Abnormal Glucose Homeostasis in Skeletal Muscle–Specific PGC-1Α G and H)

Total Page:16

File Type:pdf, Size:1020Kb

Load more

3FTFBSDIBSUJDMF "COPSNBMHMVDPTFIPNFPTUBTJT JOTLFMFUBMNVTDMFmTQFDJGJD1($α LOPDLPVUNJDFSFWFBMTTLFMFUBM NVTDMFmQBODSFBUJDβDFMMDSPTTUBML Christoph Handschin,1,2 Cheol Soo Choi,3 Sherry Chin,1 Sheene Kim,3 Dan Kawamori,4 Amarnath J. Kurpad,4 Nicole Neubauer,4 Jiang Hu,4 Vamsi K. Mootha,5,6 Young-Bum Kim,7 Rohit N. Kulkarni,4 Gerald I. Shulman,3 and Bruce M. Spiegelman1 1Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA. 2Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland. 3Howard Hughes Medical Institute and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA. 4Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 5Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. 6Center for Human Genetic Research, Massachusetts General Hospital, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA. 7Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. The transcriptional coactivator PPARγ coactivator 1α (PGC-1α) is a strong activator of mitochondrial biogenesis and oxidative metabolism. While expression of PGC-1α and many of its mitochondrial target genes are decreased in the skeletal muscle of patients with type 2 diabetes, no causal relationship between decreased PGC-1α expres- sion and abnormal glucose metabolism has been established. To address this question, we generated skeletal muscle–specific PGC-1α knockout mice (MKOs), which developed significantly impaired glucose tolerance but showed normal peripheral insulin sensitivity. Surprisingly, MKOs had expanded pancreatic β cell mass, but markedly reduced plasma insulin levels, in both fed and fasted conditions. Muscle tissue from MKOs showed increased expression of several proinflammatory genes, and these mice also had elevated levels of the circulating IL-6. We further demonstrated that IL-6 treatment of isolated mouse islets suppressed glucose-stimulated insulin secretion. These data clearly illustrate a causal role for muscle PGC-1α in maintenance of glucose homeostasis and highlight an unexpected cytokine-mediated crosstalk between skeletal muscle and pancreatic islets. *OUSPEVDUJPO ing pathways by which PGC-1α controls OXPHOS gene expres- PPARγ coactivator 1α (PGC-1α) is a coactivator protein that binds sion in skeletal muscle have been elucidated (3, 7–13). Notably, to a number of transcription factors and augments their ability to PGC-1α dysregulation is also observed in pre-diabetic individuals, induce target gene expression (1, 2). A central feature of PGC-1α suggesting that reduction of PGC-1α levels is an early event in the is its potential to boost mitochondrial biogenesis and increase development of the disease (7, 8). oxidative metabolism (3). In addition, PGC-1α regulates certain Mitochondrial dysfunction has been closely associated with skel- tissue-specific gene programs in vivo, such as increased myofibril- etal muscle insulin resistance in several studies (14–16). Decreased lar gene expression associated with oxidative muscle fibers (4). PGC-1α levels could theoretically trigger a pathway of pathology PGC-1α is regulated in many tissues under a variety of physiologi- starting with reduced OXPHOS gene expression, decreased fatty acid cal stimuli, including cold, exercise, and fasting (1, 2). In addition, oxidation, and subsequent lipid accumulation in skeletal muscle dysregulation of PGC-1α mRNA expression has been observed in and culminating in insulin resistance and type 2 diabetes (8, 15, 16). many disease states (1, 2). For example, PGC-1α expression is However, the causality of PGC-1α dysregulation in skeletal mus- increased in the liver and islets of animal models of type 1 and cle to the development of abnormalities in glucose homeostasis, type 2 diabetes (5, 6). In contrast, mRNA levels of PGC-1α, PGC- particularly insulin resistance and type 2 diabetes, has never to 1β, and genes encoding for proteins involved in mitochondrial our knowledge been directly tested in a loss-of-function model in oxidative phosphorylation (OXPHOS) are reduced in skeletal vivo. Mice lacking PGC-1α in all tissues have been made, but these muscle of human type 2 diabetics, at least in some populations animals have many systemic abnormalities, including complete (7, 8). The OXPHOS genes that are dysregulated in type 2 diabetic resistance to diet-induced obesity and hyperactivity secondary to patients are under transcriptional control of PGC-1α, and signal- central nervous system abnormalities (17, 18). This has made a serious examination of the role of skeletal muscle PGC-1α in sys- temic glucose homeostasis impossible in these animals (17, 18). Nonstandard abbreviations