment. The diagnosis and of severe malaria in a chronically ill 55-year-old male. management of malaria in the United States (US), as well as its rare association with subdural hemorrhage are subsequently reviewed.
    [Show full text]
  • Malaria History
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site. Copyright 2006, The Johns Hopkins University and David Sullivan. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided “AS IS”; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed. Malariology Overview History, Lifecycle, Epidemiology, Pathology, and Control David Sullivan, MD Malaria History • 2700 BCE: The Nei Ching (Chinese Canon of Medicine) discussed malaria symptoms and the relationship between fevers and enlarged spleens. • 1550 BCE: The Ebers Papyrus mentions fevers, rigors, splenomegaly, and oil from Balantines tree as mosquito repellent. • 6th century BCE: Cuneiform tablets mention deadly malaria-like fevers affecting Mesopotamia. • Hippocrates from studies in Egypt was first to make connection between nearness of stagnant bodies of water and occurrence of fevers in local population. • Romans also associated marshes with fever and pioneered efforts to drain swamps. • Italian: “aria cattiva” = bad air; “mal aria” = bad air. • French: “paludisme” = rooted in swamp. Cure Before Etiology: Mid 17th Century - Three Theories • PC Garnham relates that following: An earthquake caused destruction in Loxa in which many cinchona trees collapsed and fell into small lake or pond and water became very bitter as to be almost undrinkable. Yet an Indian so thirsty with a violent fever quenched his thirst with this cinchona bark contaminated water and was better in a day or two.
    [Show full text]
  • Package 'Malariaatlas'
    Package ‘malariaAtlas’ June 1, 2020 Title An R Interface to Open-Access Malaria Data, Hosted by the 'Malaria Atlas Project' Version 1.0.1 Description A suite of tools to allow you to download all publicly available parasite rate survey points, mosquito occurrence points and raster surfaces from the 'Malaria Atlas Project' <https://malariaatlas.org/> servers as well as utility functions for plot- ting the downloaded data. License MIT + file LICENSE Encoding UTF-8 LazyData true Imports curl, rgdal, raster, sp, xml2, grid, gridExtra, httr, dplyr, stringi, tidyr, methods, stats, utils, rlang Depends ggplot2 RoxygenNote 7.0.2 Suggests testthat, knitr, rmarkdown, palettetown, magrittr, tibble, rdhs URL https://github.com/malaria-atlas-project/malariaAtlas BugReports https://github.com/malaria-atlas-project/malariaAtlas/issues VignetteBuilder knitr NeedsCompilation no Author Daniel Pfeffer [aut] (<https://orcid.org/0000-0002-2204-3488>), Tim Lucas [aut, cre] (<https://orcid.org/0000-0003-4694-8107>), Daniel May [aut] (<https://orcid.org/0000-0003-0005-2452>), Suzanne Keddie [aut] (<https://orcid.org/0000-0003-1254-7794>), Jen Rozier [aut] (<https://orcid.org/0000-0002-2610-7557>), Oliver Watson [aut] (<https://orcid.org/0000-0003-2374-0741>), Harry Gibson [aut] (<https://orcid.org/0000-0001-6779-3250>), Nick Golding [ctb], David Smith [ctb] Maintainer Tim Lucas <[email protected]> 1 2 as.MAPraster Repository CRAN Date/Publication 2020-06-01 20:30:11 UTC R topics documented: as.MAPraster . .2 as.MAPshp . .3 as.pr.points . .4 as.vectorpoints . .5 autoplot.MAPraster . .6 autoplot.MAPshp . .7 autoplot.pr.points . .8 autoplot.vector.points . 10 autoplot_MAPraster . 11 convertPrevalence . 13 extractRaster .
