Cervarix HPV Vaccination Series [1]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Version Gdsv27/Ipiv21
Version GDSv27/IPIv21 Interactions Use with Other Vaccines CERVARIX can be given concomitantly with any of the following vaccines: reduced antigen diphtheria-tetanus- acellular pertussis vaccine (dTpa), inactivated poliovirus vaccine (IPV) and the combined dTpa-IPV vaccine; meningococcal serogroups A, C, W-135, Y tetanus toxoid conjugate vaccine (MenACWY-TT); hepatitis A (inactivated) vaccine (HepA), hepatitis B (rDNA) vaccine (HepB) and the combined HepA-HepB vaccine. Administration of CERVARIX at the same time as Twinrix (combined HepA-HepB vaccine) has shown no clinically relevant interference in the antibody response to the HPV and hepatitis A antigens. Anti-HBs geometric mean Human Papillomavirus Vaccine Types 16 and 18 antibody titres were lower on co-administration, but the clinical significance of this observation is not known since the seroprotection rates remain unaffected. The proportion of subjects reaching anti-HBs 10mIU/ml was 98.3% (Recombinant, AS04 adjuvanted) for concomitant vaccination and 100% for Twinrix alone. If CERVARIX is to be given at the same time as another injectable vaccine, the vaccines should always be Qualitative and Quantitative Composition administered at different injection sites. Suspension for injection. Use with Hormonal Contraceptive In clinical efficacy studies, approximately 60% of women who received CERVARIX used hormonal contraceptives. 1 dose (0.5 ml) contains: There is no evidence that the use of hormonal contraceptives has an impact on the efficacy of CERVARIX. Human Papillomavirus type 16 L1 protein1 20 micrograms Human Papillomavirus type 18 L1 protein1 20 micrograms Use with Systemic Immunosuppressive Medications 3-O-desacyl-4’- monophosphoryl lipid A (MPL)2 50 micrograms Aluminium hydroxide, hydrated2 0.5 milligrams Al3+ As with other vaccines it may be expected that in patients receiving immunosuppressive treatment an adequate 1 L1 protein in the form of non-infectious virus-like particles (VLPs) produced by recombinant DNA technology response may not be elicited. -
Intramuscular and Intradermal Electroporation of HIV-1 PENNVAX-GP® DNA Vaccine and IL-12 Is Safe, Tolerable, Acceptable in Healthy Adults
Article Intramuscular and Intradermal Electroporation of HIV-1 PENNVAX-GP® DNA Vaccine and IL-12 Is Safe, Tolerable, Acceptable in Healthy Adults Srilatha Edupuganti 1,*, Stephen C. De Rosa 2,3, Marnie Elizaga 2 , Yiwen Lu 2, Xue Han 2, Yunda Huang 2,4, Edith Swann 5, Laura Polakowski 5, Spyros A. Kalams 6, Michael Keefer 7, 2,8 9, 9 9 9, Janine Maenza , Megan C. Wise y, Jian Yan , Matthew P. Morrow , Amir S. Khan y, 9 9 9 9, 9,§ Jean D. Boyer , Laurent Humeau , Scott White , Niranjan Y. Sardesai z, Mark L. Bagarazzi , Peter B. Gilbert 2, James G. Kublin 2, Lawrence Corey 2, David B. Weiner 10, on behalf of the HVTN 098 Study Team k and the NIAID-Funded HIV Vaccine Trials Network 1 Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, GA 30322, USA 2 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; [email protected] (S.C.D.R.); [email protected] (M.E.); [email protected] (Y.L.); [email protected] (X.H.); [email protected] (Y.H.); [email protected] (J.M.); [email protected] (P.B.G.); [email protected] (J.G.K.); [email protected] (L.C.) 3 Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA 4 Department of Global Health, University of Washington, Seattle, WA 98195, USA 5 Division of AIDS, NIH, Bethesda, MD 20892, USA; [email protected] (E.S.); [email protected] (L.P.) 6 Vanderbilt University Medical Center, Nashville, TN 37232, USA; [email protected] 7 Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; [email protected] 8 Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA 9 Inovio Pharmaceuticals Inc. -
Self-Reported Real-World Safety and Reactogenicity of COVID-19 Vaccines: a Vaccine Recipient Survey