used: Cox, cytochrome c oxidase; GABP, GA-binding These mice also have constitutively active AMP-activated protein protein; MKO, skeletal muscle–specific PGC-1α knockout mouse; OXPHOS, oxida- tive phosphorylation; PGC-1α, PPARγ coactivator 1α; SDH, succinate dehydrogenase; kinase in skeletal muscle, which might compensate for the loss of SKM-Het, skeletal muscle–specific PGC-1α heterozygous mouse. PGC-1α in this tissue (17, 18). Therefore, to assess the importance Conflict of interest: The authors have declared that no conflict of interest exists. of PGC-1α in peripheral tissues, tissue-specific knockout animals Citation for this article: J. Clin. Invest. doi:10.1172/JCI31785. have to be generated. Proof of principle stems from liver-specific The Journal of Clinical Investigation http://www.jci.org SFTFBSDIBSUJDMF 'JHVSF (FOFSBUJPOBOEBOBMZTJTPG.,0T " .,0TXFSFHFOFSBUFECZDSPTTJOHNJDFXJUIBGMPYFE1($αBMMFMFUPBOJNBMTUIBUUSBOTHFOJDBMMZFYQSFTT DSFSFDPNCJOBTFVOEFSUIFDPOUSPMPGUIFNZPHFOJOQSPNPUFSBOE.&'$FOIBODFS .ZP$SF # 1($αQSPUFJOMFWFMTJOHBTUSPDOFNJVT NVTDMFXFSFEFUFSNJOFECZ8FTUFSOCMPU $ 3FMBUJWF1($αBOE1($βN3/"FYQSFTTJPOXBTNFBTVSFEJOEJGGFSFOUUJTTVFTCZSFBMUJNF 1$37BMVFTBSFNFBO4&. 1 .,0WFSTVTDPOUSPMOQFSHSPVQ PGC-1α knockout mice, which, in contrast to whole-body knock- compensatory adaptations in PGC-1β levels (Figure 1C). In terms out mice, show the expected reduction of gene expression involved of muscle function, MKOs has a lower expression of myosin heavy in gluconeogenesis and heme biosynthesis (19). chains normally expressed in oxidative fibers (type I and IIa) and We thus generated skeletal muscle–specific PGC-1α knockout exhibits reduced voluntary physical activity (21). mice (MKOs) and studied the impact of aberrant PGC-1α levels in Increase in mitochondrial function and oxidative metabolism are core this tissue on glucose homeostasis and insulin sensitivity. Interest- functions of PGC-1α. We first studied the expression of metabolic ingly, while the loss of PGC-1α expression caused significant glu- genes and their corresponding transcription factors by real-time cose intolerance, this intolerance was not associated with insulin PCR. Two of the early PGC-1α target genes, estrogen-related recep- resistance in peripheral tissues per se. Rather, we found an unex- tor α (ERRα) and GA-binding protein A (GABPA), the DNA-bind- pected link between absence or reduction of PGC-1α expression in ing subunit of GABP, showed reduced expression in MKOs com- skeletal muscle and decreased insulin secretion in vivo. These data pared with control mice (Figure 2A). These transcription factors suggest an important crosstalk between skeletal muscle and pan- are essential in controlling PGC-1α–induced OXPHOS expression creatic islets, perhaps via secretion of proinflammatory cytokines in skeletal muscle (9, 10). Transcript levels of the more downstream such as IL-6 by skeletal muscle. transcription factors nuclear respiratory factor 1 and mitochon- drial transcription factor A were unaltered in MKOs (Figure 2A). 3FTVMUT Nevertheless, expression of a number of OXPHOS and other Generation and characterization of MKOs. MKOs were generated by mitochondrial genes was significantly reduced in MKOs, includ- breeding animals harboring a floxed PGC-1α allele (17) with mice ing the 1β subcomplex 5 and Fe-S protein 1 subunits of NADH- that transgenically express cre recombinase under the control of ubiquinone oxidoreductase, cytochrome c, cytochrome c oxidase the myogenin promoter and the MEF2C enhancer (20) (Figure 1A). (Cox) subunit 5b, and ATP synthase o subunit. These genes have The transcript and protein levels of PGC-1α were subsequently been found to be directly regulated by ERRα, GABP, and PGC-1α monitored by real-time PCR and Western blots, respectively. In gas- (9, 10). Other OXPHOS genes did not differ in their expression trocnemius muscle, protein expression of PGC-1α was almost com- between MKOs and controls, e.g., the NADH-ubiquinone oxido- pletely abolished (Figure 1B). Similarly, PGC-1α mRNA expression reductase flavoprotein 2. Finally, non-OXPHOS mitochondrial was drastically reduced in gastrocnemius and soleus muscles of genes that are known to be regulated by PGC-1α (19) were reduced MKOs (Figure 1C). Other known PGC-1α–expressing tissues such in MKOs, for example the first enzyme in heme biosynthesis, as heart, liver, brown adipose tissue, and brain were examined, and 5-aminolevulinate synthase (Figure 2A). Notably, the reduction none of those had significantly altered PGC-1α transcript levels of mitochondrial
Recommended publications
  • Modulation of PGC-1Α Activity As a Treatment for Metabolic and Muscle-Related Diseases Svensson, Kristoffer and Handschin, Christoph

