Enthusiasm Mixed with Scepticism About Single-Nucleotide Polymorphism Markers for Dissecting Complex Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Enthusiasm Mixed with Scepticism About Single-Nucleotide Polymorphism Markers for Dissecting Complex Disorders European Journal of Human Genetics (1999) 7, 98–101 t © 1999 Stockton Press All rights reserved 1018–4813/99 $12.00 http://www.stockton-press.co.uk/ejhg MEETING REPORT First International SNP Meeting at Skokloster, Sweden, August 1998 Enthusiasm mixed with scepticism about single-nucleotide polymorphism markers for dissecting complex disorders Ann-Christine Syv˚anen1, Ulf Landegren2, Anders Isaksson2, Ulf Gyllensten2 and Anthony Brookes2 1Department of Medical Sciences; 2Department of Genetics and Pathology; Uppsala University, Uppsala, Sweden Single nucleotide polymorphisms (SNP) are frequent in number of participants, created a relaxed atmosphere our genomes, occurring on average once every thou- that stimulated many informal scientific discussions. sand nucleotides. They are useful as genetic markers Following an introductory lecture from Gert-Jan van because SNPs evolve slowly and because they can be Ommen (Leiden, NL), President of HUGO, there was scored by technically simple methods. Moreover, a a lively discussion on the role of HUGO in the genome great deal of the functional variation that explains project, revolving around its part in linking the diverse human diversity probably results from SNPs. In recent activities in the field, ranging from facilitating mapping years, SNP-based strategies to explain common disease and mutation analysis to nomenclature supervision, have received enormous attention from the scientific providing guidance in genome diversity and population community as well as from pharmaceutical and bio- studies and more generally in the ethical and intellec- technology companies. The enthusiasm stems largely tual property areas. During the two and a half days of from the hope that large-scale association studies using the meeting advances in technology for discovering and SNPs will help identify genes that contribute to scoring SNPs, SNP-based approaches to dissect com- common disorders with complex genetic causation, and plex diseases and the utility of SNPs in the study of allow formulation of improved therapeutic drugs. human populations as well as in bioinformatics, compu- The 1st International Meeting on Single Nucleotide tational, ethical and commercial issues related to SNPs Polymorphism and Complex Genome Analysis was held were discussed. at Skokloster in the heart of Sweden, 29 August–1 September, 1998, with the support of the Swedish SNP Discovery and Screening Foundation for Strategic Research, Cell Factory and Genome Research Programmes, and by the Human Methods Genome Organization (HUGO), through a contract Many large-scale efforts are in progress to discover (BMH4-CT97-2031) between HUGO Europe and the novel SNPs by resequencing genomic regions from European Commission. The meeting convened leading several individuals. Genset (Martha Blumenfeld, scientists in fields related to SNP research. Altogether France) expects to find by 1999 three polymorphisms around 100 scientists, representing both academic from each of 20000 ordered BAC clones, spanning the institutions and companies in 17 different countries, human genome. Similarly, the whole-genome sequenc- were accommodated at the conference facilities at the ing effort at Celera (Mark Adams, MD, USA) will Skokloster castle on lake M˚alaren, out of twice that generate hundreds of thousands of polymorphisms, number of applicants. The remote and peaceful rural although it is at present unclear whether these will be setting of the meeting, together with the relatively small made publicly available. Andrew Clark (Penn State SNPs in dissecting complex disorders A-C Syv˚anen et al t 99 University, PA, USA) and his collaborators have array padlock probes on planar supports, and to target sequenced the LPL gene locus from 24 individuals multiple SNPs along DNA fibres for direct detection of representing three different populations, and they haplotypes of the markers. intend to sequence another 15 candidates to find SNPs that may be informative in the search for cardiovas- cular disease genes. Peter Underhill (Stanford Uni- versity, CA, USA) described the usefulness of denatur- ing HPLC for identifying previously unknown SNPs SNP Databases through heteroduplex analysis, and he also presented Improved bioinformatics tools and public databases the technique as a tool for scoring known SNPs. Several cataloguing SNP variation are of central importance to other approaches to accurate and cost-effective scoring the field. The HUGO mutation database initiative was of SNPs were presented. Microplate array diagonal gel presented by Richard Cotton (Mutation Research electrophoresis (MADGE) represents a simple but Centre, Melbourne, Australia), and Charles Scriver efficient multiplex genotyping assay (Ian Day, South- (McGill University, Canada) described the database for ampton University, UK). Multiplex typing on DNA the phenylalanine hydroxylase (PAH), as a model of a arrays, either through minisequencing (Ann-Christine database serving both the scientific community, clini- Syv˚anen, Uppsala University, Sweden, and Andres cians, and phenylketonuria patients. Elements needed Metspalu, Tartu University, Estonia), or via a ligase fully to describe sequence variants are being worked assay (Ed Southern, Oxford University, UK) were out in conjunction with the sequence variation database shown to distinguish SNPs in heterozygote and homo- at European Bioinformatics Institute (EBI), with the zygote form more accurately than hybridisation-based aim of harmonising database design and ensure accessi- methods. Nonetheless, hybridisation to high density bility (Heikki Lehv˚aslaiho, EMBL-EBI, UK). DNA chips from Affymetrix