life Brief Report Self-Reported Real-World Safety and Reactogenicity of COVID-19 Vaccines: A Vaccine Recipient Survey Alexander G. Mathioudakis 1,2 , Murad Ghrew 3,4,5, Andrew Ustianowski 5,6, Shazaad Ahmad 7, Ray Borrow 8, Lida Pieretta Papavasileiou 9, Dimitrios Petrakis 10 and Nawar Diar Bakerly 3,11,* 1 Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M23 9LT, UK; [email protected] 2 North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK 3 Department of Respiratory Medicine, Salford Royal Hospital NHS Foundation Trust, Manchester M6 8HD, UK; [email protected] 4 Department of Intensive Care Medicine, Salford Royal Hospital NHS Foundation Trust, Manchester M6 8HD, UK 5 Faculty of Biology, Medicine & Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK; [email protected] 6 Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester M8 5RB, UK 7 Department of Virology, Manchester Medical Microbiology Partnership, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; [email protected] 8 Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester University NHS Citation: Mathioudakis, A.G.; Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK; Ghrew, M.; Ustianowski, A.; Ahmad, [email protected] 9 Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece; [email protected] S.; Borrow, R.; Papavasileiou, L.P.; 10 Allergy Clinic, Petrakis Allergy Care, 55133 Thessaloniki, Greece; [email protected] Petrakis, D.; Bakerly, N.D. -
The-University-Of-Queensland-Not-If-When.Pdf
TOGETHER, OUR GREATEST DAYS LIE AHEAD. Thank you. Not If, When – the Campaign to Message from the Chairs The Not if, when campaign is a partnership between the generous donors in our community who have a dream for Create Change a better world, and UQ, which has the research excellence, resources and people to achieve our donors’ ambitions. We invite you to tell us about your vision for the world, to see if we can help provide you with the tools to achieve it, whether this involves increasing access to education, research, or bolstering the arts and humanities that enrich our lives. What is the campaign? What are the campaign To learn more about how you can Over our 107-year history, the priorities? Our motivation for giving back is simple – we want to make a genuine difference, visit support a community that helped and embraced us. We partnership between donors and UQ The goal of the campaign is to are grateful for the support we received, particularly the gift has had an extraordinary impact on galvanise the community and our uq.edu.au/giving that enabled Ian and Dr Jian Zhou to develop the life-saving our community, Queensland, Australia, alumni to help raise the significant cervical cancer vaccine Gardasil. and the world. funds required for three key priorities: Thank you for considering partnering with us, and for Professor Ian Frazer AC FRS and Mrs Caroline Frazer While we have come a long way, there • Empowering Student Success taking the initiative to support the change that you want to NOT IF, WHEN – THE CAMPAIGN TO CREATE CHANGE CO-CHAIRS is so much more to do and so much through life-changing scholarships, see in the world. -
Targeting EGFR/ERK/FOS Signaling As a Novel Approach for HPV-Positive Head and Neck Cancer Treatment
PhD degree in Systems Medicine (curriculum in Molecular Oncology) European School of Molecular Medicine (SEMM), University of Milan and University of Naples “Federico II” Settore disciplinare: Bio/11 Targeting EGFR/ERK/FOS signaling as a novel approach for HPV-positive Head and Neck cancer treatment Alessandro Medda European Institute of Oncology (IEO), Milan Tutor: Prof. Susanna Chiocca European Institute of Oncology (IEO), Milan PhD Coordinator: Prof. Giuseppe Viale Anno accademico 2019-2020 Targeting EGFR/ERK/FOS signaling as a novel approach for HPV-positive Head and Neck Cancer Table of contents 1 Abstract ............................................................................................................. 9 2 Introduction ..................................................................................................... 10 2.1 Human Papillomaviruses ................................................................................... 10 2.1.1 Classification ......................................................................................................... 10 2.1.2 Structure and organization .................................................................................... 12 2.1.2.1 Viral Proteins ..................................................................................................... 12 2.1.3 HPV life cycle and infection ................................................................................... 16 2.1.3.1 Viral Attachment and Entry ............................................................................... -
