Copenhagen May 25, 2015 Michael Freedman

Total Page:16

File Type:pdf, Size:1020Kb

Copenhagen May 25, 2015 Michael Freedman Copenhagen May 25, 2015 Michael Freedman Microsoft Research—Station Q 1 Quantum Mathematics and the Relationship Between Math and Physics 2 Eugene Wigner “The Unreasonable Effectiveness of Mathematics in the Natural Sciences” 1960 I’d like to propose a “dual” aphorism: ​������ “. the unreasonable effectiveness of physics in mathematics . .” 3 Dualities in Mathematics Poincaré Duality (in topology) Fourier Duality (in analyis) p 4 Physics • Particle ↔ wave • ADS/CFT • Donaldson ↔ Seiberg/Witten Field Theory Effective Infrared Limit Effective Ultraviolet Limit 5 Both ​ and Wigner are supported by the work of Ed WittenWign and Vaughan Jones others in the past 30 years.er History Quantum Mechanics ↓ Story of: Operator algbebras Jones polynomial (topology) ↓ von Neumann algebras ↓ braid representaon Link invariants ‖ Jones Polynomial ↓ “Topological Quantum Field Theory” ↓ Topological quantum Categorificaon 3-manifold computaon ↓ topology Khovanov homology Five branes, equaons in 4 & 5D 6 More​ ������ : Langlands Program N=4 supersymmetric Yang-Mills → 4D families of TQFTs … ↓ Algebraic number theory / Galois groups ⇕ Automorphic forms / rep theory Robert Langlands 7 Energy of loops in non-linear Σ-model ↓ Bo periodicity Raoul Bo ↓ Kitaev’s classificaon of free fermions according Alexei Kitaev to dimension and symmetry ↓ Controlled k-theory 8 The central player in string theory and perhaps mathematics as a whole is the complex curve. 9 Things sounding highly specialized to mathematicians: super-symmetric string field theories, turn out to be fundamental. They enumerate basic algebraic-geometric objects, as shown by Candelas et. al. using a duality between Calabi-Yau manifolds. Shing-Tung Yau Candelas, de la Ossa, Green, Parkes 10 • “Wigner” says that the universe is regular. ​ • Wign suggests that the universe is not a errealization of an arbitrary consistent system but rather a system that is maximal or even unique. • Otherwise math would far outreach physics. 11 Leibniz spoke of “the best of all possible worlds.” • Maybe there is only one possible world. Gottfried Leibniz Could the universe have been different? 12 • Could there be a world where NP-complete problems can be solved efficiently? • What about a world where Grover search runs in cube root rather than square root time? • Many (Aaronson) think not – that just like perpetual motion, such worlds cannot be consistent. Free Will! Indeed. Descarte Aaronson 13 I’d like to expand the discussion to include Information and Computation as promising, younger colleagues of Physics and Mathematics. • The Godel, Turing and Shannon’s theories of proof, computation and communication evolved in the 1960’s into the theory of computational complexity 14 Good computational models are rare. Modern Church-Turing (MCT) Thesis: • There are only two maximal physically realistic models of computation: – One based on Classical Physics P – One based on Quantum Physics BQP Alonzo Church Alan Turing 15 We believe BQP is stronger than P (evidence Shor’s factoring Algorithm ) • Why is the quantum world superior? • Our Classical world emerges through neglect, that is failure to observe an entire system but merely a piece of it. 16 • Mathematically this neglect is called partial trace and averages the unobserved degrees of Freedom. Physically the process is called decoherence. • Planck’s contstant ћ ≤ ∆ p ∆ x is the quantum of phase space volume and neglecting a portion of phase space large with respect to ћ produces “classical outcomes.” Quantum Classical Corollary of MCT: All we will ever know (or at least compute) will lie in BQP 17 Despite quandaries involving unitarity and black holes I am happy in believing Quantum Mechanics governs the universe. Schrödinger (Amplitudes NOT probablities) 18 • Amplitudes are square roots of probabilities • Square roots of probabilities are not intuitive. • Nothing in our large scale classical world, nothing in our evolutionary experience, prepares our mind for superposition of amplitudes within a Hilbert space. • Superposition was born amid mystery and paradox in the period 1900-1927. Planck Born