    Modulation of PGC-1Α Activity As a Treatment for Metabolic and Muscle-Related Diseases Svensson, Kristoffer and Handschin, Christoph

    Institutional Repository of the University of Basel University Library Schoenbeinstrasse 18-20 CH-4056 Basel, Switzerland http://edoc.unibas.ch/ Year: 2014 Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases Svensson, Kristoffer and Handschin, Christoph Posted at edoc, University of Basel Official URL: http://edoc.unibas.ch/dok/A6288862 Originally published as: Svensson, Kristoffer and Handschin, Christoph. (2014) Modulation of PGC-1α activity as a treatment for metabolic and muscle-related diseases. Drug discovery today, Vol. 19, H. 7. S. 1024-1029. Modulation of PGC‐1α activity as a treatment for metabolic and muscle‐related diseases Kristoffer Svensson and Christoph Handschin* Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland Published in Drug Discov Today. 2014 19(7):1024‐29. PMID: 24631683. doi: 10.1016/j.drudis.2014.02.013 Copyright © Elsevier; Drug Discovery Today 1 Reprint request Unfortunately, due to copyright‐relatedt issues, we are not able to post the post‐print pdf version of our manuscript ‐ in some cases, not even any version of our manuscript. Thus, if you would like to request a post‐production, publisher pdf reprint, please click send an email with the request to christoph‐dot‐handschin_at_unibas‐dot‐ch (see http://www.biozentrum.unibas.ch/handschin). Information about the Open Access policy of different publishers/journals can be found on the SHERPA/ROMEO webpage: http://www.sherpa.ac.uk/romeo/ Reprint Anfragen Aufgrund fehlender Copyright‐Rechte ist es leider nicht möglich, dieses Manuskript in der finalen Version, z.T. sogar in irgendeiner Form frei zugänglich zu machen.
  • Pnas11632toc 3..6