    [Show full text]
  • Extra-Intestinal Coccidians Plasmodium Species Distribution Of
    Extra-intestinal coccidians Apicomplexa Coccidia Gregarinea Piroplasmida Eimeriida Haemosporida -Eimeriidae -Theileriidae -Haemosporiidae -Cryptosporidiidae - Babesiidae (Plasmodium) -Sarcocystidae (Sacrocystis) Aconoid (Toxoplasmsa) Plasmodium species Causitive agent of Malaria ~155 species named Infect birds, reptiles, rodents, primates, humans Species is specific for host and •P. falciparum vector •P. vivax 4 species cause human disease •P. malariae No zoonoses or animal reservoirs •P. ovale Transmission by Anopheles mosquito Distribution of Malarial Parasites P. vivax most widespread, found in most endemic areas including some temperate zones P. falciparum primarily tropics and subtropics P. malariae similar range as P. falciparum, but less common and patchy distribution P. ovale occurs primarily in tropical west Africa 1 Distribution of Malaria US Army, 1943 300 - 500 million cases per year 1.5 to 2.0 million deaths per year #1 cause of infant mortality in Africa! 40% of world’s population is at risk Malaria Atlas Map Project http://www.map.ox.ac.uk/index.htm 2 Malaria in the United States Malaria was quite prevalent in the rural South It was eradicated after world war II in an aggressive campaign using, treatment, vector control and exposure control Time magazine - 1947 (along with overall improvement of living Was a widely available, conditions) cheap insecticide This was the CDCs initial DDT resistance misssion Half-life in mammals - 8 years! US banned use of DDT in 1973 History of Malaria Considered to be the most
    [Show full text]
  • CYCLE 43 SLIDE 1 Plasmodium Ovale
    P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa 804 Flatrock, Buiten Street, Cape Town, 8001 www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-13/00142. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. DIFFERENTIAL SLIDES LEGEND CYCLE 43 SLIDE 1 Plasmodium ovale Plasmodium ovale is a species of parasitic protozoa that causes tertian malaria in humans. It is closely related to Plasmodium falciparum and Plasmodium vivax, which are responsible for most malaria. It is rare compared to these two parasites, and substantially less dangerous than P. falciparum. P. ovale has recently been shown by genetic methods to consist of two subspecies, P. ovale curtisi and P. ovale wallikeri. History This species was first described by Stephens in a patient from East Africa in 1922.
    [Show full text]
  • Screening and Identification of Potential Novel Biomarker for Diagnosis of Complicated Plasmodium Vivax Malaria
    Kaur et al. J Transl Med (2018) 16:272 https://doi.org/10.1186/s12967-018-1646-9 Journal of Translational Medicine RESEARCH Open Access Screening and identifcation of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria Hargobinder Kaur1, Rakesh Sehgal1*, Archit Kumar2, Alka Sehgal3, Devendra Bansal4 and Ali A. Sultan4 Abstract Background: In the recent years Plasmodium vivax has been reported to cause severe infections associated with mortality. Clinical evaluation has limited accuracy for the early identifcation of the patients progressing towards the fatal condition. Researchers have tried to identify the serum and the plasma-based indicators of the severe malaria. Discovery of MicroRNA (miRNA) has opened up an era of identifcation of early biomarkers for various infectious and non-infectious diseases. MicroRNAs (miRNA) are the small non-coding RNA molecules of length 19–24 nts and are responsible for the regulation of the majority of human gene expressions at post transcriptional level. Methods: We identifed the diferentially expressed miRNAs by microarray and validated the selected miRNAs by qRT-PCR. We assessed the diagnostic potential of these up-regulated miRNAs for complicated P. vivax malaria. Futher, the bioinformtic analysis was performed to construct protein–protein and mRNA–miRNA networks to identify highly regulated miRNA. Results: In the present study, utility of miRNA as potential biomarker of complicated P. vivax malaria was explored. A total of 276 miRNAs were found to be diferentially expressed by miRNA microarray and out of which 5 miRNAs (hsa-miR-7977, hsa-miR-28-3p, hsa-miR-378-5p, hsa-miR-194-5p and hsa-miR-3667-5p) were found to be signifcantly up-regulated in complicated P.