was shown to be useful for Four major public SNP databases were presented or analysing HLA polymorphism (Henry Erlich, Roche referred to: Molecular Systems, CA, USA), as well as for discover- (i) HGBASE (http://hgbase.interactiva.de) from ing SNPs and typing thousands of them after multiplex Uppsala University and Interactiva Biotechnolo- PCR (Jian-Bing Fan, Affymetrix, CA, and Michelle gie GmbH links more than 2400 SNPs to genes Cargill, Whitehead Institute, MA, USA). and is designed as a purpose-built tool to facilitate As alternatives to the DNA microarray formats, association studies; SNPs can be efficiently scored in individual amplifica- tion reactions by enzyme-assisted homogeneous assays (ii) dbSNP (http://www.ncbi.nlm.nih.gov/SNP/ based on fluorescence resonance energy transfer snp.how — to — submit.html), a joint effort by the (FRET) or fluorescence polarisation (Pui-Yan Kwok, NHGRI and the NCBI, is currently accepting Washington University, MO, USA), using the homoge- submissions. It can be searched via sequence- neous, FRET-based TaqMan assay (Ken Livak, Perkin- tagged site (STS) number and will be integrated Elmer/Applied Biosystems, CA, USA), by pyrose- with Genbank; quencing (PDl NyrJn, Royal Institute of Technology, (iii) the SNP Databases from Washington University Sweden), or by dynamic allele-specific hybridisation and the Stanford Genome Centre (http://www.ibc (DASH) (Anthony Brookes, Uppsala University, Swe- .wustl.edu/SNP/) contain several hundred SNPs, den). Throughput in currently available scoring meth- which are being integrated into dbSNP; ods is limited by the difficulty of multiplexing PCR, necessitating large numbers of amplification reactions. (iv) The Whitehead SNP Database (http://www.geno- These contribute significantly to the costs of current me.wi.mit.edu/SNP/human/index.html) contains genotyping assays, as pointed out by James Weber over 3000 SNPs, most of which are chromoso- (Marshfield Medical Research Foundation, WI, USA). mally mapped. The database is searchable by genomic region or STS number. Intramolecular ligation probes – padlockprobes – com- bined with rolling circle replication for signal amplifica- Owing to the anticipated large commercial use of tion offer the promise of SNP scoring in genomic DNA SNPs, most discovered SNPs are currently stored in without prior target amplification (Ulf Landegren, private databases owned by genomics companies or the Uppsala University, Sweden). Work is in progress to pharmaceutical industry. In principle, SNPs can be SNPs in dissecting complex disorders t A-C Syv˚anen et al 100 patented, especially if their relevance to a disease is collect patient samples in order to use the SNPs for disclosed, and many patent applications on SNPs have identifying new drug targets and to define in greater been filed, but as yet no patents have been granted detail the genetic variation that determines the (Christian Stein, Patent and Licensing Agency for the responses to drugs. So far the polymorphisms of the German human genome project). Without patent pro- drug metabolising enzymes of the CYP gene family are tection, a large part of the identified SNPs will no doubt the most thoroughly studied example of pharmacoge- remain in commercial databases that are not publicly netic variation (Magnus Ingelman-Sundberg, Karo- accessible. linska Institute, Sweden). In the most intensely debated contribution at the meeting, Joe Terwilliger (Columbia University, NY, USA) presented his sceptical view of the general utility SNPs and Complex Disorders of SNPs in association studies for finding genes behind complex disorders. He cautioned that over-enthusiastic So far successful association studies for identifying SNP researchers underestimate the complexity of the genes underlying complex traits have exploited SNPs human genome and assume far too low allelic heteroge- within candidate genes, selected on the basis
Recommended publications
  • Understanding Rare and Common Diseases in the Context of Human Evolution Lluis Quintana-Murci1,2,3
    Quintana-Murci Genome Biology (2016) 17:225 DOI 10.1186/s13059-016-1093-y REVIEW Open Access Understanding rare and common diseases in the context of human evolution Lluis Quintana-Murci1,2,3 Abstract (e.g., migration, admixture, and changes in population size), and natural selection. The wealth of available genetic information is allowing The plethora of genetic information generated in the the reconstruction of human demographic and adaptive last ten years, thanks largely to the publication of se- history. Demography and purifying selection affect the quencing datasets for both modern human populations purge of rare, deleterious mutations from the human and ancient DNA samples [14–18], is making it possible population, whereas positive and balancing selection to reconstruct the genetic history of our species, and to can increase the frequency of advantageous variants, define the parameters characterizing human demographic improving survival and reproductioninspecific history: expansion out of Africa, the loss of genetic diversity environmental conditions. In this review, I discuss with increasing distance from Africa (i.e., the “serial founder how theoretical and empirical population genetics effect”), demographic expansions over different time scales, studies, using both modern and ancient DNA data, and admixture with ancient hominins [16–21]. These stud- are a powerful tool for obtaining new insight into ies are also revealing the extent to which selection has acted the genetic basis of severe disorders and complex on the human genome, providing insight into the way in disease phenotypes, rare and common, focusing which selection removes deleterious variation and the po- particularly on infectious disease risk. tential of human populations to adapt to the broad range of climatic, nutritional, and pathogenic environments they have occupied [22–28].