    Pnas11632toc 3..6

    August 6, 2019 u vol. 116 u no. 32 From the Cover 15973 Cyanobacterial symbionts and cryptic lineage 15861 Neural response to facial emotion 15979 Bacterial interactions and toxic environments 16012 Nunavik Inuit genetic history 16028 Mitochondrial DNA and nuclear epigenome Contents THIS WEEK IN PNAS Cover image: Pictured is a differential 15747 In This Issue interference contrast micrograph of marine dinoflagellate Ornithocercus INNER WORKINGS—An over-the-shoulder look at scientists at work thumii with cyanobacterial symbionts. 15749 How diamonds embedded in meteorites could offer a glimpse into the mantle Takuro Nakayama et al. sequenced the of Mars genome of the cyanobacterium OmCyn, Nola Taylor Redd which is symbiotically associated with single-celled dinoflagellates, and found QNAS that the bacteria represent an underdescribed lineage within an 15752 QnAs with David Reich ecologically important group. Although Beth Azar OmCyn are distributed throughout the world’s oceans, they exist only with PROFILE dinoflagellate hosts, suggesting that there may be other undiscovered cryptic 15754 Profile of Rodolphe Barrangou cyanobacterial lineages. See the article Tinsley H. Davis by Nakayama et al. on pages 15973– See Inaugural Article on page 15774 15978. Image courtesy of Takuro Nakayama. COMMENTARIES 15757 Genomics reveals alga-associated cyanobacteria hiding in plain sight John M. Archibald See companion article on page 15973 15760 Refining the stress gradient hypothesis in a microbial community Sarah P. Hammarlund and William R. Harcombe See companion article on page 15979 15763 Mitochondrial genetics regulate nuclear gene expression through metabolites Jessica L. Fetterman and Scott W. Ballinger See companion article on page 16028 LETTERS 15766 Availability of public databases for triangulation of findings Matthew Lyon, Marcus Munafo, Tom Gaunt, and George Davey Smith 15768 Reply to Lyon et al.: Self-regulation and the foraging gene: From flies to humans Marla B.
  • PGC-1Β) Improves Skeletal Muscle Mitochondrial Function and Insulin Sensitivity

    PGC-1Β) Improves Skeletal Muscle Mitochondrial Function and Insulin Sensitivity

    Institutional Repository of the University of Basel University Library Schoenbeinstrasse 18-20 CH-4056 Basel, Switzerland http://edoc.unibas.ch/ Year: 2011 Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) improves skeletal muscle mitochondrial function and insulin sensitivity Handschin, C. Posted at edoc, University of Basel Official URL: http://edoc.unibas.ch/dok/A6005408 Originally published as: Handschin, C.. (2011) Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) improves skeletal muscle mitochondrial function and insulin sensitivity. Diabetologia, Vol. 54, no. 6. S. 1270-1272. PGC-1 improves skeletal muscle mitochondrial function and insulin sensitivity Christoph Handschin Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland Published in Diabetologia. 2011 Jun;54(6):1270-2. PMID: 21461634. doi: 10.1007/s00125-011-2135-3 Copyright © Springer; Diabetologia PGC-1 improves skeletal muscle mitochondrial function and insulin sensitivity Christoph Handschin Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland Correspondence to: [email protected] Abstract The peroxisome proliferator-activated receptor coactivator 1 (PGC-1) proteins are key regulators of cellular energy homeostasis in a number of oxidative tissues, including skeletal muscle. While the regulation and function of PGC-1 seems central to muscle fiber plasticity in endurance exercise, the role of PGC-1 in this tissue is less clear. Wright and coworkers now provide evidence for a protective effect of moderately elevated PGC-1 in electroporated rat skeletal muscle against high fat diet-induced insulin resistance at least in part by promoting the oxidation of long chain acyl-CoA entities and the elimination of reactive oxygen species.
  • Remodeling of Calcium Handling in Skeletal Muscle Through The