    [Show full text]
  • Evolutionary History of Human Plasmodium Vivax Revealed by Genome-Wide Analyses of Related Ape Parasites
    Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites Dorothy E. Loya,b,1, Lindsey J. Plenderleithc,d,1, Sesh A. Sundararamana,b, Weimin Liua, Jakub Gruszczyke, Yi-Jun Chend,f, Stephanie Trimbolia, Gerald H. Learna, Oscar A. MacLeanc,d, Alex L. K. Morganc,d, Yingying Lia, Alexa N. Avittoa, Jasmin Gilesa, Sébastien Calvignac-Spencerg, Andreas Sachseg, Fabian H. Leendertzg, Sheri Speedeh, Ahidjo Ayoubai, Martine Peetersi, Julian C. Raynerj, Wai-Hong Thame,f, Paul M. Sharpc,d,2, and Beatrice H. Hahna,b,2,3 aDepartment of Medicine, University of Pennsylvania, Philadelphia, PA 19104; bDepartment of Microbiology, University of Pennsylvania, Philadelphia, PA 19104; cInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; dCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; eWalter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia; fDepartment of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia; gRobert Koch Institute, 13353 Berlin, Germany; hSanaga-Yong Chimpanzee Rescue Center, International Development Association-Africa, Portland, OR 97208; iRecherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France; and jMalaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, United Kingdom Contributed by Beatrice H. Hahn, July 13, 2018 (sent for review June 12, 2018; reviewed by David Serre and L. David Sibley) Wild-living African apes are endemically infected with parasites most recently in bonobos (Pan paniscus)(7–11). Phylogenetic that are closely related to human Plasmodium vivax,aleadingcause analyses of available sequences revealed that ape and human of malaria outside Africa.
    [Show full text]
  • Plasmodium Falciparum Full Life Cycle and Plasmodium Ovale Liver Stages in Humanized Mice
    ARTICLE Received 12 Nov 2014 | Accepted 29 May 2015 | Published 24 Jul 2015 DOI: 10.1038/ncomms8690 OPEN Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice Vale´rie Soulard1,2,3, Henriette Bosson-Vanga1,2,3,4,*, Audrey Lorthiois1,2,3,*,w, Cle´mentine Roucher1,2,3, Jean- Franc¸ois Franetich1,2,3, Gigliola Zanghi1,2,3, Mallaury Bordessoulles1,2,3, Maurel Tefit1,2,3, Marc Thellier5, Serban Morosan6, Gilles Le Naour7,Fre´de´rique Capron7, Hiroshi Suemizu8, Georges Snounou1,2,3, Alicia Moreno-Sabater1,2,3,* & Dominique Mazier1,2,3,5,* Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. 1 Sorbonne Universite´s, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l’hoˆpital, F-75013 Paris, France.
    [Show full text]
  • Phylogeny of the Malarial Genus Plasmodium, Derived from Rrna Gene Sequences (Plasmodium Falciparum/Host Switch/Small Subunit Rrna/Human Malaria)
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 11373-11377, November 1994 Evolution Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences (Plasmodium falciparum/host switch/small subunit rRNA/human malaria) ANANIAS A. ESCALANTE AND FRANCISCO J. AYALA* Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92717 Contributed by Francisco J. Ayala, August 5, 1994 ABSTRACT Malaria is among mankind's worst scourges, is only remotely related to other Plasmodium species, in- affecting many millions of people, particularly in the tropics. cluding those parasitic to birds and other human parasites, Human malaria is caused by several species of Plasmodium, a such as P. vivax and P. malariae. parasitic protozoan. We analyze the small subunit rRNA gene sequences of 11 Plasmodium species, including three parasitic to humans, to infer their evolutionary relationships. Plasmo- MATERIALS AND METHODS dium falciparum, the most virulent of the human species, is We have investigated the 18S SSU rRNA sequences ofthe 11 closely related to Plasmodium reiehenowi, which is parasitic to Plasmodium species listed in Table 1. This table also gives chimpanzee. The estimated time of divergence of these two the known host and geographical distribution. The sequences Plasmodium species is consistent with the time of divergence are for type A genes, which are expressed during the asexual (6-10 million years ago) between the human and chimpanzee stage of the parasite in the vertebrate host, whereas the SSU lineages. The falkiparun-reichenowi lade is only remotely rRNA type B genes are expressed during the sexual stage in related to two other human parasites, Plasmodium malariae the vector (12).