Bohr Heisenberg Schrodinger Radiation, Diffraction, Scattering, Atomic Spectra 19 • We need something like the double slit experiment to see amplitudes at work 20 It is amplitudes not probabili?es which add All closed 1 open 2 open Blind Screen -|α|2 0 +|α + β|2 -|β|2 Source |α + β|2 = |α|2 + |β|2 Observed paern 21 This has lead us to a new type of numeral : Let us “hash” Mankind’s history into a Brief History of Numbers • -13,000 years: Coun?ng in unary Possible futures contract for sheep in Anatolia • -3000 years: Place notaon • Hindu-Arab, Chinese 7,123,973,713 • 1982: Configuraon numbers as basis of a Hilbert space of states 22 • Quantum computers manipulate numbers in superposi?on – essen?ally creang a new kind of numeral. • We believe that quantum computers will do amazing things. 23 • But we’re not sure exactly what. • Prominent possibili?es: • Quantum Chemistry • Drug Design • High Tc • Machine Learning 24 • Quantum mechanics does not permit copying of informaon (no cloning theorem). Thus • Long quantum mechanical computaon requires either – painful error correc?on: For big problems 99.9%-99.99% of resources go to s?fle error, even given physical gates with 99.9% fidelity, or – extreme accuracy (topology) 25 Topology • Charlie Marcus of KU and NBI is making breathtaking advances in the topological direc?on: Stanescu, Lutchyn, Das Sarma, PRB’11 Sankar Das Sarma Charlie Marcus • Within our life?mes a new tool will lie within our or collec?ve toolbox. 26 6.23 × 109 decimal computer nuclear machines biology number α |0> + β |1> quantum number/ quantum computer fire 27 But a skep?c might ask: • If topological quantum systems are so great at processing informaon, why don’t natural biological systems exploit them? • Quantum effects are most pronounced in cold environments, T« gap. • Maybe biological systems will, but we’ll have to wait 1011 years for the cosmic background temperature to drop low enough. • Our joint endeavor with Marcus and others is designed short-cut this tedious hundred billion-year wait. 28 Let me finish by revisi?ng two old ideas with “quantum thinking.” The first is modest and sober, the second is not. Max Flow = Min Cut (1956 Shannon, and Ford-Fulkerson) Classical Max Flow = Min Cut = 2 in out T’ 2 3 T Quantum 2 (2015 Cui, F., Stong, R.) 2 2 T” 2 3 Max (rank (network)) = 7 ˂ 8 T, T’, T” 29 Now a less sober idea • Taking​Wigner seriously, let’s reverse a fifty-year effort to construct a mathematical foundation for field theory and instead seek a field theoretic foundation for mathematics. • A Feynman diagram (let’s take cubic interactions) has the same structure as a proof in a formal system X: two things come together and a third thing gets “spit out.” A ⇒ B ​Wigner B A Physics (field theory) Logic (modus ponens) 30 • We should attempt to “reverse engineer” the “field theory” whose perturbative expansions are the deductions of some fixed formal system—X. • For such a theory, the partition function Zi, f would (perturbatively) be a weighted sum of all possible proofs from the initial conditions i, the axioms, to the final condition f, the statement in question. i f 31 But a field contains more than perturbative information (think of kinks, instantons, phase transition, etc.), so one would expect situations in which Zi, f > 0 even in the absence of a formal proof, in system X, of statement f, from the axioms i. David Thouless Gerard t’Hooft 32 • In a field based system, more things would be “provable.” Corresponding to nonperturbative effects. • Perhaps, Gödel’s incompleteness theorems disappear: there seems no enumeration scheme for our more general “proofs.” • “Proofs” would no longer be something you can “write down”, but merely accumulate evidence about. 33 • The early 20th century paradoxes within set theory might eventually be interpreted as “pushing a low energy effective theory beyond its limits.” • With luck, we might undo all the good work of the twentieth century on logic and set theory and return to the world of Hilbert and Bohr. David Hilbert Niels Bohr 34 • There are two types of numbers (integers) in our experience that are effec?vely non-overlapping: 0, 1, 2, …, 1070 10(10(22)) Number of configurations Number of things or system states 35 .