    [Show full text]
  • A Bayesian Method for Detecting and Characterizing Allelic Heterogeneity and Boosting Signals in Genome-Wide Association Studies
    Statistical Science 2009, Vol. 24, No. 4, 430–450 DOI: 10.1214/09-STS311 c Institute of Mathematical Statistics, 2009 A Bayesian Method for Detecting and Characterizing Allelic Heterogeneity and Boosting Signals in Genome-Wide Association Studies Zhan Su, Niall Cardin , the Wellcome Trust Case Control Consortium, Peter Donnelly and Jonathan Marchini Abstract. The standard paradigm for the analysis of genome-wide as- sociation studies involves carrying out association tests at both typed and imputed SNPs. These methods will not be optimal for detecting the signal of association at SNPs that are not currently known or in regions where allelic heterogeneity occurs. We propose a novel associa- tion test, complementary to the SNP-based approaches, that attempts to extract further signals of association by explicitly modeling and es- timating both unknown SNPs and allelic heterogeneity at a locus. At each site we estimate the genealogy of the case-control sample by tak- ing advantage of the HapMap haplotypes across the genome. Allelic heterogeneity is modeled by allowing more than one mutation on the branches of the genealogy. Our use of Bayesian methods allows us to as- sess directly the evidence for a causative SNP not well correlated with known SNPs and for allelic heterogeneity at each locus. Using simu- lated data and real data from the WTCCC project, we show that our method (i) produces a significant boost in signal and accurately identi- fies the form of the allelic heterogeneity in regions where it is known to exist, (ii) can suggest new signals that are not found by testing typed or imputed SNPs and (iii) can provide more accurate estimates of effect sizes in regions of association.
    [Show full text]
  • Population Genetics Models of Common Diseases Anna Di Rienzo
    Population genetics models of common diseases Anna Di Rienzo The number and frequency of susceptibility alleles for common This is because the relevant fitness effects are those that diseases are important factors to consider in the efficient acted in ancestral human populations, whereas clinical design of disease association studies. These quantities are the phenotypes are assessed in contemporary populations. results of the joint effects of mutation, genetic drift and In addition, clinical severity does not necessarily imply selection. Hence, population genetics models, informed by effects on reproduction, viability and survival, especially empirical knowledge about patterns of disease variation, can for diseases with late age of onset. be used to make predictions about the allelic architecture of common disease susceptibility and to gain an overall Disease mapping strategies rely — implicitly or explicitly understanding about the evolutionary origins of such diseases. — on population genetics quantities, such as allelic Equilibrium models and empirical studies suggest a role for heterogeneity, allele frequency spectrum and inter-eth- both rare and common variants. In addition, increasing nic differentiation; for example, standard association evidence points to changes in selective pressures on methods are most powerful for detecting common sus- susceptibility genes for common diseases; these findings are ceptibility variants with limited heterogeneity. Likewise, likely to form the basis for further modeling studies. the evidence for association is most likely to be replicated in additional populations if the susceptibility variants are Addresses Department of Human Genetics, University of Chicago, Chicago, the same and similarly common across populations. IL 60637, USA Because these quantities are functions of the underlying population genetics model, modeling studies might help Corresponding author: Di Rienzo, Anna to optimize disease-mapping strategies to the outcomes of ([email protected]) specific evolutionary scenarios.