    Remodeling of Calcium Handling in Skeletal Muscle Through The

    Remodeling of calcium handling in skeletal muscle through the peroxisome proliferator- activated receptor γ coactivator 1α (PGC-1α): Impact on force, fatigability and fiber type Serge Summermatter1, Raphael Thurnheer2, Gesa Santos1, Barbara Mosca3, Oliver Baum4, Susan Treves2, Hans Hoppeler4, Francesco Zorzato2,3 and Christoph Handschin1 1Biozentrum, Department of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland 2Departments of Anesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, CH-4031 Basel, Switzerland 3Department of Experimental and Diagnostic Medicine, University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy 4Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3009 Bern, Switzerland, Running head: Remodeling of muscle calcium handling by PGC-1α Key words: PGC-1α, calcium handling, muscle plasticity Address correspondence to: Christoph Handschin, Division of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland, Phone: +41 61 267 2378, Fax: +41 61 267 2208, Email: [email protected] Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue and intracellular calcium levels might play a role in both adaptive phenomena. Using mice with transgenic over-expression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α over-expression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction.
  • PGC-1Α and Exercise in the Control of Body Weight

    PGC-1Α and Exercise in the Control of Body Weight

    CORE Metadata, citation and similar papers at core.ac.uk Provided by edoc Institutional Repository of the University of Basel University Library Schoenbeinstrasse 18-20 CH-4056 Basel, Switzerland http://edoc.unibas.ch/ Year: 2012 PGC-1α and exercise in the control of body weight Summermatter, S. and Handschin, C. Posted at edoc, University of Basel Official URL: http://edoc.unibas.ch/dok/A6043799 Originally published as: Summermatter, S. and Handschin, C.. (2012) PGC-1α and exercise in the control of body weight. International journal of obesity and related metabolic disorders, Vol. 36, H. 11. S. 1428-1435. PGC‐1α and exercise in the control of body weight Serge Summermatter1 and Christoph Handschin1 1Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland Published in Int J Obes (Lond). 2012 Nov;36(11):1428‐35. PMID: 22290535. doi: 10.1038/ijo.2012.12 Copyright © Nature Publishing Group; International Journal of Obesity ‐ 1 ‐ PGC‐1α and exercise in the control of body weight Serge Summermatter1 and Christoph Handschin1 1Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland Address correspondence to: Christoph Handschin, Division of Pharmacology/Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland, Phone: +41 61 267 2378, Fax: +41 61 267 2208, Email: [email protected] ‐ 2 ‐ 1 Abstract 2 The increasing prevalence of obesity and its comorbidities represents a major threat to human health 3 globally. Pharmacological treatments exist to achieve weight loss, but the subsequent weight maintenance 4 is prone to fail in the long run.
  • Abnormal Glucose Homeostasis in Skeletal Muscle–Specific PGC-1Α

    Abnormal Glucose Homeostasis in Skeletal Muscle–Specific PGC-1Α

    Research article Abnormal glucose homeostasis in skeletal muscle–specific PGC-1α knockout mice reveals skeletal muscle–pancreatic β cell crosstalk Christoph Handschin,1,2 Cheol Soo Choi,3 Sherry Chin,1 Sheene Kim,3 Dan Kawamori,4 Amarnath J. Kurpad,4 Nicole Neubauer,4 Jiang Hu,4 Vamsi K. Mootha,5,6 Young-Bum Kim,7 Rohit N. Kulkarni,4 Gerald I. Shulman,3 and Bruce M. Spiegelman1 1Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA. 2Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland. 3Howard Hughes Medical Institute and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA. 4Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 5Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. 6Center for Human Genetic Research, Massachusetts General Hospital, and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA. 7Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. The transcriptional coactivator PPARγ coactivator 1α (PGC-1α) is a strong activator of mitochondrial biogenesis and oxidative metabolism. While expression of PGC-1α and many of its mitochondrial target genes are decreased in the skeletal muscle of patients with type 2 diabetes, no causal relationship between decreased PGC-1α expres- sion and abnormal glucose metabolism has been established. To address this question, we generated skeletal muscle–specific PGC-1α knockout mice (MKOs), which developed significantly impaired glucose tolerance but showed normal peripheral insulin sensitivity.
  • 15 Scientists: Longevity in Switzerland