Reactogenicity, Contraindications, and Precautions: Mrna COVID-19 Vaccines
Health Advisory March 18, 2021 TO: Vermont Health Care Providers and Health Care Facilities FROM: Jennifer S. Read, MD, FIDSA, Medical Epidemiologist Reactogenicity, Contraindications, and Precautions: mRNA COVID-19 Vaccines Subsequent to the implementation of the COVID-19 vaccine registration system in Vermont, health care providers in the state have had questions regarding language in the screening questions. In response to this, the language in the screening questions has been modified as follows: Question 3A: Have you had a severe allergic reaction (e.g., anaphylaxis) after a previous dose of the Pfizer or Moderna COVID-19 vaccine or any of its components? Yes: You should not get another dose of the Pfizer or Moderna COVID-19 vaccine. [Appointment scheduling is blocked] No: [Appointment scheduling proceeds] Question 3B: Have had an immediate allergic reaction to any other vaccine or injectable therapy? Yes: [Proceed to question 3C] No: [Appointment scheduling proceeds] Question 3C: [Asked only if patient answers “yes” to question 3B] Have you been told by an allergy/immunology specialist that you can safely receive an mRNA COVID-19 vaccine?? Yes: [Appointment scheduling proceeds] No: You should not get a Pfizer or Moderna COVID-19 vaccine until an allergy/immunology specialist determines that you can safely receive the vaccine. Please ask your primary care provider to refer you to an allergy/immunology specialist who can determine if you can safely receive the vaccine. [Appointment scheduling is blocked] Further information about a history of allergic reactions is provided in Tables 1 and 2 below. The question about history of a bleeding disorder or use of a blood thinner has been removed from the registration system. -
ACIP COVID-19 Vaccine Bnt162b2-May 12, 2021
COVID-19 Vaccine BNT162b2 Safety, Immunogenicity, and Efficacy in Subjects 12–15- years-old Presentation to ACIP 12 May 2021 John L. Perez, MD, MBA, MA Breakthroughs that change patients’ lives Confidential 1 Inclusion of adolescents <16 yrs of age • C4591001 was initially an adult study • Once acceptable tolerance in adults was established within the original study the protocol was amended to allow inclusion of subjects 16-17 years of age and subsequently 12-15 years of age at the same dose and schedule as adults, without further dose-finding. • The purpose was to generate data to understand whether people 12-15 years of age could be included in pandemic COVID-19 immunisation programmes • Data is from dose 1 to 1 month post dose 2 (12-15- and 16–25-year-olds); and from dose 1 to data cut-off point (13 March 2021) – 12–15-year-olds • Data from subjects 16-25 years of age were used for the safety comparisons and immunobridging purposes Worldwide Research, Development and Medical Confidential 2 Phase 2/3 Safety Schema – Started 27 July, 2020 Vaccination period Follow-up period 21 days apart Up to 2 years Active surveillance for potential COVID-19 symptoms TRIGGERING telehealth or in-person visit and nasal swab Reactogenicity in subsets for 16 and above; all 12-15 year olds 7 days 7 days Non-serious AE: all participants One month post dose 2 Serious AE: all participants Six months post dose 2 Deaths: all participants Through study • All 12-15 year olds had e-diaries to capture solicited events (N=2260) • A random subset of 16-25 year olds -
Submitting Study Datasets for Vaccines to the Office of Vaccines Research and Review