    [Show full text]
  • The Population Genomics of Adaptive Loss of Function
    Heredity (2021) 126:383–395 https://doi.org/10.1038/s41437-021-00403-2 REVIEW ARTICLE The population genomics of adaptive loss of function 1,2 3 1 4,5 J. Grey Monroe ● John K. McKay ● Detlef Weigel ● Pádraic J. Flood Received: 24 September 2020 / Revised: 28 December 2020 / Accepted: 1 January 2021 / Published online: 11 February 2021 © The Author(s) 2021. This article is published with open access Abstract Discoveries of adaptive gene knockouts and widespread losses of complete genes have in recent years led to a major rethink of the early view that loss-of-function alleles are almost always deleterious. Today, surveys of population genomic diversity are revealing extensive loss-of-function and gene content variation, yet the adaptive significance of much of this variation remains unknown. Here we examine the evolutionary dynamics of adaptive loss of function through the lens of population genomics and consider the challenges and opportunities of studying adaptive loss-of-function alleles using population genetics models. We discuss how the theoretically expected existence of allelic heterogeneity, defined as multiple functionally analogous mutations at the same locus, has proven consistent with empirical evidence and why this impedes both the detection of selection and causal relationships with phenotypes. We then review technical progress towards new functionally explicit population genomic tools and genotype-phenotype methods to overcome these limitations. More 1234567890();,: 1234567890();,: broadly, we discuss how the challenges of studying adaptive loss of function highlight the value of classifying genomic variation in a way consistent with the functional concept of an allele from classical population genetics.
    [Show full text]
  • An Assessment of “Hidden” Heterogeneity Within Electromorphs at Three Enzyme Loci in Deer Mice
    Copyright 0 1982 by the Genetics Society of America AN ASSESSMENT OF “HIDDEN” HETEROGENEITY WITHIN ELECTROMORPHS AT THREE ENZYME LOCI IN DEER MICE CHARLES F. AQUADRO’ AND JOHN C. AVISE Department of Molecular and Population Genetics, University of Georgia, Athens, Georgia 30602 Manuscript received October 9, 1981 Revised copy accepted July 3, 1982 ABSTRACT Allelic heterogeneity within protein electromorphs at three loci was examined in populations of deer mice (Peromyscus moniculatus) collected from five localities across North America. We used a variety of electrophoretic techniques (including several starch and acrylamide conditions, gel-sieving, and isoelectric focusing) plus heat denaturation. Of particular interest was the supernatant glutamate oxalate transaminase system (GOT-1; aspartate aminotransferase-1 of some authors), which under standard electrophoretic conditions had been shown to exhibit basically a two-allele polymorphism throughout the range of maniculatus. The use of all of the above techniques failed to uncover any additional variation for GOT-1 in these populations. Similarly, no new scorable variation was resolved at the essentially monomorphic malate dehydrogenase- 1 locus by additional conditions of electrophoresis. In marked contrast to the results for the above two enzymes, the use of multiple conditions of electropho- resis resolved the 8 standard-condition electromorphs of esterase-1 into a total of 23 variants showing strong geographic differentiation in frequency. These 23 electromorphs were further divided into a total of 35 variants by thermal stability studies. However, the allelic nature of all of the thermal stability esterase variants remains to be documented. The results of this study, taken together with the remarkable geographic heterogeneity for this species in ecology, morphology, karyotype and mitochondrial DNA sequence, suggest that some form of balancing selection may be acting to maintain the GOT-1 poly- morphism.
    [Show full text]
  • Extreme Allelic Heterogeneity at a Caenorhabditis Elegans Beta-Tubulin Locus Explains Natural Resistance to Benzimidazoles
    bioRxiv preprint doi: https://doi.org/10.1101/372623; this version posted July 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus 2 explains natural resistance to benzimidazoles 3 4 Steffen R. Hahnel⧺ ,1, Stefan Zdraljevic⧺ ,1,2, Briana C. Rodriguez1, Yuehui Zhao3, Patrick T. McGrath3, and 5 Erik C. Andersen1,2,4 * 6 7 1. DepartMent of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA 8 2. Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA 9 3. School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332 10 4. Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA 11 ⧺ Equal contribution 12 * Corresponding author 13 14 15 Erik C. Andersen 16 Assistant Professor of Molecular Biosciences 17 Northwestern University 18 Evanston, IL 60208, USA 19 Tel: (847) 467-4382 20 Fax: (847) 491-4461 21 Email: [email protected] 22 23 24 25 26 Steffen R. Hahnel, [email protected], ORCID 0000-0001-8848-0691 27 Stefan Zdraljevic, [email protected], ORCID 0000-0003-2883-4616 28 Briana C. Rodriguez, [email protected] 29 Yuehui Zhao, [email protected] 30 Patrick T. McGrath, [email protected], ORCID 0000-0002-1598-3746 31 Erik C. Andersen, [email protected], ORCID 0000-0003-0229-9651 1 of 52 bioRxiv preprint doi: https://doi.org/10.1101/372623; this version posted July 19, 2018.
    [Show full text]