Recommended publications
  • Campus Profile Sept 2018.Indd
    CAMPUS PROFILE AND POINTS OF DISTINCTION campus profileOCTOBER 2018 CAMPUS PROFILE AND POINTS OF DISTINCTION At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. UC San Diego’s main campus is located near the Pacific Ocean on 1,200 acres of coastal woodland in La Jolla, California. The campus sits on land formerly inhabited by Kumeyaay tribal members, the original native inhabitants of San Diego County. UC San Diego’s rich academic portfolio includes six undergraduate colleges, five academic divisions, and five graduate and professional schools. BY THE NUMBERS • 36,624 Total campus enrollment (as of Fall 2017); • 16 Number of Nobel laureates who have taught the largest number of students among colleges on campus and universities in San Diego County. • 201 Memberships held by current and emeriti • 97,670 Total freshman applications for 2018 faculty in the National Academy of Sciences (73), National Academy of Engineering (84), • 4.13 Admitted freshman average high school GPA and National Academy of Medicine (44). • $4.7 billion Fiscal year 2016-17 revenues; • 4 Scripps Institution of Oceanography operates 20 percent of this total is revenue from contracts three research vessels and an innovative Floating and grants, most of which is from the federal Instrument Platform (FLIP), enabling faculty, government for research.
    [Show full text]
  • Prospects in Topology
    Annals of Mathematics Studies Number 138 Prospects in Topology PROCEEDINGS OF A CONFERENCE IN HONOR OF WILLIAM BROWDER edited by Frank Quinn PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY 1995 Copyright © 1995 by Princeton University Press ALL RIGHTS RESERVED The Annals of Mathematics Studies are edited by Luis A. Caffarelli, John N. Mather, and Elias M. Stein Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources Printed in the United States of America by Princeton Academic Press 10 987654321 Library of Congress Cataloging-in-Publication Data Prospects in topology : proceedings of a conference in honor of W illiam Browder / Edited by Frank Quinn. p. cm. — (Annals of mathematics studies ; no. 138) Conference held Mar. 1994, at Princeton University. Includes bibliographical references. ISB N 0-691-02729-3 (alk. paper). — ISBN 0-691-02728-5 (pbk. : alk. paper) 1. Topology— Congresses. I. Browder, William. II. Quinn, F. (Frank), 1946- . III. Series. QA611.A1P76 1996 514— dc20 95-25751 The publisher would like to acknowledge the editor of this volume for providing the camera-ready copy from which this book was printed PROSPECTS IN TOPOLOGY F r a n k Q u in n , E d it o r Proceedings of a conference in honor of William Browder Princeton, March 1994 Contents Foreword..........................................................................................................vii Program of the conference ................................................................................ix Mathematical descendants of William Browder...............................................xi A. Adem and R. J. Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-Macaulay........................................................................3 A.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Fefferman and Schoen Awarded 2017 Wolf Prize in Mathematics
    COMMUNICATION Fefferman and Schoen Awarded 2017 Wolf Prize in Mathematics Biographical Sketch: Charles Fefferman Charles Fefferman was born in Washington, DC, in 1949. Showing exceptional ability in mathematics as a child, he entered the University of Maryland in 1963, at the age of fourteen, having bypassed high school. He published his first mathematics paper in a journal at the age of fifteen. In 1966, at the age of seventeen, he received his BS in mathematics and physics and was awarded a three-year NSF fellowship for research. He received his PhD from Princeton University in 1969 under the direction of Elias Stein. After spending the year 1969–1970 as a lecturer at Princeton, he accepted an assistant professorship at the University of Chicago. He was promoted to full professor in 1971—the youngest full professor ever appointed in Charles Fefferman Richard Schoen the United States. He returned to Princeton in 1973. He has been the recipient of a Sloan Foundation Fellowship Charles Fefferman of Princeton University and Richard (1970) and a NATO Postdoctoral Fellowship (1971). He Schoen of the University of California, Irvine, have been was awarded the Fields Medal in 1978. His many awards awarded the 2017 Wolf Prize in Mathematics by the Wolf and prizes include the Salem Prize (1971); the inaugural Foundation. Alan T. Waterman Award (1976); the Bergman Prize (1992); The prize citation reads: “Charles Fefferman has made and the Bôcher Memorial Prize of the AMS (2008). He was major contributions to several fields, including several elected to the American Academy of Arts and Sciences in complex variables, partial differential equations and 1972, the National Academy of Sciences in 1979, and the subelliptic problems.