Submitting Study Datasets for Vaccines to the Office of Vaccines Research and Review Guidance for Industry Technical Specifications Document This guidance is for immediate implementation. FDA is issuing this guidance for immediate implementation in accordance with 21 CFR 10.115(g)(4)(i). Submit one set of either electronic or written comments on this guidance at any time. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. You should identify all comments with docket number FDA- 2018-D-1216. Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), 10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email [email protected], or from the Internet at https://www.fda.gov/vaccines-blood-biologics/guidance-compliance- regulatory-information-biologics/biologics-guidances. For questions on the content of this guidance, contact OCOD at the phone numbers or email address listed above. U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research December 2019 Submitting Study Datasets for Vaccines to the Office of Vaccines Research and Review Guidance for Industry Technical Specifications Document Revision History Date Version Summary of Revisions April 2018 1.0 Initial Version October 2019 2.0 Revised Language in Section 3.5 and 4.0 Added Language in Section 2.0, 3.2, 3.3, 4.0 and 7.0 Added Section 6.0 December 2019 2.1 Correction to Revision History Summary, Changed Section 7.9 to 7.0 Contains Nonbinding Recommendations Table of Contents 1.0 INTRODUCTION ............................................................................................................. -
Safety and Immunogenicity of a Plant-Produced
Viruses 2012, 4, 3227-3244; doi:10.3390/v4113227 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article Safety and Immunogenicity of a Plant-Produced Recombinant Hemagglutinin-Based Influenza Vaccine (HAI-05) Derived from A/Indonesia/05/2005 (H5N1) Influenza Virus: A Phase 1 Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study in Healthy Adults Jessica A. Chichester, R. Mark Jones, Brian J. Green, Mark Stow, Fudu Miao, George Moonsammy, Stephen J. Streatfield and Vidadi Yusibov * Fraunhofer USA, Center for Molecular Biotechnology, Newark, DE 19711, USA; E-Mails: [email protected] (J.A.C.); [email protected] (R.M.J.); [email protected] (B.J.G.); [email protected] (M.S.); [email protected] (F.M.); [email protected] (G.M.); [email protected] (S.J.S.); [email protected] (V.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-302-369-3766; Fax: +1-302-369-8955. Received: 25 October 2012; in revised form: 15 November 2012 / Accepted: 16 November 2012 / Published: 19 November 2012 Abstract: Recently, we have reported [1,2] on a subunit influenza vaccine candidate based on the recombinant hemagglutinin protein from the A/Indonesia/05/2005 (H5N1) strain of influenza virus, produced it using ‘launch vector’-based transient expression technology in Nicotiana benthamiana, and demonstrated its immunogenicity in pre-clinical studies. Here, we present the results of a first-in-human, Phase 1 randomized, double-blind, placebo-controlled study designed to investigate safety, reactogenicity and immunogenicity of three escalating dose levels of this vaccine, HAI-05, (15, 45 and 90 µg) adjuvanted with Alhydrogel® (0.75 mg aluminum per dose) and the 90 µg dose level without Alhydrogel®. -
Gardasil, INN-Human Papillomavirus Vaccine [Types 6, 11, 16
SCIENTIFIC DISCUSSION 1. Introduction Human papillomavirus (HPV) infection is currently the most common sexually transmitted disease worldwide. By 5 years after sexual debut, ~50% of young women will have been infected with at least one of the 40 HPV types that preferentially infect the genitals. Thirteen of these HPV types are highly carcinogenic. Although a consistent picture of the epidemiology and pathogenesis of genital infections in women has developed during the past two decades, less is known about these infections in men. However, studies suggest a similar infection pattern in men, who are the most important vectors for transmission of HPV disease to women. The peak incidence of HPV infection occurs in young adults between the ages 16 and 23 years. Human papillomaviruses are double-stranded DNA viruses that infect epithelial cells and are significantly associated with low-grade cervical intraepithelial neoplasia (CIN), genital condyloma and cervical cancer. HPVs are judged to be the primary cause of cervical cancer, which is the second most common type of cancer causing deaths in women worldwide. Other HPV-related cancers in young women include vulvar and vaginal cancers, which are preceded by dysplastic lesions (vulvar intraepithelial neoplasia (VIN) and vaginal intraepithelial neoplasia (VaIN). In men anal cancer is the most common HPV-related cancer. The virus is also related to penile and certain oropharyngeal cancers. Other benign HPV-associated conditions include condyloma acuminata (genital warts) located in the genital or perianal region and juvenile recurrent respiratory papillomatosis (JRRP) primarily located in the larynx. JRRP is thought to occur by transmission of the virus from an infected mother to her child. -
Immunogenicity and Safety of an AS03A-Adjuvanted H5N1 Influenza Vaccine in a Taiwanese Population
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the Formosan Medical Association (2011) 110, 780e786 Available online at www.sciencedirect.com journal homepage: www.jfma-online.com ORIGINAL ARTICLE Immunogenicity and safety of an AS03A-adjuvanted H5N1 influenza vaccine in a Taiwanese population Shinn-Jang Hwang a, Shan-Chwen Chang b, Chong-Jen Yu b, Yu-Jiun Chan a, Tzeng-Ji Chen a, Shie-Liang Hsieh a, Hsiu-Yun Lai a, Ming-Hsien Lin a, Jui-Yao Liu a, Gary Ong c, Francois Roman c, Mamadou Drame´ c, Hans L. Bock c, Pan-Chyr Yang b,* a Taipei Veterans General Hospital, 201 Section 2, Shih-Pai Road, and National Yang Ming University School of Medicine, Taipei, Taiwan b National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan c GlaxoSmithKline Biologicals, Wavre, Belgium Received 3 September 2010; received in revised form 27 October 2010; accepted 21 December 2010 KEYWORDS Background/Purpose: A multicenter study (NCT00449670) conducted across Taiwan, Singa- adjuvant system; pore, Hong Kong and Thailand evaluated the safety and manufacturing consistency of four disease outbreak; formulations of an AS03A-adjuvanted H5N1 vaccine in terms of immune response against the H5N1 virus; vaccine-homologous strain (A/Vietnam/1194/2004). This manuscript presents data from the influenza A virus; Taiwanese population. Taiwan Methods: A total of 400 individuals, aged 18e60 years, were randomized into six groups (2:2:2:2:1:1 ratio) to receive two doses (21 days apart) of one of the four adjuvanted formu- lations (H5N1-AS03A-groups) or one of the two nonadjuvanted formulations (H5N1-DIL-groups). -
Patent Problem for Australian Professor Ian Frazer • Prana Co
Bi Board Look out for these Upcoming Issues Australia Patent Problem for Australian Professor Ian Frazer Australian scientist Professor Ian Frazer is most well 2006 known as the inventor of the cervical cancer vaccine, which received approval from the US Food and Drug Administration recently and is set to become commercially available in Australia later this year. Drug giant Merck is 30 Aug Drug Discovery already marketing Gardasil to American women on its website. However, there appears to be a patent problem for 15 Sep Special Issue on the cervical cancer vaccine. Biotechnology in Korea The University of Rochester is one of four research institutions claiming to be responsible for original work 30 Sep Pharmacogenomics leading to a cervical cancer vaccine. The other three are the US' National Cancer Institute (NCI), Georgetown 15 Oct Telemedicine University in Washington DC and the University of Queensland. A Georgetown University Medical Center 30 Oct Bioethics (GUMC) press release issued the day the FDA approved Gardasil explained researcher Richard Schlegel's role in the vaccine's development but says nothing about the other 15 Nov Special Issue on Clinical Trials in Asia Pacifi c efforts involved. On the other hand, Ian insists he co-invented the vaccine 30 Nov Lipodomics with University of Queensland colleague Dr Jian Zhou in 1991. Frazer and Zhou fi led a provisional patent covering their human papillomavirus (HPV) research in June 1991 15 Dec Biostatistics and presented their fi ndings at a scientifi c meeting in the US in September