    15 Scientists: Longevity in Switzerland

    15 Scientists: Longevity in Switzerland Alejandro Ocampo Position: Assistant Professor, Department of Pharmacology and Toxicology, University of Lausanne Research Area: Cellular Reprogramming, Stem Cells Alejandro Ocampo obtained his PhD in 2012 from the University of Miami for his work under the supervision of Antoni Barrientos on the role of mitochondria in neurodegenerative proteinopathies and aging. Between 2013 and 2017, he performed a post-doctoral training with Juan Carlos Izpisua-Belmonte at the Salk Institute for Biological Studies in La Jolla, California. During his post-doctoral training at the Salk, he developed a novel technology to prevent the transmission of mitochondrial diseases and demonstrated the amelioration of age-associated hallmarks by partial cellular reprogramming. In August 2018, he joined the Department of Pharmacology and Toxicology as Assistant Professor and will continue his work on aging, cellular reprogramming and mitochondrial diseases. His group conducts research in the areas of epigenetics, stem cells, aging and mitochondrial diseases with the goal of elucidating disease mechanisms and develop novel therapeutic approaches to improve the quality of life of patients. Aging Analytics Agency 11 Alexander Eggel Position: Dr., Department of Rheumatology, Immunology and Allergology, University of Bern Research Area: Immunologic Plasticity in Aging The Eggel Lab is affiliated with the Department for BioMedical Research (DBMR) at the University of Bern and the Department of RIA at the University Hospital Bern in Switzerland. Their major research interests focus on the biologic mechanisms underlying both beneficial as well as pathogenic type 2 immune responses. On the one hand they are trying to get a better understanding on how allergies evolve and to develop alternative treatment approaches directly interfering with the allergic cascade.
  • Skeletal Muscle Fiber-Type Switching, Exercise Intolerance, and Myopathy in PGC-1Α Muscle-Specific Knock-Out Animals

    Skeletal Muscle Fiber-Type Switching, Exercise Intolerance, and Myopathy in PGC-1Α Muscle-Specific Knock-Out Animals

    Skeletal Muscle Fiber-type Switching, Exercise Intolerance, and Myopathy in PGC-1α Muscle-specific Knock-out Animals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Handschin, Christoph, Sherry Chin, Ping Li, Fenfen Liu, Eleftheria Maratos-Flier, Nathan K. LeBrasseur, Zhen Yan, and Bruce M. Spiegelman. 2007. “Skeletal Muscle Fiber-Type Switching, Exercise Intolerance, and Myopathy in PGC-1α Muscle-Specific Knock-out Animals.” Journal of Biological Chemistry 282 (41): 30014–21. doi:10.1074/jbc.M704817200. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41543093 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 282, NO. 41, pp. 30014–30021, October 12, 2007 © 2007 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Skeletal Muscle Fiber-type Switching, Exercise Intolerance, and Myopathy in PGC-1␣ Muscle-specific Knock-out Animals*□S Received for publication, June 12, 2007, and in revised form, July 5, 2007 Published, JBC Papers in Press, August 16, 2007, DOI 10.1074/jbc.M704817200 Christoph Handschin‡§1, Sherry Chin‡, Ping Li¶, Fenfen Liuʈ, Eleftheria Maratos-Flierʈ, Nathan K. LeBrasseur**, Zhen Yan¶, and Bruce M. Spiegelman‡2 From the ‡Dana-Farber Cancer
  • Regulation of Skeletal Muscle Cell Plasticity by the Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1Alpha