    [Show full text]
  • The Top Mathematics Award
    Fields told me and which I later verified in Sweden, namely, that Nobel hated the mathematician Mittag- Leffler and that mathematics would not be one of the do- mains in which the Nobel prizes would The Top Mathematics be available." Award Whatever the reason, Nobel had lit- tle esteem for mathematics. He was Florin Diacuy a practical man who ignored basic re- search. He never understood its impor- tance and long term consequences. But Fields did, and he meant to do his best John Charles Fields to promote it. Fields was born in Hamilton, Ontario in 1863. At the age of 21, he graduated from the University of Toronto Fields Medal with a B.A. in mathematics. Three years later, he fin- ished his Ph.D. at Johns Hopkins University and was then There is no Nobel Prize for mathematics. Its top award, appointed professor at Allegheny College in Pennsylvania, the Fields Medal, bears the name of a Canadian. where he taught from 1889 to 1892. But soon his dream In 1896, the Swedish inventor Al- of pursuing research faded away. North America was not fred Nobel died rich and famous. His ready to fund novel ideas in science. Then, an opportunity will provided for the establishment of to leave for Europe arose. a prize fund. Starting in 1901 the For the next 10 years, Fields studied in Paris and Berlin annual interest was awarded yearly with some of the best mathematicians of his time. Af- for the most important contributions ter feeling accomplished, he returned home|his country to physics, chemistry, physiology or needed him.
    [Show full text]
  • Science Lives: Video Portraits of Great Mathematicians
    Science Lives: Video Portraits of Great Mathematicians accompanied by narrative profiles written by noted In mathematics, beauty is a very impor- mathematics biographers. tant ingredient… The aim of a math- Hugo Rossi, director of the Science Lives project, ematician is to encapsulate as much as said that the first criterion for choosing a person you possibly can in small packages—a to profile is the significance of his or her contribu- high density of truth per unit word. tions in “creating new pathways in mathematics, And beauty is a criterion. If you’ve got a theoretical physics, and computer science.” A beautiful result, it means you’ve got an secondary criterion is an engaging personality. awful lot identified in a small compass. With two exceptions (Atiyah and Isadore Singer), the Science Lives videos are not interviews; rather, —Michael Atiyah they are conversations between the subject of the video and a “listener”, typically a close friend or colleague who is knowledgeable about the sub- Hearing Michael Atiyah discuss the role of beauty ject’s impact in mathematics. The listener works in mathematics is akin to reading Euclid in the together with Rossi and the person being profiled original: You are going straight to the source. The to develop a list of topics and a suggested order in quotation above is taken from a video of Atiyah which they might be discussed. “But, as is the case made available on the Web through the Science with all conversations, there usually is a significant Lives project of the Simons Foundation. Science amount of wandering in and out of interconnected Lives aims to build an archive of information topics, which is desirable,” said Rossi.
    [Show full text]
  • Propagation in Media As a Probe for Topological Properties”, University of Southampton, Mathematical Sciences, Phd Thesis, Pagination
    University of Southampton Research Repository Copyright c and Moral Rights for this thesis and, where applicable, any ac- companying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full biblio- graphic details must be given, e.g. Samuel MUGEL (2017) “Propagation in media as a probe for topological properties”, University of Southampton, Mathematical Sciences, PhD Thesis, pagination. UNIVERSITY OF SOUTHAMPTON DOCTORAL THESIS Propagation in media as a probe for topological properties Author: Supervisor: Samuel MUGEL Dr. Carlos LOBO Prof. Maciej LEWENSTEIN A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Social, Human and Mathematical Sciences June 21, 2017 ii “If you haven’t found something strange during the day, it hasn’t been much of a day.” John Archibald Wheeler iii UNIVERSITY OF SOUTHAMPTON Abstract Faculty of Social, Human and Mathematical Sciences Mathematical Sciences Doctor of Philosophy PROPAGATION IN MEDIA AS A PROBE FOR TOPOLOGICAL PROPERTIES by Samuel MUGEL The central goal of this thesis is to develop methods to experimentally study topological phases.