    [Show full text]
  • Understanding the Global Endemicity of Falciparum and Vivax Malaria Ursula Dalrymple†, Bonnie Mappin† and Peter W
    Dalrymple et al. BMC Medicine DOI 10.1186/s12916-015-0372-x MINIREVIEW Open Access Malaria mapping: understanding the global endemicity of falciparum and vivax malaria Ursula Dalrymple†, Bonnie Mappin† and Peter W. Gething* Abstract The mapping of malaria risk has a history stretching back over 100 years. The last decade, however, has seen dramatic progress in the scope, rigour and sophistication of malaria mapping such that its global distribution is now probably better understood than any other infectious disease. In this minireview we consider the main factors that have facilitated the recent proliferation of malaria risk mapping efforts and describe the most prominent global-scale endemicity mapping endeavours of recent years. We describe the diversification of malaria mapping to span a wide range of related metrics of biological and public health importance and consider prospects for the future of the science including its key role in supporting elimination efforts. Keywords: Malaria, Mapping, Modelling, Falciparum, Vivax, Model-based geostatistics Introduction reconstruction of global malaria risk in the largely pre- Like most vector-borne diseases, malaria endemicity is industrial era and prior to widespread malaria control partly determined by the local environment that houses efforts [5] (Fig. 1). its human and anopheline hosts and mediates the inter- It is now nearly half a century since the Lysenko map actions between them. This environmental dependency was published and, during most of that period, few ef- leads to complex patterns of geographical variation in forts were made to improve on it. However, initiatives malaria transmission at almost every scale. Risk is rare- such as the continent-wide Mapping Malaria Risk in lyuniform whether considered between households in a Africa/Atlas du Risque de la Malaria en Afrique village, villages in a district or districts in a country [1].
    [Show full text]
  • The Historical Ecology of Human and Wild Primate Malarias in the New World
    Diversity 2010, 2, 256-280; doi:10.3390/d2020256 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article The Historical Ecology of Human and Wild Primate Malarias in the New World Loretta A. Cormier Department of History and Anthropology, University of Alabama at Birmingham, 1401 University Boulevard, Birmingham, AL 35294-115, USA; E-Mail: [email protected]; Tel.: +1-205-975-6526; Fax: +1-205-975-8360 Received: 15 December 2009 / Accepted: 22 February 2010 / Published: 24 February 2010 Abstract: The origin and subsequent proliferation of malarias capable of infecting humans in South America remain unclear, particularly with respect to the role of Neotropical monkeys in the infectious chain. The evidence to date will be reviewed for Pre-Columbian human malaria, introduction with colonization, zoonotic transfer from cebid monkeys, and anthroponotic transfer to monkeys. Cultural behaviors (primate hunting and pet-keeping) and ecological changes favorable to proliferation of mosquito vectors are also addressed. Keywords: Amazonia; malaria; Neotropical monkeys; historical ecology; ethnoprimatology 1. Introduction The importance of human cultural behaviors in the disease ecology of malaria has been clear at least since Livingstone‘s 1958 [1] groundbreaking study describing the interrelationships among iron tools, swidden horticulture, vector proliferation, and sickle cell trait in tropical Africa. In brief, he argued that the development of iron tools led to the widespread adoption of swidden (―slash and burn‖) agriculture. These cleared agricultural fields carved out a new breeding area for mosquito vectors in stagnant pools of water exposed to direct sunlight. The proliferation of mosquito vectors and the subsequent heavier malarial burden in human populations led to the genetic adaptation of increased frequency of sickle cell trait, which confers some resistance to malaria.
    [Show full text]