    Regulation of Skeletal Muscle Cell Plasticity by the Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1Alpha

    Institutional Repository of the University of Basel University Library Schoenbeinstrasse 18-20 CH-4056 Basel, Switzerland http://edoc.unibas.ch/ Year: 2010 Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor gamma coactivator 1alpha Handschin, C. Posted at edoc, University of Basel Official URL: http://edoc.unibas.ch/dok/A6001447 Originally published as: Handschin, C.. (2010) Regulation of skeletal muscle cell plasticity by the peroxisome proliferator-activated receptor gamma coactivator 1alpha. Journal of receptors and signal transduction, Vol. 30, H. 6. S. 376-384. Regulation of skeletal muscle cell plasticity by the peroxisome proliferator- activated receptor coactivator 1 Christoph Handschin Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland Published in J Recept Signal Transduct Res. 2010 Dec;30(6):376-84. PMID: 20178454. doi: 10.3109/10799891003641074 Copyright © Informa Healthcare; Journal of Receptors and Signal Transduction Research - 1 - Regulation of skeletal muscle cell plasticity by the peroxisome proliferator- activated receptor coactivator 1 Christoph Handschin Biozentrum, Div. of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland Correspondence to: [email protected] Key words: exercise; transcriptional regulation; signal transduction; skeletal muscle; PGC-1 - 2 - Abstract Exercise triggers a pleiotropic response in skeletal muscle, which results in a profound remodeling of this tissue. Physical activity-dependent muscle fiber plasticity is regulated by a number of distinct signaling pathways. Even though most of these pathways are activated by different stimuli and in a temporally and spatially separated manner during exercise, many of the major signal transduction events converge on the peroxisome proliferator-activated receptor coactivator 1 (PGC-1) by posttranslationally modifying the PGC-1 protein, modulating PGC-1 gene expression or both.
  • 'Peroxisome Proliferator-Activated Receptor-Γ Coactivator-1Α in Muscle

    'Peroxisome Proliferator-Activated Receptor-Γ Coactivator-1Α in Muscle

    Handschin, C (2009). Peroxisome proliferator-activated receptor-γ coactivator-1α in muscle links metabolism to inflammation. Clinical and Experimental Pharmacology and Physiology, 36(12):1139-1143. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Clinical and Experimental Pharmacology and Physiology 2009, 36(12):1139-1143. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2009 Peroxisome proliferator-activated receptor-γ coactivator-1α in muscle links metabolism to inflammation Handschin, C Handschin, C (2009). Peroxisome proliferator-activated receptor-γ coactivator-1α in muscle links metabolism to inflammation. Clinical and Experimental Pharmacology and Physiology, 36(12):1139-1143. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Clinical and Experimental Pharmacology and Physiology 2009, 36(12):1139-1143. Peroxisome proliferator-activated receptor-γ coactivator-1α in muscle links metabolism to inflammation Abstract 1. In higher eukaryotes, metabolism and immunity are tightly coupled. However, whereas evolutionary, a compromised immune response due to undernourishment has been the predominant problem, the inflammatory response to obesity and other life style-associated diseases gained in relevance in Western societies in the last hundred years. 2. Traditionally, fat tissue has been considered as the major source of proinflammatory secreted factors in these pathologies. In recent years however, the contribution of other tissues to a disease-causing chronic inflammation has been increasingly appreciated.
  • PGC-1Α and Myokines in the Aging Muscle : a Mini-Review