    [Show full text]
  • Applications at the International Congress by Marty Golubitsky
    From SIAM News, Volume 39, Number 10, December 2006 Applications at the International Congress By Marty Golubitsky Grigori Perelman’s decision to decline the Fields Medal, coupled with the speculations surrounding this decision, propelled the 2006 Fields Medals to international prominence. Stories about the medals and the award ceremony at the International Congress of Mathematicians in Madrid this summer appeared in many influential news outlets (The New York Times, BBC, ABC, . .) and even in popular magazines (The New Yorker). In Madrid, the topologist John Morgan gave an excellent account of the history of the Poincaré conjecture and the ideas of Richard Hamilton and Perelman that led to the proof that the three-dimensional conjecture is correct. As Morgan pointed out, proofs of the Poincaré con- jecture and its direct generalizations have led to four Fields Medals: to Stephen Smale (1966), William Thurston (1982), Michael Freedman (1986), and now Grigori Perelman. The 2006 ICM was held in the Palacio Municipal de Congressos, a modern convention center on the outskirts of Madrid, which easily accommodated the 3600 or so participants. The interior of the convention center has a number of intriguing views—my favorite, shown below, is from the top of the three-floor-long descending escalator. Alfio Quarteroni’s plenary lecture on cardiovascular mathematics was among the many ses- The opening ceremony included a welcome sions of interest to applied mathematicians. from Juan Carlos, King of Spain, as well as the official announcement of the prize recipients—not only the four Fields Medals but also the Nevanlinna Prize and the (newly established) Gauss Prize.
    [Show full text]
  • Scientific Workplace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra
    Scientific WorkPlace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra (-l +lr,:znt:,-1 + 2r) ,..,_' '"""""Ke~r~UrN- r o~ r PooiliorK 1.931'J1 Po6'lf ·1.:1l26!.1 Pod:iDnZ 3.881()2 UfW'IICI(JI)( -2.801~ ""'"""U!NecteoZ l!l!iS'11 v~ 0.7815399 Animated plots ln spherical coordln1tes > To make an anlm.ted plot In spherical coordinates 1. Type an expression In thr.. variables . 2 WMh the Insertion poilt In the expression, choose Plot 3D The next exampfe shows a sphere that grows ftom radius 1 to .. Plot 3D Animated + Spherical The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in LAT£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 3D plots, create 3D implicit plots, and more. MuPAD' Pro MuPAD Pro is an integrated and open mathematical problem­ solving environment for symbolic and numeric computing. Visit our website for details. cK.ichan SOFTWARE , I NC. Visit our website for free trial versions of all our products. www.mackichan.com/notices • Email: info@mac kichan.com • Toll free: 877-724-9673 It@\ A I M S \W ELEGRONIC EDITORIAL BOARD http://www.math.psu.edu/era/ Managing Editors: This electronic-only journal publishes research announcements (up to about 10 Keith Burns journal pages) of significant advances in all branches of mathematics.