    PGC-1Α and Myokines in the Aging Muscle : a Mini-Review

    Institutional Repository of the University of Basel University Library Schoenbeinstrasse 18-20 CH-4056 Basel, Switzerland http://edoc.unibas.ch/ Year: 2011 PGC-1α and Myokines in the aging muscle : a mini-review Arnold, A. -S. and Egger, A. and Handschin, C. Posted at edoc, University of Basel Official URL: http://edoc.unibas.ch/dok/A6001475 Originally published as: Arnold, A. -S. and Egger, A. and Handschin, C.. (2011) PGC-1α and Myokines in the aging muscle : a mini- review. Gerontology, Vol. 57, H. 1. S. 37-43. PGC-1 and myokines in the aging muscle Anne-Sophie Arnolda,*, Anna Eggera,*, and Christoph Handschina,# aBiozentrum, Division of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland Published in Gerontology. 2011;57(1):37-43. PMID: 20134150. doi: 10.1159/000281883 Copyright © Karger; Gerontology - 1 - PGC-1 and myokines in the aging muscle Anne-Sophie Arnolda,*, Anna Eggera,*, and Christoph Handschina,# aBiozentrum, Division of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland Key words: sarcopenia, skeletal muscle, PGC-1, myokines, transcriptional regulation Footnotes: *equal contribution #Correspondence to: Christoph Handschin, Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland, Tel. +41 61 267 2221, Fax +41 61 267 2208, Email [email protected] - 2 - Abstract Aging is associated with far-reaching changes in physiological functions resulting in morbidity and ultimately death. Age-related frailty, insecurity and reduced physical activity contribute to a progressive loss of muscle mass and function, commonly referred to as sarcopenia. Due to the increase in life expectancy in many countries, loss of muscle mass and its consequences gain in relevance for public health.
  • Biozentrum Annual Report Biozentrum Annual Report 2017 Table of Content

    Biozentrum Annual Report Biozentrum Annual Report 2017 Table of Content

    2017 Biozentrum Annual Report Biozentrum Annual Report 2017 Table of content Research at a Glance 3 Core Facilities Biophysics Facility (BF) 99 FACS Core Facility (FCF) 100 Focal Areas Imaging Core Facility (IMCF) 101 Computational & Systems Biology 4 Proteomics Core Facility (PCF) 103 Growth & Development 5 Research IT 106 Infection Biology 6 Neurobiology 7 Structural Biology & Biophysics 8 Associated University Facilities BioEM Lab 109 C-CINA 110 Research Groups Center for Scientific Computing (sciCORE) 111 Prof. Jan Pieter Abrahams 9 Life Sciences Training Facility 112 Prof. Markus Affolter 11 Quantitative Genomics Facility 113 Prof. Silvia Arber 14 Prof. Marek Basler 17 Prof. Attila Becskei 19 Management, Administration & Prof. Petr Broz 21 Services 114 Prof. Dirk Bumann 23 Prof. Christoph Dehio 25 Prof. Fiona Doetsch 28 Prof. Stephan Grzesiek 30 Prof. Michael N. Hall 35 Prof. Christoph Handschin 38 Prof. Sebastian Hiller 41 Prof. Sonja Hofer 44 Prof. Urs Jenal 46 Prof. Roderick Lim 49 Prof. Timm Maier 52 Prof. Thomas Mrsic-Flogel 56 Prof. Richard Neher 58 Prof. Erich A. Nigg 61 Prof. Camilo Perez 64 Prof. Jean Pieters 65 Prof. Markus Rüegg 68 Prof. Peter Scheiffele 71 Prof. Tilman Schirmer 73 Prof. Torsten Schwede 75 Prof. Anne Spang 79 Prof. Martin Spiess 82 Prof. Henning Stahlberg 85 Prof. Kelly Tan 89 Prof. Erik van Nimwegen 91 Prof. Mihaela Zavolan 96 Information on staff as on January 1, 2018 BZ Annual Report 2017 2 Research at a Glance Around 30 topics are the focus of research at the Biozentrum. Research at the Biozentrum embraces a wide range of topics, however one main focus all the research groups share is a The Biozentrum in figures strong interest to understand the molecular organization of living organisms.