    [Show full text]
  • Mathematical Challenges of the 21St Century: a Panorama of Mathematics
    comm-ucla.qxp 9/11/00 3:11 PM Page 1271 Mathematical Challenges of the 21st Century: A Panorama of Mathematics On August 7–12, 2000, the AMS held the meeting lenges was a diversity Mathematical Challenges of the 21st Century, the of views of mathemat- Society’s major event in celebration of World ics and of its connec- Mathematical Year 2000. The meeting took place tions with other areas. on the campus of the University of California, Los The Mathematical Angeles, and drew nearly 1,000 participants, who Association of America enjoyed the balmy coastal weather as well as held its annual summer the panorama of contemporary mathematics Mathfest on the UCLA Reception outside Royce Hall. provided in lectures by thirty internationally campus just prior to renowned mathematicians. the Mathematical Chal- This meeting was very different from other na- lenges meeting. On Sunday, August 6, a lecture by tional meetings organized by the AMS, with their master expositor Ronald L. Graham of the Uni- complicated schedules of lectures and sessions versity of California, San Diego, provided a bridge running in parallel. Mathematical Challenges was between the two meetings. Graham discussed a by comparison a streamlined affair, the main part number of unsolved problems that, like those of which comprised thirty plenary lectures, five per presented by Hilbert, have the intriguing combi- day over six days (there were also daily contributed nation of being simple to state while at the same paper sessions). Another difference was that the time being difficult to solve. Among the problems Mathematical Challenges speakers were encour- Graham talked about were Goldbach’s conjecture, aged to discuss the broad themes and major the “twin prime” conjecture, factoring of large outstanding problems in their areas rather than numbers, Hadwiger’s conjecture about chromatic their own research.
    [Show full text]
  • Cc210308 Item 6A.Pdf
    City Council Meeting 03-08-21 Item 6.A. Council Agenda Report To: Mayor Pierson and the Honorable Members of the City Council Prepared by: John Cotti, City Attorney Date prepared: February 24, 2021 Meeting date: March 8, 2021 Subject: Proposals for Legal Services Related to the Investigation of Allegations Set Forth in an Affidavit filed by Former Malibu City Councilmember, Jefferson Wagner RECOMMENDED ACTION: Review the proposals for Legal Services related to the investigation of allegations set forth in the Affidavit of former Malibu City Councilmember Jefferson Wagner and provide direction to staff. FISCAL IMPACT: There is no fiscal impact associated with the recommended action at this time. WORK PLAN: This item was not included in the Adopted Work Plan for Fiscal Year DISCUSSION: At the Malibu City Council meeting on December 14, 2020, the City was made aware of an affidavit from outgoing councilmember Jefferson Wagner that contains allegations of wrongdoing. On December 18, 2021, the Interim City Attorney forwarded the affidavit to the Los Angeles District Attorney’s Public Integrity Unit. That Unit has not issued any decision on the investigation. As the Council directed at its January 25, 2021, meeting, a request for a proposal to investigate the allegations in Wagner‘s statement was sent to each firm identified by a council member. The complete list of firms to which a request was sent is as follows: Evan Jenness, Attorney-at-Law Werksman Jackson & Quinn, LLP Vedder Price, PC Crowell & Moring, LLP Michelle Reinglass Page 1 of 9 Agenda Item # 6.A. 1 Nancy Bornn, A Law Corporation Citron & Deutsch Munger Tolles & Olson Quinn Emanuel Urquhart & Sullivan Freeh Group International Solutions, LLC Cader Adams, LLP Isaacs Friedberg LLP On February 22, 2021, the City received five proposals from separate firms.
    [Show full text]
  • The Work of John Milnor
    THE WORK OF JOHN MILNOR W.T. GOWERS 1. The hardest IQ question ever What is the next term in the following sequence: 1, 2, 5, 14, 41, 122? One can imagine such a question appearing on an IQ test. And one doesn't have to stare at it for too long to see that each term is obtained by multiplying the previous term by 3 and subtracting 1. Therefore, the next term is 365. If you managed that, then you might find the following question more challenging. What is the next term in the sequence 1; 1; 28; 2; 8; 6; 992; 1; 3; 2; 16256; 2; 16; 16; 523264? I will leave that question hanging for now, but I promise to reveal the answer later. 2. A giant of modern mathematics There are many mathematicians with extraordinary achievements to their names, and many who have won major prizes. But even in this illustrious company, John Milnor stands out. It is not just that he has proved several famous theorems: it is also that the areas in which he has made fundamental contributions have been very varied, and that he is renowned as a quite exceptionally gifted expositor. As a result, his influence can be felt all over modern mathematics. I will not be able to do more than scratch the surface of what he has done, partly because of the limited time I have and partly because I work in a different field. The areas that he has worked in include differential topology, K-theory, group theory, game theory, and dynamical systems.
    [Show full text]